The 25th International Symposium on Practical Aspects of Declarative Languages

Linear Algebraic Abduction with Partial Evaluation

Tuan Nguyen¹ (speaker), Katsumi Inoue¹ and Chiaki Sakama²

¹National Institute of Informatics, Tokyo, Japan

² Wakayama University, Wakayama, Japan

 $\{tuannq, inoue\}$ @nii.ac.jp sakama@wakayama-u.ac.jp

January 17th, 2023

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

1 / 48

Outline

- Overview and Preliminaries
- 2 Linear Algebraic Computation of Abduction
- Operation Partial evaluation
- Experimental Results

Outline

Overview and Preliminaries

- 2 Linear Algebraic Computation of Abduction
- 4 Experimental Results

< ロ > < 同 > < 回 > < 回 >

inference to the best explanation starting from a set of observations.

Applications: Model-based diagnosis, belief revision, automated reasoning,

 $P \Rightarrow Q$

Definition (Propositional Horn Clause Abduction Problem (PHCAP))

A PHCAP can be modeled as a quadruple \langle $\mathscr{L}, \mathbb{H}, \mathbb{O}, \mathsf{P}$ $\rangle.$ Where:

- $\bullet \ {\mathscr L}$ is the set of all propositional variables.
- \mathbb{H} is the set of all hypotheses.
- \bullet $\mathbb O$ is the set of observations.
- P is a logic program (set of Horn clauses).
- Goal: find the set of minimal explanations ${\mathbb E}$ that satisfies:

Definition (Explanation of PHCAP)

- A set $E \subseteq \mathbb{H}$ is an *explanation* of a PHCAP $\langle \mathscr{L}, \mathbb{H}, \mathbb{O}, \mathsf{P} \rangle$ if $\mathsf{P} \cup E \vDash \mathbb{O}$ and $\mathsf{P} \cup E$ is consistent.
- An explanation E of \mathbb{O} is *minimal* if there is no explanation E' of \mathbb{O} such that $E' \subset E$.

• Example 1: An example of PHCAP

$$\begin{aligned} \mathscr{L} &= \{p, q, r, s, h_1, h_2, h_3\}, \\ \mathbb{H} &= \{h_1, h_2, h_3\}, \\ \mathbb{O} &= \{p\}, \end{aligned} \qquad P = \{p \leftarrow q \land r, \\ q \leftarrow h_1 \lor s, \\ r \leftarrow s \lor h_2, \\ s \leftarrow h_3\} \end{aligned}$$

Set of minimal explanations: $\mathbb{E} = \{ \{h_1, h_3\}, \{h_2, h_3\} \}$

• Deciding if there is a solution of a PHCAP is NP-complete [1], [2].

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

^[1] Selman and Levesque, "Abductive and Default Reasoning: A Computational Core", 1990.

^[2] Eiter and Gottlob, "The complexity of logic-based abduction", 1995.

- In this work, we focus on PHCAP with P is an acyclic program [3].
- For convenience, P is partitioned into $P_{And} \cup P_{Or}$ where:
 - P_{And} is a set of And-rule (including facts) and
 - P_{Or} is a set of Or-rule.

And-rule
$$h \leftarrow b_1 \wedge \cdots \wedge b_m$$
 $(m \ge 0)$ Or-rule $h \leftarrow b_1 \vee \cdots \vee b_n$ $(n > 1)$

• Standardized program: is a definite program such that there is **no duplicate head atom**.

[3] Apt and Bezem, "Acyclic Programs", 1991.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

э

• • = • • = •

Outline

1 Overview and Preliminaries

2 Linear Algebraic Computation of Abduction

3 Partial evaluation

4 Experimental Results

5 Conclusion

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

Linear Algebraic Abduction with Partial Evaluation

9 / 48

• • • • • • • •

Definition (Program matrix of PHCAP [4])

Let P be a standardized program and $\mathscr{L} = \{p_1, \ldots, p_n\}$. Then P is represented by a matrix $M_P \in \mathbb{R}^{n \times n}$ such that for each element a_{ij} $(1 \le i, j \le n)$ in M_P ,

2
$$a_{ij_k} = 1$$
 $(1 \le k \le l; 1 \le i, j_k \le n)$ if $p_i \leftarrow p_{j_1} \lor \cdots \lor p_{j_l}$ (*Or*-rule) is in P;

$$a_{ii} = 1 \text{ if } p_i \leftarrow (\text{fact}) \text{ is in } P \text{ or } p_i \in \mathbb{H} \text{ (abducible)};$$

• $a_{ij} = 0$, otherwise.

• Any Horn program can be transformed into a standardized program in linear time.

• Horn program $\xrightarrow{\text{standardization}}$ standardized program $\xrightarrow{\text{tensorization}}$ program matrix M_P .

(4) (2) (4) (4) (4)

Definition (Abductive matrix of PHCAP)

Suppose a PHCAP has P with its *program matrix* M_P . The *abductive matrix* of P is the transpose of M_P represented as M_P^T .

Example 1 (continue...): $\mathscr{L} = \{p, q, r, s, h_1, h_2, h_3\}, \mathbb{H} = \{h_1, h_2, h_3\}, \mathbb{O} = \{p\}, \mathsf{P} = \{p \leftarrow q \land r\}, q \leftarrow h_1 \lor s\}, r \leftarrow s \lor h_2, s \leftarrow h_3\}.$

• Every subset of $\mathscr{L} = \{p, q, r, s, h_1, h_2, h_3\}$ can be represented by a vector.

$$\begin{array}{c} p \\ q \\ r \\ s \\ h_1 \\ h_2 \\ h_3 \end{array} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \leftrightarrow \mathbb{H} = \{h_1, h_2, h_3\} \qquad \qquad \begin{array}{c} p \\ q \\ r \\ s \\ h_1 \\ h_2 \\ h_3 \end{array} \begin{pmatrix} 1 \\ p \\ r \\ h_2 \\ h_3 \end{array} \end{pmatrix} \leftrightarrow \mathbb{O} = \{p\}$$

Vector of hypotheses

Observation vector

- Linear algebraic computation is a set of transformations converting observation vector \mathbb{O} into a vector representing a subset of \mathbb{H} . Each transformation step is an 1-step abduction.
- We refer to the vector representing explanations as explanation vector. An explanation vector v reaches an answer E if $v \subseteq \mathbb{H}$.

• If the explanation vector v does not contain head of any *Or*-rule, the abduction step is realized by *matrix multiplication* $M_P^T \times v$.

To explain p, we have to explain both q and r.

• Initial condition:
$$\sum_{i=1}^{n} v[i] = 1$$
. A vector is *unexplainable* if $\sum_{i=1}^{n} v[i] < 1$.

• If the correspondent vector contains head of any *Or*-rule, the abduction step is realized by *solving a Minimal Hitting Sets (MHS) problem* [5].

To explain q and r, we have 2 Or-rules: $q \leftarrow h_1 \lor s$, $r \leftarrow s \lor h_2$. Solving a MHS problem: $\{\{h_1, s\}, \{s, h_2\}\}$. Answer: $\{\{s\}, \{h_1, h_2\}\}$. To explain q and r, we either need to explain s or to explain both h_1 and h_2 .

^[5] Gainer-Dewar and Vera-Licona, "The minimal hitting set generation problem: algorithms and computation", 2017 🗆 🕨 👍 🕨 🤙 🕨 🤙 👘 🖓 🔍 🕐

Definition (Or-computable and And-computable)

- **(**) A vector v is *Or*-computable iff $v \cap head(P_{Or}) \neq \emptyset$.
- **2** A matrix *M* is *Or*-computable iff $\exists v \in M$, *v* is *Or*-computable.
- S A vector v is And-computable iff v is not Or-computable.
- **(**) A matrix *M* is *And*-computable iff $\forall v \in M$, *v* is not *Or*-computable.
 - For *And*-computable vector/matrix, we can compute the explanations by performing matrix multiplication.
- For *Or*-computable vector/matrix, we can find the explanations by enumerating MHSs.

Outline

1 Overview and Preliminaries

2 Linear Algebraic Computation of Abduction

Operation Partial evaluation

4 Experimental Results

Conclusion

イロト イヨト イヨト イヨ

Example 2: Consider a program:

$$\begin{aligned} \mathscr{L} &= \{obs, \ e_1, \ e_2, \ e_3, \\ e_4, \ e_5, \ e_6, \ H_1, \ H_2, \ H_3 \}, \\ \mathbb{H} &= \{H_1, \ H_2, \ H_3 \}, \\ \mathbb{O} &= \{obs\}, \end{aligned}$$

$$P = \{obs \leftarrow e_1, \\ e_1 \leftarrow e_2 \land e_3, \\ e_2 \leftarrow e_4 \land e_5, \\ e_2 \leftarrow e_5 \land e_6, \\ e_3 \leftarrow e_5, \\ e_4 \leftarrow H_1, \\ e_5 \leftarrow H_2, \\ e_6 \leftarrow H_3\}.$$

$$P' = \{obs \leftarrow e_1 \\ e_1 \leftarrow e_2 \land e_3, \\ e_2 \leftarrow x_1 \lor x_2, \\ e_3 \leftarrow e_5, \\ e_4 \leftarrow H_1, \\ e_5 \leftarrow H_2, \\ e_6 \leftarrow H_3, \\ x_1 \leftarrow e_4 \land e_5, \\ x_2 \leftarrow e_5 \land e_6\}.$$

э

Example 2 (continue...):

Example 2 (continue...):

• Iteration 1:

- $M^{(1)} = \theta(M_P^T \times M^{(0)})$, where $M^{(0)} = \mathbb{O}$:

(*) Vector/matrix can be represented in sparse format : Coordinate (COO) / Compressed Sparse Row (CSR) / Compressed Sparse Column (CSC).

Example 2 (continue...):

- Iteration 2:
- $M^{(2)} = \theta(M_P^T \times M^{(1)})$

- Solving MHS: { $\{x_1, x_2\}, \{e_3\}$ }. MHS solutions: { $\{e_3, x_1\}, \{e_3, x_2\}$ } = $M^{(3)}$.

Example 2 (continue...):

• Iteration 3:

- $M^{(4)} = \theta(M_P^T \times M^{(3)})$

э

▶ ∢ ⊒

Example 2 (continue...):

- Iteration 4:
- $M^{(4)} = \theta(M_P^T \times M^{(3)})$

• The algorithm stops. Found minimal explanations: $\{ \{H_1, H_2\}, \{H_2, H_3\} \}$.

Definition (Reduct abductive matrix)

We can obtain a *reduct abductive matrix* $M_P(\mathsf{P}^r_{And})^T$ from the abductive matrix M_P^T by:

- Removing all columns w.r.t. Or-rules in P_{Or}.
- **2** Setting 1 at the diagonal corresponding to all atoms which are heads of *Or*-rules.

Consider the PHCAP in *Example 2*:

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

Definition (Partial evaluation in abduction)

Let a PHCAP $\langle \mathscr{L}, \mathbb{H}, \mathbb{O}, \mathsf{P} \rangle$ where P is a standardized program. For any And-*rule* $r = (h \leftarrow b_1 \land \cdots \land b_m)$ in P:

- if body(r) contains an atom b_i $(1 \le i \le m)$ which is not the head of any rule in P, then remove r.
- otherwise, for each atom $b_i \in body(r)$ (i = 1, ..., m), if there is an And-rule $b_i \leftarrow B_i$ in P (where B_i is a conjunction of atoms), then replace each b_i in body(r) by the conjunction B_i .

The resulting rule is denoted by unfold(r). Define

$$peval(P) = \bigcup_{r \in P_{And}} unfold(r).$$

peval(P) is called *partial evaluation* of P.

$\begin{array}{l} \hline Example \ 3: \ \mbox{Consider a similar program in } Example \ 2: \\ \mathscr{L} = \{obs, e_1, e_2, e_3, e_4, e_5, e_6, H_1, H_2, H_3\}, \ \mathbb{H} = \{H_1, H_2, H_3\}, \ \mathbb{O} = \{obs\}, \\ P = \{obs \leftarrow e_1, e_1 \leftarrow e_2 \land e_3, \ e_2 \leftarrow e_4 \land e_5, \ e_2 \leftarrow e_5 \land e_6, \ e_3 \leftarrow e_5, \ e_4 \leftarrow H_1, \ e_5 \leftarrow H_2, \ e_6 \leftarrow H_3\}. \\ \mbox{Standardized program } P' = \{obs \leftarrow e_1, \ e_1 \leftarrow e_2 \land e_3, \ e_2 \leftarrow x_1 \lor x_2, \ e_3 \leftarrow e_5, \ e_4 \leftarrow H_1, \ e_5 \leftarrow H_2, \ e_6 \leftarrow H_3\}. \end{array}$

э.

イロト 不得下 イヨト イヨト

Example 3 (continue...):

- Let $P' = \{r_1, ..., r_9\}$ where:

 $r_1 = (obs \leftarrow e_1).$ $r_2 = (e_1 \leftarrow e_2 \land e_3).$ $r_3 = (e_2 \leftarrow x_1 \lor x_2).$ $r_A = (x_1 \leftarrow e_A \land e_5).$ $r_5 = (x_2 \leftarrow e_5 \land e_6).$ $r_6 = (e_3 \leftarrow e_5),$ $r_7 = (e_4 \leftarrow H_1).$ $r_8 = (e_5 \leftarrow H_2)$. $r_0 = (e_6 \leftarrow H_3).$

- Unfolding rules of P'becomes: unfold $(r_1) = (obs \leftarrow e_2 \land e_3),$ unfold $(r_2) = (e_1 \leftarrow e_2 \land e_5)$. unfold $(r_3) = r_3$. unfold $(r_4) = (x_1 \leftarrow H_1 \land H_2),$ unfold $(r_5) = (x_2 \leftarrow H_2 \land H_3)$. unfold $(r_6) = (e_3 \leftarrow H_2)$. unfold $(r_7) = r_7$. unfold $(r_8) = r_8$. unfold(r_0) = r_0 . $e_6 \leftarrow H_3$.

- Then peval(P')consists of $obs \leftarrow e_2 \wedge e_3$. $e_1 \leftarrow e_2 \wedge e_5$. $e_2 \leftarrow x_1 \lor x_2$. $x_1 \leftarrow H_1 \wedge H_2$ $x_2 \leftarrow H_2 \wedge H_2$ $e_3 \leftarrow H_2$. $e_4 \leftarrow H_1$. $e_5 \leftarrow H_2$.

Here, we reach a fixpoint at k = 2. We refer to this "stable" matrix as peval(P) and take it to solve the PHCAP.

Example 3 (continue...):

• Iteration 1:

- $M^{(1)} = heta(\mathsf{peval}(P) imes M^{(0)})$, where $M^{(0)} = \mathbb{O}$

- Solving MHS problem: { $\{x_1, x_2\}, \{H_2\}$ }. MHS solutions: { $\{H_2, x_1\}, \{H_2, x_2\}$ } = $M^{(2)}$.

Example 3 (continue...):

- Iteration 2:
- $M^{(3)} = heta(\mathsf{peval}(P) imes M^{(2)})$

• The algorithm stops. Found minimal explanations: $\{ \{H_1, H_2\}, \{H_2, H_3\} \}$.

• Partial evaluation is repeatedly performed as:

$$\mathsf{peval}^0(P) = P$$
 and $\mathsf{peval}^k(P) = \mathsf{peval}(\mathsf{peval}^{k-1}(P))$ $(k \ge 1).$

• It is realized as computing the power of the reduct abductive matrix:

$$\left(M_P(P''_{And})^T\right)^2, \ \left(M_P(P''_{And})^T\right)^4, \ ...\left(M_P(P''_{And})^T\right)^{2^k} \ (k \ge 1)$$

A (10) × A (10) × A (10)

• Partial evaluation is repeatedly performed as:

$$\mathsf{peval}^0(P) = P$$
 and $\mathsf{peval}^k(P) = \mathsf{peval}(\mathsf{peval}^{k-1}(P))$ $(k \ge 1).$

• It is realized as computing the power of the reduct abductive matrix:

$$\left(M_P(P_{And}^{\prime r})^T\right)^2, \left(M_P(P_{And}^{\prime r})^T\right)^4, \dots \left(M_P(P_{And}^{\prime r})^T\right)^{2^k} \ (k \ge 1)$$

• Partial evaluation has a fixpoint (the proof is presented in our paper).

• Partial evaluation is repeatedly performed as:

$$\mathsf{peval}^0(P)=P$$
 and $\mathsf{peval}^k(P)=\mathsf{peval}(\mathsf{peval}^{k-1}(P))$ $(k\geq 1).$

• It is realized as computing the power of the reduct abductive matrix:

$$\left(M_P(P_{And}^{\prime r})^T\right)^2, \ \left(M_P(P_{And}^{\prime r})^T\right)^4, \ ...\left(M_P(P_{And}^{\prime r})^T\right)^{2^k} \ (k \ge 1)$$

- Partial evaluation has a fixpoint (the proof is presented in our paper).
- The *k*-step partial evaluation has the effect of realizing 2^{*k*} steps of deduction at once. Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.

• Partial evaluation is repeatedly performed as:

$$\mathsf{peval}^0(P)=P$$
 and $\mathsf{peval}^k(P)=\mathsf{peval}(\mathsf{peval}^{k-1}(P))$ $(k\geq 1).$

• It is realized as computing the power of the reduct abductive matrix:

$$\left(M_P(P_{And}^{\prime r})^T\right)^2, \ \left(M_P(P_{And}^{\prime r})^T\right)^4, \ ...\left(M_P(P_{And}^{\prime r})^T\right)^{2^k} \ (k \ge 1)$$

- Partial evaluation has a fixpoint (the proof is presented in our paper).
- The *k*-step partial evaluation has the effect of realizing 2^{*k*} steps of deduction at once. Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.
- However, computing the power of matrix is costly. We need to verify the positive effect can win the tradeoff.

Outline

1 Overview and Preliminaries

2 Linear Algebraic Computation of Abduction

3 Partial evaluation

4 Experimental Results

Conclusion

イロト イヨト イヨト イヨ

Experimental Results

• We experiment on Failure Modes and Effects Analysis (FMEA)-based benchmark datasets by Koitz-Hristov and Wotawa which has been used in [6] and [7].

Dataset	Number of instances	Characteristics			
Artificial samples I	166 problems	deeper but narrower graph structure			
Artificial samples II	117 problems [8]	deeper and wider graph structure, some problems involve solving a large num- ber of medium-size MHS problems			
FMEA samples	213 problems	shallower but wider graph structure, usually involving a few (but) large-size MHS problems			

^[6] Koitz-Hristov and Wotawa, "Applying algorithm selection to abductive diagnostic reasoning", 2018.

[8] Excluded the unresolved problem phcap_140_5_5.atms

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

Linear Algebraic Abduction with Partial Evaluation

イロト イヨト イヨト

^[7] Koitz-Hristov and Wotawa, "Faster Horn diagnosis-a performance comparison of abductive reasoning algorithms", 2020.

Experimental Results

- We implement our method as two versions: *Dense matrix* and *Sparse matrix* in Python 3.7 (using Numpy and Scipy). Each version we have one with partial evaluation and one without partial evaluation.
- For large-size MHS problems, which have more than 50,000 posible combinations, we use MHS enumerator provided by PySAT [9].
 - All the source code and benchmark datasets in our paper are available on GitHub:

https://github.com/nqtuan0192/LinearAlgebraicComputationofAbduction.We have demonstrated the performance of linear algebraic approaches in [10].

[9] Ignatiev, Morgado, and Marques-Silva, "PySAT: A Python Toolkit for Prototyping with SAT Oracles", 2018.

[10] Nguyen, Inoue, and Sakama, "Linear algebraic computation of propositional Horn abduction", 2021.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

Linear Algebraic Abduction with Partial Evaluation

Experimental Results - Original benchmark

• • • • • • • •

Experimental Results - Original benchmark

Table: Detailed execution results for the original benchmark.

Datasets	Artificial	samples I (16	6 problems)	Artificial	samples II (1	17 problems)	FMEA	samples (213	problems)
Algorithms	#solved /	$t + t_p$	t _{peval}	#solved /	$t + t_{ m ho}$	t _{peval}	#solved /	$t + t_p$	t _{peval}
	#fastest	mean / std	mean / std	#fastest	mean / std	mean / std	#fastest	mean / std	mean / std
Sparse matrix - peval	1,660	4,243	514	1,170	29,438	124	2,130	49 , 481	84
	89	93	19	246	112	48	726	1,214	4
Sparse matrix	1,660	3,527	-	1,170	35,844	-	2,130	53,553	-
	1,401	29	-	513	62	-	150	1,254	-
Dense matrix - peval	1,660	811,841	728,086	1,170	140,589	3,599	2,130	98,614	25
	13	2,227	31,628	90	1,293	910	1,007	2,950	3
Dense matrix	1,660	27,569	-	1,170	205,279	-	2,130	131,734	-
	157	183	-	321	1,866	-	247	3,629	-

- Partial evaluation improves much more in Artificial samples II and FMEA samples.
- We see performance degradation happens in **Artificial samples I** for both dense and sparse methods, especially with the dense method.

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$P = \{ path(X, Y) \leftarrow edge(X, Y), \\ path(X, Y) \leftarrow edge(X, Z) \land path(Z, Y) \}$$

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$P = \{ path(X, Y) \leftarrow edge(X, Y), \\ path(X, Y) \leftarrow edge(X, Z) \land path(Z, Y) \}$$

• First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2), edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10).

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$P = \{ path(X, Y) \leftarrow edge(X, Y), \\ path(X, Y) \leftarrow edge(X, Z) \land path(Z, Y) \}$$

- First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2), edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10).
- Then we consider the observation to be path(1, 10), and look for the explanation of it.

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$P = \{ path(X, Y) \leftarrow edge(X, Y), \ path(X, Y) \leftarrow edge(X, Z) \land path(Z, Y) \}$$

- First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2), edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10).
- Then we consider the observation to be path(1, 10), and look for the explanation of it.
- Next, for each problem instance of the original benchmark, we enumerate rules of the form $e \leftarrow h$, where h is a hypothesis and e is a propositional variable, and append the atom of the observation of the new PHCAP into this rule with a probability of 20%.

The resulting problem is expected to have the subgraph of And-rules occur more frequently.

• • = • • = •

Table: Detailed execution results for the enhanced benchmark datasets.

Datasets	Artificial	samples I (16	6 problems)	Artificial	samples II (1	17 problems)	FMEA	samples (213	problems)
Algorithms	#solved /	$t + t_{ m P}$	t _{peval}	#solved /	$t + t_{\rho}$	t _{peval}	#solved /	$t + t_{ m P}$	t _{peval}
	#fastest	mean / std	mean / std	#fastest	mean / std	mean / std	#fastest	mean / std	mean / std
Sparse matrix - peval	1,660	12,140	545	1,170	95,079	138	2,130	72,776	157
	116	124	15	254	616	4	384	1,103	5
Sparse matrix	1,660	16,163	-	1,170	147,444	-	2,130	74,861	-
	1,389	209	-	516	1,508	-	553	526	-
Dense matrix - peval	1,660	869,922	799,965	1,170	380,033	4,483	2,130	81,837	103
	5	2,434	58,500	77	2,228	688	436	1,005	10
Dense matrix	1,660	70,365	-	1,170	613,422	-	2,130	95,996	-
	150	681	-	323	3,651	-	757	1,021	-

- With the dataset enhancement, we now see partial evaluation can improve the performance for sparse method significantly in the **Artificial samples I**.
- However, the problem still remains with the dense method.
- The graph structure of the **Artificial samples I** is the cause of the problem. That we take more time in computing the power of the matrix with the dense format.
- It also hightlights the importance of sparse representation.

Outline

1 Overview and Preliminaries

- 2 Linear Algebraic Computation of Abduction
- 4 Experimental Results

< ロ > < 同 > < 回 > < 回 >

Conclusion

Contributions:

- We have proposed to improve the linear algebraic approach for abduction by employing partial evaluation.
- Partial evaluation steps can be realized as the power of the reduct abductive matrix in the language of linear algebra.
- Its significant enhancement in terms of execution time has been demonstrated using artificial benchmarks and real FMEA-based datasets with both dense and sparse representation, especially more with the sparse format.

Conclusion

But why do we need linear algebraic method?

- It simplifies the core algorithm (easy to understand, easy to implement).
- It can take the advantages of recent advancements in tensor oriented computing hardwares.
- It is expected to be better scalability.

Conclusion

Future work:

- I Handling loops and extending the method to work with non-Horn clauses.
- Employing an effective prediction to know better when to apply partial evaluation and how deep we do unfolding before solving the problem.
- Onceover, incorporating some efficient pruning techniques or knowing where to zero out in the abductive matrix is also a potential topic.

References I

- Apt, Krzysztof R. and Marc Bezem. "Acyclic Programs". In: New Generation Computing 9 (1991), pp. 335–364.
- Eiter, Thomas and Georg Gottlob. "The complexity of logic-based abduction". In: *Journal of the ACM* (*JACM*) 42.1 (1995), pp. 3–42.
- Gainer-Dewar, Andrew and Paola Vera-Licona. "The minimal hitting set generation problem: algorithms and computation". In: *SIAM Journal on Discrete Mathematics* 31.1 (2017), pp. 63–100.
- Ignatiev, Alexey, Antonio Morgado, and Joao Marques-Silva. "PySAT: A Python Toolkit for Prototyping with SAT Oracles". In: *SAT*. 2018, pp. 428–437.
- Koitz-Hristov, Roxane and Franz Wotawa. "Applying algorithm selection to abductive diagnostic reasoning". In: *Applied Intelligence* 48.11 (2018), pp. 3976–3994.
- "Faster Horn diagnosis-a performance comparison of abductive reasoning algorithms". In: Applied Intelligence 50.5 (2020), pp. 1558–1572.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

References II

- Nguyen, Tuan Quoc, Katsumi Inoue, and Chiaki Sakama. "Linear algebraic computation of propositional Horn abduction". In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE. 2021, pp. 240–247. DOI: 10.1109/ICTAI52525.2021.00040.
- Sakama, Chiaki, Katsumi Inoue, and Taisuke Sato. "Linear Algebraic Characterization of Logic Programs". In: International Conference on Knowledge Science, Engineering and Management. Springer. 2017, pp. 520–533.
- Selman, Bart and Hector J Levesque. "Abductive and Default Reasoning: A Computational Core". In: AAAI. 1990, pp. 343–348.

イロト 不得下 イヨト イヨト

Thank you for your attention

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

Linear Algebraic Abduction with Partial Evaluation

< ロ > < 同 > < 回 > < 回 >