Epistemic Argumentation Framework

Chiaki Sakama

(Wakayama University, Japan)

Tran Cao Son (New Mexico State University, USA)

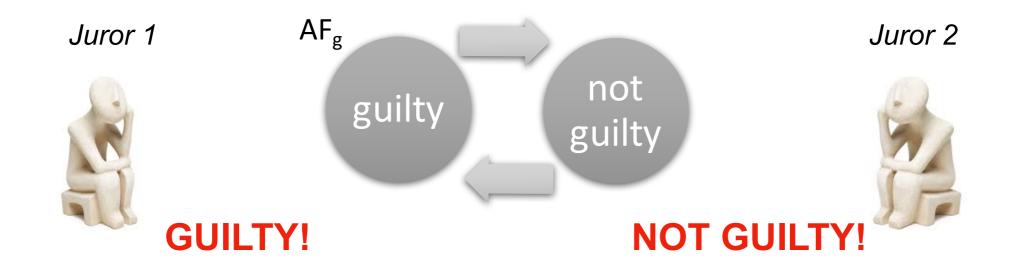
PRICAI 2019@FIJI

Background and Motivation

- An **abstract argumentation framework (AF)** represents arguments and attacks provided by players in a debate or a dialogue game.
- Arguments and attacks in AF are open and shared, then AF semantics provides a result that is to be agreed by all players.

Background and Motivation

- A player may not agree with the result or may have a bias towards a particular argument.
- For instance, in a court case jurors share the same open AF while could reach different conclusions based on their biases.



Background and Motivation

- A player may not agree with the result or may have a bias towards a particular argument.
- For instance, in a court case jurors share the same open AF while could reach different conclusions based on their biases.

- Why so?
- How do we formulate this phenomenon?

Contribution

- We introduce an **Epistemic Argumentation Framework (EAF)** that incorporates agent's beliefs into an argumentation framework.
- We apply EAFs to representing preferences and decision making in multi-agent environments.
- We analyze computational complexity of EAFs.

Argumentation Framework

- An argumentation framework is a pair AF=(Ar, att) where Ar is a finite set of arguments and $att \subseteq Ar \times Ar$ is attack relations.
- A labelling of (*Ar, att*) is a total function L : Ar → { *in, out, und* }, where *in* (accepted), *out* (rejected), and *und* (undecided). It is represented by a set S(L) = { λ(x) | L(x) = λ for x ∈ Ar }.
- We consider the complete labelling (co), stable labelling (st), preferred labelling (pr), and grounded labelling (gr).
 (Often referred to ω-labellings of AF where ω ∈ {co, st, pr, gr}).

Epistemic Formula

- Given AF=(Ar, att), define $\mathscr{A}_{AF} = \{ in(a), out(a), und(a) : a \in Ar \}$.
- A propositional formula φ over \mathscr{A}_{AF} is **true** in a labelling \mathscr{L} (written $\mathscr{L} \models \varphi$) if φ is interpreted to be true under $S(\mathscr{L})$.
- An epistemic atom over AF is of the form $\mathbf{K}\varphi$ or $\mathbf{M}\varphi$ where φ is a propositional formula over \mathscr{A}_{AF} . $\mathbf{K}\varphi$ means an agent believes that φ is true, and $\mathbf{M}\varphi$ means an agent believes that φ is possibly true.
- An **epistemic formula** is a propositional formula constructed over epistemic atoms together with T and \perp .

Example

• Consider the AF:

Guilty ←→ Innocent

where $\mathcal{A}_{AF} = \{ in(G), out(G), und(G), in(I), out(I), und(I) \}.$

- K (in(G) ∨ out(G)) means an agent believes that in(G) ∨ out(G) is true.
 ("The accused is either guilty or not guilty")
- M (¬in(G)) → K(in(I)) means if an agent believes that ¬in(G) is possibly true then he/she believes that in(I) is true.
 ("The accused is innocent unless proven guilty")

Satisfaction

A set **SL** of labellings **satisfies** an epistemic formula φ (written **SL** $\models \varphi$) if one of the following conditions hold:

• $\varphi = T$

- $\varphi = \mathbf{K}\psi$ and $\mathscr{L} \models \psi$ for every $\mathscr{L} \in \mathbf{SL}$
- $\varphi = \mathbf{M}\psi$ and $\mathscr{L} \models \psi$ for some $\mathscr{L} \in \mathbf{SL}$
- $\varphi = \neg \psi$ and **SL** $\not\models \psi$
- $\varphi = \varphi_1 \lor \varphi_2$ and $(SL \models \varphi_1 \text{ or } SL \models \varphi_2)$
- $\varphi = \varphi_1 \land \varphi_2$ and $(SL \models \varphi_1 \text{ and } SL \models \varphi_2)$

Epistemic Argumentation Framework

- An epistemic argumentation framework (EAF) is a triple (*Ar*, *att*, φ) where *AF*=(*Ar*, *att*) is an argumentation framework and φ is an epistemic formula (called an epistemic constraint). An EAF is also written as (*AF*, φ).
- A set SL of labelings is an ω-epistemic labelling set of (AF, φ) if
 (i) each ℒ ∈ SL is an ω-labelling of AF, and
 (ii) SL is a ⊆-maximal set of ω-labellings of AF that satisfy φ, where ω ∈ {co, st, pr, gr}.

Example

- A person plans to travel to Fiji or Macau. He/she does not travel to Macau if Hong Kong Airport is closed.
- The situation is represented by the *AF*:

Fiji \longleftrightarrow Macau \longleftarrow Close \longleftrightarrow Open

• The above *AF* has 3 stable labellings:

{ in(F), out(M), in(C), out(O) },
{ in(F), out(M), out(C), in(O) },
{ out(F), in(M), out(C), in(O) }.

Example (cont.)

- He/she prefers traveling to Macau unless the Airport is closed.
- The belief is encoded by the epistemic constraint:

 $\varphi_1 = \mathbf{M} \operatorname{in}(O) \to \mathbf{K} \operatorname{in}(M)$

("if Open is possibly accepted, then Macau should be accepted")

• EAF₁ = (AF, φ_1) has the unique stable epistemic labelling set:

{ { in(F), out(M), in(C), out(O) },
 { in(F), out(M), out(C), in(O) },
 { out(F), in(M), out(C), in(O) } }.

Example (cont.)

• It turns that the Airport is closed. The situation is represented by $EAF_2 = (AF, \varphi_2)$ where $\varphi_2 = \varphi_1 \wedge \mathbf{K} in(C).$

• EAF₂ has the unique stable epistemic labelling set:

{ { in(F), out(M), in(C), out(O) },
 { in(F), out(M), out(C), in(O) },
 { out(F), in(M), out(C), in(O) } }.

• As such, an EAF can represent belief change of an agent by revising an epistemic constraint without modifying AF.

Representing Preference

• Given AF=(Ar, att) and a pre-order relation $\Box \subseteq \mathscr{A}_{AF} \times \mathscr{A}_{AF}$, define EAF=(AF, φ_J) where

$$\varphi_J = \bigwedge_{\lambda(x) \sqsupset \mu(y)} \mathbf{K} \left(\mu(y) \supset \lambda(x) \right)$$

and $\lambda, \mu \in \{in, out, und\}$ and $x, y \in Ar$.

• φ_J states that if the justification state $\lambda(x)$ is preferred to $\mu(y)$, then $\mathscr{L} \models \mu(x)$ implies $\mathscr{L} \models \lambda(x)$ for any $\mathscr{L} \in SL$ where SL is any ω -epistemic labelling set of EAF.

Example

• Consider the *AF*:

Fiji \longleftrightarrow Macau \longleftarrow Close \longleftrightarrow Open

• Whether Close or Open is undecided, it is specified as

$$\varphi_J = \bigwedge_{x \in \{C, O\}} \mathbf{K} (in(x) \supset und(x)) \land \mathbf{K} (out(x) \supset und(x))$$

EAF=(AF, φ_J) has the unique preferred epistemic labeling set:
 { { *in(F), out(M), und(C), und(O)* }.

Multiple Agents

- Consider multiple agents who share AF while having different beliefs. The situation is represented by the collection of EAFs: $EAF_i = (AF, \varphi_i) \ (i = 1, ..., n).$
- $EAF_1, ..., EAF_n$ credulously agree on $\lambda(a)$ for $a \in Ar$ where $\lambda \in \{in, out, und\}$ under ω -epistemic labelling if each EAF_i has an ω -epistemic labelling set \mathbf{SL}_i such that $\mathbf{SL}_i \models \mathbf{M} \lambda(a)$.
- $EAF_1, ..., EAF_n$ skeptically agree on $\lambda(a)$ under ω -epistemic labelling if for any ω -epistemic labelling set \mathbf{SL}_i of EAF_i , $\mathbf{SL}_i \models \mathbf{K} \lambda(a)$.

Majority Voting

• Define:

 $M_{\psi}^{\omega} = \{ i \mid EAF_i \text{ has an } \omega \text{-epistemic labelling set } \mathbf{SL} \text{ s.t. } \mathbf{SL} \models \mathbf{M}\psi \},\$ $N_{\psi}^{\omega} = \{ i \mid \text{ for each } \omega \text{-epistemic labelling set } \mathbf{SL} \text{ of } EAF_i, \mathbf{SL} \models \mathbf{K}\psi \}.$

- $\lambda(a)$ is credulously (resp. skeptically) adopted by majority voting under ω -epistemic labelling iff the cardinality of the set $M^{\omega}_{\lambda(a)}$ (resp. $N^{\omega}_{\lambda(a)}$) is greater than the cardinality of $M^{\omega}_{\mu(a)}$ (resp. $N^{\omega}_{\mu(a)}$) where $\lambda, \mu \in \{in, out, und\}$ and $\lambda \neq \mu$.
- When $|M_{\lambda(a)}^{\omega}| = n$ (resp. $|N_{\lambda(a)}^{\omega}| = n$), EAF_1, \dots, EAF_n credulously (resp. skeptically) agree on $\lambda(a)$.

Complexity

- Consider an epistemic formula φ in DNF that has at most k disjuncts and each disjunct contains at most p conjuncts where p and k are polynomial in the size of an AF.
- Deciding whether EAF=(AF, φ) has a non-empty ω-epistemic labelling set is done in polynomial time for ω = gr and NP-complete for ω ∈ {co, st, pr}.

Comparisons

- EAF vs. **Probabilistic AF** (PAF):
 - PAF focuses on uncertainty of arguments rather than agent's belief
 - PAF merges objective knowledge and subjective beliefs
 - PAF may produce new extensions
- EAF vs. **AF with Preference** (AFP):
 - AFP specifies preference between arguments or attacks
 - EAF can specify preference over justification states
 - AFP often changes the original argumentation graph

Final Remark

- EAF represents an objective evidence in AF, while encodes subjective belief of individual agents by epistemic constraints.
- Such separation enables agents to produce different conclusions based on their biases toward a common AF.
- EAF is transformed to an **epistemic logic program** and epistemic labelling sets are computed by **answer set solvers**.
- Future study includes extending EAF to reasoning about beliefs of other agents and representing an agent's own belief based on beliefs of other agents.