Journal Papers
- Teruyoshi Nobukawa, Daisuke Barada, Takanori Nomura, and Takashi Fukuda, "Orthogonal polarization encoding for reduction of interpixel cross talk in holographic data storage," Opt. Express 25, 22425-22439 (2017)
- Takahiro Kitazawa and Takanori Nomura, “Refractive index tomography based on optical coherence tomography and tomographic reconstruction algorithm,” Jpn. J. Appl. Phys. 56, 09NB03 (6 pages) (2017).
- Teruyoshi Nobukawa and Takanori Nomura, “Correlation-Based Multiplexing of Complex Amplitude Data Pages in a Holographic Storage System Using Digital Holographic Techniques,” Polymers 9, 375 (13 pages) (2017).
- Takanori Nomura and Kazuma Shinomura, "Generalized sequential four-step phase-shifting color digital holography," Appl. Opt. 56, 6851-6854 (2017).
- Koshi Komuro and Takanori Nomura, "Object plane detection and phase-amplitude imaging based on transport of intensity equation,” Opt. Rev. 24, 623-626 (2017).
- Kaho Watanabe and Takanori Nomura, "Spatially incoherent Fourier digital holography by four-step phase-shifting rotational shearing interferometer and its image quality,” Opt. Rev. 24, 351-360 (2017).
- Osamu Matoba, Xiangyu Quan, Peng Xia, Yasuhiro Awatsuji, and Takanori Nomura, “Multimodal Imaging Based on Digital Holography,” Proc. IEEE 105, 906-923 (2017).
- Teruyoshi Nobukawa and Takanori Nomura, “Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram,” Appl. Opt. 56, F31-F36 (2017).
- Teruyoshi Nobukawa and Takanori Nomura, “Digital super-resolution holographic data storage based on Hermitian symmetry for achieving high areal density,” Opt. Express 25, 1326-1338 (2017).
- Teruyoshi Nobukawa, Takashi Fukuda, Daisuke Barada, and Takanori Nomura, “Coaxial polarization holographic data recording on a polarization-sensitive medium,” Opt. Lett. 41, 4919-4922 (2016).
- Teruyoshi Nobukawa and Takanori Nomura, “Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography,” Opt. Express 24, 21001-21011 (2016).
- Hironobu Shinto, Yusuke Saita, and Takanori Nomura, "Shack–Hartmann wavefront sensor with large dynamic range by adaptive spot search method," Appl. Opt. 55, 5413-5418 (2016).
- Koshi Komuro and Takanori Nomura, "Quantitative phase imaging using transport of intensity equation with multiple bandpass filters," Appl. Opt. 55, 5180-5186 (2016).
- Bahram Javidi, Artur Carnicer, Masahiro Yamaguchi, Takanori Nomura, Elisabet Pérez-Cabré, María S Millán, Naveen K Nishchal, Roberto Torroba, John Fredy Barrera, Wenqi He, Xiang Peng, Adrian Stern, Yair Rivenson, A Alfalou, C Brosseau, Changliang Guo, John T Sheridan, Guohai Situ, Makoto Naruse, Tsutomu Matsumoto, Ignasi Juvells, Enrique Tajahuerce, Jesús Lancis, Wen Chen, Xudong Chen and Pepijn W H Pinkse, Allard P Mosk, and Adam Markman, "Roadmap on optical security,” J. Opt. 18, 083001 (39 pages) (2016).
- Teruyoshi Nobukawa and Takanori Nomura, “Linear phase encoding for holographic data storage with a single phase-only spatial light modulator,” Appl. Opt. 55, 2565-2573 (2016).
- Takahiko Fukuoka, Yutaka Mori, and Takanori Nomura, "Speckle Reduction by Spatial-Domain Mask in Digital Holography,” J. Disp. Tech. 12, 315-322 (2016).
- Yutaka Mori, Takahiko Fukuoka, and Takanori Nomura, “Extended focused imaging in digital holography by spatial-domain mask method,” J. Opt. 17, 125706 (2015).
- Teruyoshi Nobukawa and Takanori Nomura, “Multilayer recording holographic data storage using a varifocal lens generated with a kinoform,” Opt. Lett. 40, 5419-5422 (2015).
- Yutaka Mori and Takanori Nomura, "Speckle reduction in hologram generation based on spherical waves synthesis using low-coherence digital holography,” J. Disp. Tech. 11, 867-872 (2015).
- Toshitaka Kobata and Takanori Nomura, “Digital holographic three-dimensional Mueller matrix imaging,” Appl. Opt. 54, 5591-5596 (2015).
- Teruyoshi Nobukawa, Yotaro Wani, and Takanori Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40, 2161-2164 (2015).
- Yusuke Saita, Hironobu Shinto, and Takanori Nomura, "Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range," Optica 2, 411-415 (2015).
- Yutaka Mori, Takahiko Fukuoka, and Takanori Nomura, "Speckle reduction in holographic projection by random pixel separation with time multiplexing," Appl. Opt. 53, 8182-8188 (2014).
- Kaho Watanabe and Takanori Nomura, "Recording spatially incoherent Fourier hologram using dual channel rotational shearing interferometer," Appl. Opt. 54, A18-A22 (2015).
- Yuji Tanaka, Yutaka Mori, and Takanori Nomura, "Single-shot three-dimensional shape measurement by low-coherent optical path difference digital holography," Appl. Opt. 53, G19-G24 (2014).
- Yusuke Saita and Takanori Nomura, "Design method of input phase mask to improve light use efficiency and reconstructed image quality for holographic memory," Appl. Opt. 53, 4136-4140 (2014).
- Teruyoshi Nobukawa and Takanori Nomura, "Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage," Appl. Opt. 53, 3773-3781 (2014).
- Masatoshi Imbe and Takanori Nomura, “Selective calculation for improvement of reconstructed images in single-exposure generalized phase-shifting digital holography,” Opt. Eng. 53, 044102 (7 pages) (2014).
- Kaho Watanabe, Masashi Ohshima, and Takanori Nomura, “Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning,” J. Opt. 16, 045403 (8 pages) (2014).
- Yutaka Mori and Takanori Nomura, “Shortening method for optical reconstruction distance in digital holographic display with phase hologram,” Opt. Eng. 52, 123101-1-7 (2013).
- Teruyoshi Nobukawa and Takanori Nomura, “Coaxial Holographic Memory with Designed Reference Pattern on the Basis of Nyquist Aperture for High Density Recording,” Jpn. J. Appl. Phys. 52, 09LD09 (5pages) (2013).
- Masatoshi Imbe and Takanori Nomura, "Study of reference waves in single-exposure generalized phase-shifting digital holography," Appl. Opt. 52, 4097-4102 (2013).
- Yutaka Mori and Takanori Nomura, "Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display," Appl. Opt. 52, 3838-3844 (2013).
- Masatoshi Imbe and Takanori Nomura, “Single-exposure phase-shifting digital holography using a random-complex-amplitude encoded reference wave,” Appl. Opt. 52, A161-A166 (2013).
- Yusuke Saita, Takanori Nomura, Eiji Nitanai, and Takuhisa Numata, “Design of Reference Pattern and Input Phase Mask for Coaxial Holographic Memory,” Jpn. J. Appl. Phys. 50, 09ME03 (5 pages) (2011).
- Takanori Nomura and Masatoshi Imbe, "Single-exposure phase-shifting digital holography using a random-phase reference wave," Opt. Lett. 35, 2281-2283 (2010) .
- Hiroyuki Suzuki, Takanori Nomura, Eiji Nitanai, and Takuhisa Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17, No. 3, pp. 176-180 (2010).
- O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical Techniques for Information Security,” Proc. IEEE, 97, pp. 1128-48 (2009).
- Takanori Nomura, Mitsukiyo Okamura, Eiji Nitanai, and Takuhisa Numata, "Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths," Appl. Opt. 47, D38-D43 (2008).
- Takanori Nomura and Bahram Javidi, "Object recognition by use of polarimetric phase-shifting digital holography," Opt. Lett. 32, pp. 2146-2148 (2007).
- Takanori Nomura, Bahram Javidi, Shinji Murata, Eiji Nitanai, and Takuhisa Numata,"Polarization imaging of a three-dimensional object by use of on-axis phase-shifting digital holography," Opt. Lett. 32, No. 5, pp. 481-483 (2007).
- B. Javidi, C. M. Do, S. -H. Hong, and T. Nomura,"Multi-Spectral Holographic Three-Dimensional Image Fusion Using Discrete Wavelet Transform," J. Display Technol. 2, No. 4, pp. 411-417 (2006).
- Takanori Nomura, Shinji Murata, Eiji Nitanai, and Takuhisa Numata,"Phase shifting digital holography using phase difference of orthogonal polarizations," Appl. Opt. 45, No. 20, pp. 4873-4877 (2006).
- Takanori Nomura, Eiji Nitanai, Takuhisa Numata, and Bahram Javidi, "Design of input phase mask for the space bandwidth of the optical encryption system," Opt. Eng. 45, No. 1, 017006 (2006).
- Takanori Nomura, Atsushi Okazaki, Masashi Kameda, Yoshiharu Morimoto, and Bahram Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. 44, No. 7, 075801 (2005) .
- Takanori Nomura, Kaoru Uota, and Yoshiharu Morimoto, "Hybrid optical encryption of a 3-D object using a digital holographic technique," Opt. Eng. 43, No. 10, pp. 2228-2232 (2004) .
- Takanori Nomura, Shunji Mikan, Yoshiharu Morimoto, and Bahram Javidi, "Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator," Appl. Opt. 42, No. 8, pp. 1508-1514 (2003).
- Satoru Yoneyama, Yoshiharu Morimoto, Takanori Nomura, Motoharu Fujigaki, and Ryo Matsui, "Real-time analysis of isochromatics and isoclinics using the phase-shifting mehod," Exper. Mechan. 43, 1 pp.83-89 (2003).
- Takanori Nomura and Bahram Javidi,"Optical Encryption System with a Binary Key Code," Appl. Opt. 39, 26, pp. 4783-4787 (2000).
- Bahram Javidi and Takanori Nomura, "Polarization encoding for optical security system," Opt. Eng. 39, 9, pp. 2439-2443 (2000).
- Takanori Nomura and Bahram Javidi, "Optical encryption using a joint transform correlator architecture," Opt. Eng. 39, 9, pp. 2031-2035 (2000).
- Bahram Javidi and Takanori Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 1, pp. 28-30 (2000).
- Takanori Nomura, "Phase-Encoded Joint Transform Correlator to Reduce the Influence of Extraneous Signals," Appl. Opt. 37, 17, pp. 3651-3655 (1998).
- Takanori Nomura and Masaya Tamaru, "Layered Blind Deconvolution Using Subband Filter Banks," Optical Review 4, 1B, pp. 164-166 (1997).