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Overview and Preliminaries

Overview and Preliminaries

Abductive reasoning (explanation):
inference to the best explanation starting from a set of observations.

P ⇒ Q
Q

P

Applications: Model-based diagnosis, belief revision, automated reasoning, ...
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Overview and Preliminaries

Overview and Preliminaries

Definition (Propositional Horn Clause Abduction Problem (PHCAP))

A PHCAP can be modeled as a quadruple 〈 L ,H,O, P 〉. Where:

L is the set of all propositional variables.

H is the set of all hypotheses.

O is the set of observations.

P is a logic program (set of Horn clauses).

Goal: find the set of minimal explanations E that satisfies:

Definition (Explanation of PHCAP)

A set E ⊆ H is an explanation of a PHCAP 〈L ,H,O, P〉 if P ∪ E � O and P ∪ E is consistent.

An explanation E of O is minimal if there is no explanation E ′ of O such that E ′ ⊂ E .
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Overview and Preliminaries

Overview and Preliminaries

Example 1: An example of PHCAP

L = {p, q, r , s, h1, h2, h3},
H = {h1, h2, h3},
O = {p},

P = { p ← q ∧ r ,
q ← h1 ∨ s,
r ← s ∨ h2,

s ← h3 }
Set of minimal explanations: E = { {h1, h3}, {h2, h3} }

Deciding if there is a solution of a PHCAP is NP-complete [1], [2].

[1] Selman and Levesque, “Abductive and Default Reasoning: A Computational Core”, 1990.
[2] Eiter and Gottlob, “The complexity of logic-based abduction”, 1995.
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Overview and Preliminaries

Overview and Preliminaries

In this work, we focus on PHCAP with P is an acyclic program [3].
For convenience, P is partitioned into PAnd ∪ POr where:
- PAnd is a set of And-rule (including facts) and
- POr is a set of Or -rule .

And-rule h ← b1 ∧ · · · ∧ bm (m ≥ 0)
Or -rule h ← b1 ∨ · · · ∨ bn (n > 1)

Standardized program: is a definite program such that there is no duplicate head atom.

[3] Apt and Bezem, “Acyclic Programs”, 1991.
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Overview and Preliminaries

Overview and Preliminaries

Example 1 (continue ...): And-Or -graph of a standardized program
L = {p, q, r , s, h1, h2, h3},
H = {h1, h2, h3},
O = {p},
P = { p ← q ∧ r ,

q ← h1 ∨ s ,

r ← s ∨ h2 ,

s ← h3 }

q

p

r

s

h1

h2

h3

And-node

Or -node

Hypothesis
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Linear Algebraic Computation of Abduction

Definition (Program matrix of PHCAP [4])

Let P be a standardized program and L = {p1, . . ., pn}. Then P is represented by a matrix
MP ∈ Rn×n such that for each element aij (1 ≤ i , j ≤ n) in MP ,

1 aijk = 1
m (1 ≤ k ≤ m; 1 ≤ i , jk ≤ n) if pi ← pj1 ∧ · · · ∧ pjm ( And-rule ) is in P;

2 aijk = 1 (1 ≤ k ≤ l ; 1 ≤ i , jk ≤ n) if pi ← pj1 ∨ · · · ∨ pjl ( Or -rule ) is in P;
3 aii = 1 if pi ← (fact) is in P or pi ∈ H (abducible);
4 aij = 0, otherwise.

Any Horn program can be transformed into a standardized program in linear time.
Horn program standardization−−−−−−−−−→ standardized program tensorization−−−−−−−→ program matrix MP .

[4] Sakama, Inoue, and Sato, “Linear Algebraic Characterization of Logic Programs”, 2017
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Linear Algebraic Computation of Abduction

Example 1 (continue ...):
L = {p, q, r , s, h1, h2, h3},
H = {h1, h2, h3},
O = {p},
P = { p ← q ∧ r ,

q ← h1 ∨ s ,

r ← s ∨ h2 ,

s ← h3 }

q

p

r

s

h1

h2

h3

And-node

Or -node

Hypothesis



p q r s h1 h2 h3

p 1/2 1/2

q 1 1

r 1 1

s 1
h1 1
h2 1
h3 1
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Linear Algebraic Computation of Abduction

Linear Algebraic Computation of Abduction

Definition (Abductive matrix of PHCAP)

Suppose a PHCAP has P with its program matrix MP .
The abductive matrix of P is the transpose of MP represented as MP

T .

Example 1 (continue...): L = {p, q, r , s, h1, h2, h3}, H = {h1, h2, h3},
O = {p}, P = { p ← q ∧ r , q ← h1 ∨ s , r ← s ∨ h2 , s ← h3 }.

MP =



p q r s h1 h2 h3

p 1/2 1/2
q 1 1
r 1 1
s 1
h1 1
h2 1
h3 1


, MP

T =



p q r s h1 h2 h3

p
q 1/2
r 1/2
s 1 1
h1 1 1
h2 1 1
h3 1 1
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Linear Algebraic Computation of Abduction

Linear Algebraic Computation of Abduction

Every subset of L = {p, q, r , s, h1, h2, h3} can be represented by a vector.



p
q
r
s
h1 1
h2 1
h3 1


↔ H = {h1, h2, h3}

Vector of hypotheses



p 1
q
r
s
h1
h2
h3


↔ O = {p}

Observation vector
Linear algebraic computation is a set of transformations converting observation vector O
into a vector representing a subset of H. Each transformation step is an 1-step abduction.
We refer to the vector representing explanations as explanation vector. An explanation
vector v reaches an answer E if v ⊆ H.
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Linear Algebraic Computation of Abduction

Linear Algebraic Computation of Abduction

If the explanation vector v does not contain head of any Or -rule, the abduction step is
realized by matrix multiplication MP

T × v .



p q r s h1 h2 h3

p
q 1/2
r 1/2
s 1 1
h1 1 1
h2 1 1
h3 1 1


×



p 1
q
r
s
h1
h2
h3


=



p
q 1/2
r 1/2
s
h1
h2
h3


To explain p, we have to explain both q and r.

Initial condition:
n∑

i=1
v [i] = 1. A vector is unexplainable if

n∑
i=1

v [i] < 1.
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Linear Algebraic Computation of Abduction

Linear Algebraic Computation of Abduction

If the correspondent vector contains head of any Or -rule, the abduction step is realized by
solving a Minimal Hitting Sets (MHS) problem [5].



p q r s h1 h2 h3

p
q 1/2
r 1/2
s 1 1
h1 1 1
h2 1 1
h3 1 1


,



p
q 1/2
r 1/2
s
h1
h2
h3


solving MHS−−−−−−−→



p
q
r
s 1
h1 1/2
h2 1/2
h3



To explain q and r , we have 2 Or -rules: q ← h1 ∨ s , r ← s ∨ h2 .
Solving a MHS problem: {{h1, s}, {s, h2}}. Answer: {{s}, {h1, h2}}.
To explain q and r, we either need to explain s or to explain both h1 and h2.

[5] Gainer-Dewar and Vera-Licona, “The minimal hitting set generation problem: algorithms and computation”, 2017
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Linear Algebraic Computation of Abduction

Linear Algebraic Computation of Abduction

Definition (Or-computable and And-computable)

1 A vector v is Or -computable iff v ∩ head(POr ) 6= ∅.
2 A matrix M is Or -computable iff ∃v ∈ M, v is Or -computable.
3 A vector v is And-computable iff v is not Or -computable.
4 A matrix M is And-computable iff ∀v ∈ M, v is not Or -computable.

For And-computable vector/matrix,
we can compute the explanations by
performing matrix multiplication.

For Or -computable vector/matrix, we
can find the explanations by enumer-
ating MHSs.
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Partial evaluation

Partial evaluation
Example 2: Consider a program:

L = {obs, e1, e2, e3,
e4, e5, e6, H1, H2, H3},
H = {H1, H2, H3},
O = {obs},

P = {obs ← e1,
e1 ← e2 ∧ e3,
e2 ← e4 ∧ e5,
e2 ← e5 ∧ e6,
e3 ← e5,
e4 ← H1,
e5 ← H2,
e6 ← H3}.

P ′ = {obs ← e1,
e1 ← e2 ∧ e3,
e2 ← x1 ∨ x2,
e3 ← e5,
e4 ← H1,
e5 ← H2,
e6 ← H3,
x1 ← e4 ∧ e5,
x2 ← e5 ∧ e6}.

And-node

Or -node

Hypothesis

e1 obs

e2

e3

e4 x1

e5

x2e6

H1

H2

H3
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Partial evaluation

Partial evaluation

Example 2 (continue...):

MT
P =



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00
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Partial evaluation

Partial evaluation

Example 2 (continue...):
Iteration 1:

- M(1) = θ(MT
P ×M(0)), where M(0) = O:



0
e1 1.00
e2
e3
e4
e5
e6
H1
H2
H3
obs
x1
x2



=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00



×



0
e1
e2
e3
e4
e5
e6
H1
H2
H3
obs 1.00
x1
x2



(*) Vector/matrix can be represented in sparse format : Coordinate (COO) / Compressed Sparse
Row (CSR) / Compressed Sparse Column (CSC).
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Partial evaluation

Partial evaluation

Example 2 (continue...):
Iteration 2:

- M(2) = θ(MT
P ×M(1))



0
e1
e2 0.50
e3 0.50
e4
e5
e6
H1
H2
H3
obs
x1
x2



=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00



×



0
e1 1.00
e2
e3
e4
e5
e6
H1
H2
H3
obs
x1
x2



- Solving MHS: { {x1, x2}, {e3} }.
MHS solutions: { {e3, x1}, {e3, x2} } = M(3).
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Partial evaluation

Partial evaluation

Example 2 (continue...):
Iteration 3:

- M(4) = θ(MT
P ×M(3))



0 1
e1
e2
e3
e4 0.25
e5 0.75 0.75
e6 0.25
H1
H2
H3
obs
x1
x2



=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00



×



0 1
e1
e2
e3 0.50 0.50
e4
e5
e6
H1
H2
H3
obs
x1 0.50
x2 0.50
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Partial evaluation

Partial evaluation

Example 2 (continue...):
Iteration 4:

- M(4) = θ(MT
P ×M(3))



0 1
e1
e2
e3
e4
e5
e6
H1 0.25
H2 0.75 0.75
H3 0.25
obs
x1
x2



=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00



×



0 1
e1
e2
e3
e4 0.25
e5 0.75 0.75
e6 0.25
H1
H2
H3
obs
x1
x2



The algorithm stops. Found minimal explanations: { {H1, H2}, {H2, H3} }.
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Partial evaluation

Partial evaluation

Definition (Reduct abductive matrix)

We can obtain a reduct abductive matrix MP(Pr
And)T from the abductive matrix MP

T by:
1 Removing all columns w.r.t. Or -rules in POr .
2 Setting 1 at the diagonal corresponding to all atoms which are heads of Or -rules.

Consider the PHCAP in Example 2:

MP(P’rAnd)T =



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1 1.00
e2 0.50 1.00
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1
x2


Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation 24 / 48



Partial evaluation

Partial evaluation
Definition (Partial evaluation in abduction)

Let a PHCAP 〈 L ,H,O, P 〉 where P is a standardized program.
For any And−rule r = (h← b1 ∧ · · · ∧ bm) in P:

if body(r) contains an atom bi (1 ≤ i ≤ m) which is not the head of any rule in P, then
remove r .
otherwise, for each atom bi ∈ body(r) (i = 1, . . . ,m), if there is an And-rule bi ← Bi in
P (where Bi is a conjunction of atoms), then replace each bi in body(r) by the
conjunction Bi .

The resulting rule is denoted by unfold(r). Define

peval(P) =
⋃

r∈PAnd

unfold(r) .

peval(P) is called partial evaluation of P.
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Partial evaluation

Partial evaluation

Example 3: Consider a similar program in Example 2:
L = {obs, e1, e2, e3, e4, e5, e6, H1, H2, H3}, H = {H1, H2, H3}, O = {obs},
P = {obs ← e1, e1 ← e2 ∧ e3, e2 ← e4 ∧ e5, e2 ← e5 ∧ e6, e3 ← e5, e4 ← H1, e5 ← H2, e6 ← H3}.
Standardized program P ′ = {obs ← e1, e1 ← e2 ∧ e3, e2 ← x1 ∨ x2, e3 ← e5, e4 ← H1, e5 ← H2, e6 ←
H3, x1 ← e4 ∧ e5, x2 ← e5 ∧ e6}.

And-node

Or -node

Hypothesis

e1 obs

e2

e3

e4 x1

e5

x2e6

H1

H2

H3
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Partial evaluation

Partial evaluation

Example 3 (continue...):
- Let P ′ = {r1, ..., r9}
where:
r1 = (obs ← e1),
r2 = (e1 ← e2 ∧ e3),
r3 = (e2 ← x1 ∨ x2),
r4 = (x1 ← e4 ∧ e5),
r5 = (x2 ← e5 ∧ e6),
r6 = (e3 ← e5),
r7 = (e4 ← H1),
r8 = (e5 ← H2),
r9 = (e6 ← H3).

- Unfolding rules of P ′

becomes:
unfold(r1) = (obs ← e2 ∧ e3),
unfold(r2) = (e1 ← e2 ∧ e5),
unfold(r3) = r3,
unfold(r4) = (x1 ← H1 ∧ H2),
unfold(r5) = (x2 ← H2 ∧ H3),
unfold(r6) = (e3 ← H2),
unfold(r7) = r7,
unfold(r8) = r8,
unfold(r9) = r9.

- Then peval(P ′)
consists of:
obs ← e2 ∧ e3,
e1 ← e2 ∧ e5,
e2 ← x1 ∨ x2,
x1 ← H1 ∧ H2,
x2 ← H2 ∧ H3,
e3 ← H2,
e4 ← H1,
e5 ← H2,
e6 ← H3.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation 27 / 48



Partial evaluation

Partial evaluation

peval(P ′) can be obtained
by computing the power of
the reduct abductive
matrix:

(
MP(P’rAnd)T

)2
,(

MP(P’rAnd)T
)4

, ...(
MP(P’rAnd)T

)2k

where k is
the number of peval steps.

Example 3 (continue...):

MP(P’rAnd)T =



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1 1.00
e2 0.50 1.00
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1
x2


e2

e1 obs

e3e5

x1

x2

H1 e4

H2

H3 e6

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation 28 / 48



Partial evaluation

Partial evaluation

(
MP(P’rAnd)T

)2
=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1
e2 0.50 1.00 0.50
e3 0.50
e4
e5 0.50
e6
H1 1.00 1.00 0.50
H2 1.00 1.00 1.00 0.50 0.50
H3 1.00 1.00 0.50
obs
x1
x2



e2

e1

obs

e5

H2

e3

x1

x2

H1

e4

H3

e6
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Partial evaluation

Partial evaluation((
MP(P’rAnd)T

)2
)2

=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1
e2 0.50 1.00 0.50
e3
e4
e5
e6
H1 1.00 1.00 0.50
H2 0.50 1.00 1.00 1.00 0.50 0.50 0.50
H3 1.00 1.00 0.50
obs
x1
x2



Here, we reach a fixpoint at k = 2. We refer to this “sta-
ble” matrix as peval(P) and take it to solve the PHCAP.

e2

e1

obs

H2

e3

e5

x1

x2

H1

e4

H3

e6
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Partial evaluation

Partial evaluation

Example 3 (continue...):
Iteration 1:

- M(1) = θ(peval(P)×M(0)), where M(0) = O



0
e1
e2 0.50
e3
e4
e5
e6
H1
H2 0.50
H3
obs
x1
x2



=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1
e2 0.50 1.00 0.50
e3
e4
e5
e6
H1 1.00 1.00 0.50
H2 0.50 1.00 1.00 1.00 0.50 0.50 0.50
H3 1.00 1.00 0.50
obs
x1
x2



×



0
e1
e2
e3
e4
e5
e6
H1
H2
H3
obs 1.00
x1
x2



- Solving MHS problem: { {x1, x2}, {H2} }.
MHS solutions: { {H2, x1}, {H2, x2} } = M(2).
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Partial evaluation

Partial evaluation

Example 3 (continue...):
Iteration 2:

- M(3) = θ(peval(P)×M(2))



0 1
e1
e2
e3
e4
e5
e6
H1 0.25
H2 0.75 0.75
H3 0.25
obs
x1
x2



=



e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2

e1
e2 0.50 1.00 0.50
e3
e4
e5
e6
H1 1.00 1.00 0.50
H2 0.50 1.00 1.00 1.00 0.50 0.50 0.50
H3 1.00 1.00 0.50
obs
x1
x2



×



0 1
e1
e2
e3
e4
e5
e6
H1
H2 0.50 0.50
H3
obs
x1 0.50
x2 0.50



The algorithm stops. Found minimal explanations: { {H1, H2}, {H2, H3} }.
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Partial evaluation

Partial evaluation

Partial evaluation is repeatedly performed as:

peval0(P) = P and pevalk(P) = peval(pevalk−1(P)) (k ≥ 1).

It is realized as computing the power of the reduct abductive matrix:

(
MP(P’rAnd)T

)2
,
(
MP(P’rAnd)T

)4
, ...

(
MP(P’rAnd)T

)2k

(k ≥ 1)

Partial evaluation has a fixpoint (the proof is presented in our paper).
The k-step partial evaluation has the effect of realizing 2k steps of deduction at once.
Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.
However, computing the power of matrix is costly. We need to verify the positive effect
can win the tradeoff.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation 33 / 48



Partial evaluation

Partial evaluation

Partial evaluation is repeatedly performed as:

peval0(P) = P and pevalk(P) = peval(pevalk−1(P)) (k ≥ 1).

It is realized as computing the power of the reduct abductive matrix:

(
MP(P’rAnd)T

)2
,
(
MP(P’rAnd)T

)4
, ...

(
MP(P’rAnd)T

)2k

(k ≥ 1)

Partial evaluation has a fixpoint (the proof is presented in our paper).

The k-step partial evaluation has the effect of realizing 2k steps of deduction at once.
Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.
However, computing the power of matrix is costly. We need to verify the positive effect
can win the tradeoff.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation 33 / 48



Partial evaluation
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Experimental Results

Experimental Results

We experiment on Failure Modes and Effects Analysis (FMEA)-based benchmark datasets
by Koitz-Hristov and Wotawa which has been used in [6] and [7].
Dataset Number of instances Characteristics

Artificial samples I 166 problems deeper but narrower graph structure

Artificial samples II 117 problems [8]
deeper and wider graph structure, some
problems involve solving a large num-
ber of medium-size MHS problems

FMEA samples 213 problems
shallower but wider graph structure,
usually involving a few (but) large-size
MHS problems

[6] Koitz-Hristov and Wotawa, “Applying algorithm selection to abductive diagnostic reasoning”, 2018.
[7] Koitz-Hristov and Wotawa, “Faster Horn diagnosis-a performance comparison of abductive reasoning algorithms”, 2020.
[8] Excluded the unresolved problem phcap_140_5_5_5.atms
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Experimental Results

Experimental Results

We implement our method as two versions: Dense matrix and Sparse matrix in Python
3.7 (using Numpy and Scipy). Each version we have one with partial evaluation and one
without partial evaluation.
For large-size MHS problems, which have more than 50,000 posible combinations, we use
MHS enumerator provided by PySAT [9].

All the source code and benchmark
datasets in our paper are available
on GitHub:

https://github.com/nqtuan0192/LinearAlgebraicComputationofAbduction.
We have demonstrated the performance of linear algebraic approaches in [10].

[9] Ignatiev, Morgado, and Marques-Silva, “PySAT: A Python Toolkit for Prototyping with SAT Oracles”, 2018.
[10]Nguyen, Inoue, and Sakama, “Linear algebraic computation of propositional Horn abduction”, 2021.
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Experimental Results

Experimental Results - Original benchmark

Table: Detailed execution results for the original benchmark.

Datasets Artificial samples I (166 problems) Artificial samples II (117 problems) FMEA samples (213 problems)

Algorithms #solved /
#fastest

t + tp
mean / std

tpeval
mean / std

Sparse matrix - peval 1,660
89

4,243
93

514
19

Sparse matrix 1,660
1,401

3,527
29

-
-

Dense matrix - peval 1,660
13

811,841
2,227

728,086
31,628

Dense matrix 1,660
157

27,569
183

-
-

#solved /
#fastest

t + tp
mean / std

tpeval
mean / std

1,170
246

29,438
112

124
48

1,170
513

35,844
62

-
-

1,170
90

140,589
1,293

3,599
910

1,170
321

205,279
1,866

-
-

#solved /
#fastest

t + tp
mean / std

tpeval
mean / std

2,130
726

49,481
1,214

84
4

2,130
150

53,553
1,254

-
-

2,130
1,007

98,614
2,950

25
3

2,130
247

131,734
3,629

-
-

Partial evaluation improves much more in Artificial samples II and FMEA samples.
We see performance degradation happens in Artificial samples I for both dense and sparse
methods, especially with the dense method.
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Experimental Results

Experimental Results - Enhanced benchmark datasets

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

P = { path(X , Y )← edge(X , Y ),
path(X , Y )← edge(X , Z) ∧ path(Z , Y ) }

First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2),
edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10) .
Then we consider the observation to be path(1, 10) , and look for the explanation of it.
Next, for each problem instance of the original benchmark, we enumerate rules of the form
e ← h , where h is a hypothesis and e is a propositional variable , and append the atom
of the observation of the new PHCAP into this rule with a probability of 20% .

The resulting problem is expected to have the subgraph of And-rules occur more frequently.
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Experimental Results

Experimental Results - Enhanced benchmark datasets
Table: Detailed execution results for the enhanced benchmark datasets.

Datasets Artificial samples I (166 problems) Artificial samples II (117 problems) FMEA samples (213 problems)

Algorithms #solved /
#fastest

t + tp
mean / std

tpeval
mean / std

Sparse matrix - peval 1,660
116

12,140
124

545
15

Sparse matrix 1,660
1,389

16,163
209

-
-

Dense matrix - peval 1,660
5

869,922
2,434

799,965
58,500

Dense matrix 1,660
150

70,365
681

-
-

#solved /
#fastest

t + tp
mean / std

tpeval
mean / std

1,170
254

95,079
616

138
4

1,170
516

147,444
1,508

-
-

1,170
77

380,033
2,228

4,483
688

1,170
323

613,422
3,651

-
-

#solved /
#fastest

t + tp
mean / std

tpeval
mean / std

2,130
384

72,776
1,103

157
5

2,130
553

74,861
526

-
-

2,130
436

81,837
1,005

103
10

2,130
757

95,996
1,021

-
-

With the dataset enhancement, we now see partial evaluation can improve the performance
for sparse method significantly in the Artificial samples I.
However, the problem still remains with the dense method.
The graph structure of the Artificial samples I is the cause of the problem. That we take
more time in computing the power of the matrix with the dense format.
It also hightlights the importance of sparse representation.
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Conclusion

Conclusion

Contributions:
1 We have proposed to improve the linear algebraic approach for abduction by employing

partial evaluation.
2 Partial evaluation steps can be realized as the power of the reduct abductive matrix in the

language of linear algebra.
3 Its significant enhancement in terms of execution time has been demonstrated using artificial

benchmarks and real FMEA-based datasets with both dense and sparse representation,
especially more with the sparse format.
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Conclusion

Conclusion

But why do we need linear algebraic method?
1 It simplifies the core algorithm (easy to understand, easy to implement).
2 It can take the advantages of recent advancements in tensor oriented computing hardwares.
3 It is expected to be better scalability.
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Conclusion

Conclusion

Future work:
1 Handling loops and extending the method to work with non-Horn clauses.
2 Employing an effective prediction to know better when to apply partial evaluation and how

deep we do unfolding before solving the problem.
3 Moreover, incorporating some efficient pruning techniques or knowing where to zero out in

the abductive matrix is also a potential topic.
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