

The $\mathbf{2 5}^{\text {th }}$ International Symposium on Practical Aspects of Declarative Languages

Linear Algebraic Abduction with Partial Evaluation

Tuan Nguyen ${ }^{1}$ (speaker), Katsumi Inoue ${ }^{1}$ and Chiaki Sakama ${ }^{2}$
${ }^{1}$ National Institute of Informatics, Tokyo, Japan
${ }^{2}$ Wakayama University, Wakayama, Japan
\{tuannq, inoue\}@nii.ac.jp sakama@wakayama-u.ac.jp

January $17^{\text {th }}, 2023$

Outline

(1) Overview and Preliminaries
(2) Linear Algebraic Computation of Abduction
(3) Partial evaluation
(4) Experimental Results
(5) Conclusion

Outline

(1) Overview and Preliminaries
(2) Linear Algebraic Computation of Abduction
(3) Partial evaluation

44 Experimental Results
(5) Conclusion

Overview and Preliminaries

Abductive reasoning (explanation):

$$
P \Rightarrow Q
$$

inference to the best explanation starting from a set of observations.

Applications: Model-based diagnosis, belief revision, automated reasoning,

Overview and Preliminaries

Definition (Propositional Horn Clause Abduction Problem (PHCAP))

A PHCAP can be modeled as a quadruple $\langle\mathscr{L}, \mathbb{H}, \mathbb{O}, \mathrm{P}\rangle$. Where:

- \mathscr{L} is the set of all propositional variables.
- \mathbb{H} is the set of all hypotheses.
- \mathbb{O} is the set of observations.
- P is a logic program (set of Horn clauses).
- Goal: find the set of minimal explanations \mathbb{E} that satisfies:

Definition (Explanation of PHCAP)

- A set $E \subseteq \mathbb{H}$ is an explanation of a $\operatorname{PHCAP}\langle\mathscr{L}, \mathbb{H}, \mathbb{O}, \mathrm{P}\rangle$ if $\mathrm{P} \cup E \vDash \mathbb{O}$ and $\mathrm{P} \cup E$ is consistent.
- An explanation E of \mathbb{O} is minimal if there is no explanation E^{\prime} of \mathbb{O} such that $E^{\prime} \subset E$.

Overview and Preliminaries

- Example 1: An example of PHCAP

$$
\begin{aligned}
& \mathscr{L}=\left\{p, q, r, s, h_{1}, h_{2}, h_{3}\right\}, \\
& \mathbb{H}=\left\{h_{1}, h_{2}, h_{3}\right\}, \\
& \mathbb{O}=\{p\},
\end{aligned}
$$

$$
\mathrm{P}=\{p \leftarrow q \wedge r
$$

$$
q \leftarrow h_{1} \vee s
$$

$$
r \leftarrow s \vee h_{2}
$$

$$
\left.s \leftarrow h_{3}\right\}
$$

Set of minimal explanations: $\mathbb{E}=\left\{\left\{h_{1}, h_{3}\right\},\left\{h_{2}, h_{3}\right\}\right\}$

- Deciding if there is a solution of a PHCAP is NP-complete [1], [2].

[^0]
Overview and Preliminaries

- In this work, we focus on PHCAP with P is an acyclic program [3].
- For convenience, P is partitioned into $\mathrm{P}_{\text {And }} \cup \mathrm{P}_{\text {Or }}$ where:
- $P_{\text {And }}$ is a set of And-rule (including facts) and
- Por is a set of Or-rule.

$$
\begin{aligned}
\text { And-rule } & h \leftarrow b_{1} \wedge \cdots \wedge b_{m} \quad(m \geq 0) \\
\text { Or-rule } & h \leftarrow b_{1} \vee \cdots \vee b_{n} \quad(n>1)
\end{aligned}
$$

- Standardized program: is a definite program such that there is no duplicate head atom.

Overview and Preliminaries

- Example 1 (continue ...): And-Or-graph of a standardized program
$\mathscr{L}=\left\{p, q, r, s, h_{1}, h_{2}, h_{3}\right\}$,
$\mathbb{H}=\left\{h_{1}, h_{2}, h_{3}\right\}$,
$\mathbb{O}=\{p\}$,
$\mathrm{P}=\{p \leftarrow q \wedge r$,

$$
\begin{aligned}
& q \leftarrow h_{1} \vee s, \\
& r \leftarrow s \vee h_{2}, \\
& \left.s \leftarrow h_{3}\right\}
\end{aligned}
$$

Outline

(1) Overview and Preliminaries
(2) Linear Algebraic Computation of Abduction
(3) Partial evaluation

4 Experimental Results
(5) Conclusion

Linear Algebraic Computation of Abduction

Definition (Program matrix of PHCAP [4])

Let P be a standardized program and $\mathscr{L}=\left\{p_{1}, \ldots, p_{n}\right\}$. Then P is represented by a matrix $M_{P} \in \mathbb{R}^{n \times n}$ such that for each element $a_{i j}(1 \leq i, j \leq n)$ in M_{P},
(1) $a_{i j_{k}}=\frac{1}{m}\left(1 \leq k \leq m ; 1 \leq i, j_{k} \leq n\right)$ if $p_{i} \leftarrow p_{j_{1}} \wedge \cdots \wedge p_{j_{m}}$ (And-rule) is in P ;
(2) $a_{i j_{k}}=1 \quad\left(1 \leq k \leq I ; 1 \leq i, j_{k} \leq n\right)$ if $p_{i} \leftarrow p_{j_{1}} \vee \cdots \vee p_{j_{l}}$ (Or-rule) is in P ;
(3) $a_{i i}=1$ if $p_{i} \leftarrow$ (fact) is in P or $p_{i} \in \mathbb{H}$ (abducible);
(9) $a_{i j}=0$, otherwise.

- Any Horn program can be transformed into a standardized program in linear time.
- Horn program $\xrightarrow{\text { standardization }}$ standardized program $\xrightarrow{\text { tensorization }}$ program matrix M_{P}.

Linear Algebraic Computation of Abduction

Example 1 (continue ...):
$\mathscr{L}=\left\{p, q, r, s, h_{1}, h_{2}, h_{3}\right\}$,
$\mathbb{H}=\left\{h_{1}, h_{2}, h_{3}\right\}$,
$\mathbb{O}=\{p\}$,
$\mathrm{P}=\{p \leftarrow q \wedge r$,
$q \leftarrow h_{1} \vee s$,
$r \leftarrow s \vee h_{2}$,
$\left.s \leftarrow h_{3}\right\}$

And-node

Or-nodeHypothesis

Linear Algebraic Computation of Abduction

Definition (Abductive matrix of PHCAP)

Suppose a PHCAP has P with its program matrix M_{P}.
The abductive matrix of P is the transpose of M_{P} represented as $M_{P}{ }^{T}$.
Example 1 (continue...): $\mathscr{L}=\left\{p, q, r, s, h_{1}, h_{2}, h_{3}\right\}, \mathbb{H}=\left\{h_{1}, h_{2}, h_{3}\right\}$, $\mathbb{O}=\{p\}, \mathrm{P}=\left\{p \leftarrow q \wedge r, q \leftarrow h_{1} \vee s, r \leftarrow s \vee h_{2}, s \leftarrow h_{3}\right\}$.

Linear Algebraic Computation of Abduction

- Every subset of $\mathscr{L}=\left\{p, q, r, s, h_{1}, h_{2}, h_{3}\right\}$ can be represented by a vector.

$$
\left.\begin{array}{l|l}
p & \\
q & \\
r & \\
s & \\
h_{1} & 1 \\
h_{2} & 1 \\
h_{3} & 1
\end{array}\right) \leftrightarrow \mathbb{H}=\left\{h_{1}, h_{2}, h_{3}\right\}
$$

Vector of hypotheses

Observation vector

- Linear algebraic computation is a set of transformations converting observation vector $(\mathbb{O}$ into a vector representing a subset of \mathbb{H}. Each transformation step is an 1-step abduction.
- We refer to the vector representing explanations as explanation vector. An explanation vector v reaches an answer E if $v \subseteq \mathbb{H}$.

Linear Algebraic Computation of Abduction

- If the explanation vector v does not contain head of any Or-rule, the abduction step is realized by matrix multiplication $M_{P}{ }^{T} \times v$.

To explain p, we have to explain both q and r.

- Initial condition: $\sum_{i=1}^{n} v[i]=1$. A vector is unexplainable if $\sum_{i=1}^{n} v[i]<1$.

Linear Algebraic Computation of Abduction

- If the correspondent vector contains head of any Or-rule, the abduction step is realized by solving a Minimal Hitting Sets (MHS) problem [5].

To explain q and r, we have 2 Or-rules: $q \leftarrow h_{1} \vee s, r \leftarrow s \vee h_{2}$. Solving a MHS problem: $\left\{\left\{h_{1}, s\right\},\left\{s, h_{2}\right\}\right\}$. Answer: $\left\{\{s\},\left\{h_{1}, h_{2}\right\}\right\}$. To explain q and r, we either need to explain s or to explain both h_{1} and h_{2}.
[5] Gainer-Dewar and Vera-Licona, "The minimal hitting set generation problem: algorithms and computation", 2017 -

Linear Algebraic Computation of Abduction

Definition (Or-computable and And-computable)

(1) A vector v is $O r$-computable iff $v \cap \operatorname{head}\left(\mathrm{P}_{O r}\right) \neq \emptyset$.
(2) A matrix M is Or-computable iff $\exists v \in M, v$ is Or-computable.
(3) A vector v is And-computable iff v is not Or-computable.
(9) A matrix M is And-computable iff $\forall v \in M, v$ is not Or-computable.

- For And-computable vector/matrix, we can compute the explanations by performing matrix multiplication.
- For Or-computable vector/matrix, we can find the explanations by enumerating MHSs.

Outline

(1) Overview and Preliminaries
(2) Linear Algebraic Computation of Abduction
(3) Partial evaluation

4 Experimental Results
(5) Conclusion

Partial evaluation
Example 2: Consider a program:

$$
\begin{aligned}
& \mathscr{L}=\left\{o b s, e_{1}, e_{2}, e_{3},\right. \\
& \left.e_{4}, e_{5}, e_{6}, H_{1}, H_{2}, H_{3}\right\}, \\
& \mathbb{H}=\left\{H_{1}, H_{2}, H_{3}\right\}, \\
& \mathbb{O}=\{o b s\},
\end{aligned}
$$

$$
\begin{array}{ll}
P=\left\{o b s \leftarrow e_{1},\right. & P^{\prime}=\left\{o b s \leftarrow e_{1},\right. \\
e_{1} \leftarrow e_{2} \wedge e_{3}, & e_{1} \leftarrow e_{2} \wedge e_{3}, \\
e_{2} \leftarrow e_{4} \wedge e_{5}, & e_{2} \leftarrow x_{1} \vee x_{2}, \\
e_{2} \leftarrow e_{5} \wedge e_{6}, & e_{3} \leftarrow e_{5}, \\
e_{3} \leftarrow e_{5}, & e_{4} \leftarrow H_{1}, \\
e_{4} \leftarrow H_{1}, & e_{5} \leftarrow H_{2}, \\
e_{5} \leftarrow H_{2}, & e_{6} \leftarrow H_{3}, \\
\left.e_{6} \leftarrow H_{3}\right\} . & x_{1} \leftarrow e_{4} \wedge e_{5}, \\
& \left.x_{2} \leftarrow e_{5} \wedge e_{6}\right\} .
\end{array}
$$

And-nodeOr-nodeHypothesis

Partial evaluation

Example 2 (continue...):

Partial evaluation

Example 2 (continue...):

- Iteration 1 :
- $M^{(1)}=\theta\left(M_{P}^{T} \times M^{(0)}\right)$, where $M^{(0)}=\mathbb{O}$:

	0		e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	H_{1}	H_{2}	H_{3}	obs	x_{1}	x_{2}		0
e_{1}	(1.00	e_{1}										1.00)	e_{1}	()
e_{2}		e_{2}	0.50												e_{2}	
e_{3}		e_{3}	0.50												e_{3}	
e_{4}		e_{4}											0.50		e_{4}	
e_{5}		e_{5}			1.00								0.50	0.50	e_{5}	
e_{6}		$=e_{6}$												0.50	$\times{ }^{e_{6}}$	
H_{1}		$=H_{1}$				1.00			1.00						$\times \quad{ }^{+}$	
H_{2}		H_{2}					1.00			1.00					H_{2}	
H_{3}		H_{3}						1.00			1.00				H_{3}	
obs		obs													obs	1.00
x_{1}		x_{1}		1.00											x_{1}	
x_{2}	()	x_{2}	(1.00)	x_{2}	()

(*) Vector/matrix can be represented in sparse format : Coordinate (COO) / Compressed Sparse Row (CSR) / Compressed Sparse Column (CSC).

Partial evaluation

Example 2 (continue...):

- Iteration 2:
- $M^{(2)}=\theta\left(M_{P}^{T} \times M^{(1)}\right)$

	0		e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	H_{1}	H_{2}	H_{3}	obs	x_{1}	x_{2}		0
e_{1}	(0.50)	e_{1}	(0.50									1.00)	e_{1}	(1.00
e_{2}	0.50	e_{2}	0.50												e_{2}	
e_{3}	0.50	e_{3}	0.50												e_{3}	
e_{4}		e_{4}											0.50		e_{4}	
e_{5}		e_{5}			1.00								0.50	0.50	e_{5}	
e_{6}		$=e_{6}$												0.50	e_{6}	
H_{1}		$=H_{1}$				1.00			1.00						$\times{ }^{\times}$	
H_{2}		H_{2}					1.00			1.00					H_{2}	
H_{3}		H_{3}						1.00			1.00				H_{3}	
obs		obs													obs	
x_{1}		x_{1}		1.00											x_{1}	
x_{2}	()	x_{2}		1.00)	x_{2}	

- Solving MHS: $\left\{\left\{x_{1}, x_{2}\right\},\left\{e_{3}\right\}\right\}$.

MHS solutions: $\left\{\left\{e_{3}, x_{1}\right\},\left\{e_{3}, x_{2}\right\}\right\}=M^{(3)}$.

Partial evaluation

Example 2 (continue...):

- Iteration 3:
- $M^{(4)}=\theta\left(M_{P}^{T} \times M^{(3)}\right)$

Partial evaluation

Example 2 (continue...):

- Iteration 4:
- $M^{(4)}=\theta\left(M_{P}^{T} \times M^{(3)}\right)$

- The algorithm stops. Found minimal explanations: $\left\{\left\{H_{1}, H_{2}\right\},\left\{H_{2}, H_{3}\right\}\right\}$.

Partial evaluation

Definition (Reduct abductive matrix)

We can obtain a reduct abductive matrix $M_{P}\left(\mathrm{P}_{\text {And }}^{r}\right)^{T}$ from the abductive matrix $M_{P}{ }^{T}$ by:
(1) Removing all columns w.r.t. Or-rules in $\mathrm{P}_{\text {Or }}$.
(2) Setting 1 at the diagonal corresponding to all atoms which are heads of Or-rules.

Consider the PHCAP in Example 2:

Partial evaluation

Definition (Partial evaluation in abduction)

Let a PHCAP $\langle\mathscr{L}, \mathbb{H}, \mathbb{O}, \mathrm{P}\rangle$ where P is a standardized program.
For any And-rule $r=\left(h \leftarrow b_{1} \wedge \cdots \wedge b_{m}\right)$ in P:

- if $\operatorname{body}(r)$ contains an atom $b_{i}(1 \leq i \leq m)$ which is not the head of any rule in P , then remove r.
- otherwise, for each atom $b_{i} \in \operatorname{body}(r)(i=1, \ldots, m)$, if there is an And-rule $b_{i} \leftarrow B_{i}$ in P (where B_{i} is a conjunction of atoms), then replace each b_{i} in $\operatorname{body}(r)$ by the conjunction B_{i}.
The resulting rule is denoted by unfold (r). Define

$$
\operatorname{peval}(P)=\bigcup_{r \in P_{\text {And }}} \text { unfold }(r) .
$$

peval (P) is called partial evaluation of P.

Partial evaluation

Example 3: Consider a similar program in Example 2:

$\mathscr{L}=\left\{o b s, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, H_{1}, H_{2}, H_{3}\right\}, \mathbb{H}=\left\{H_{1}, H_{2}, H_{3}\right\}, \mathbb{O}=\{o b s\}$,
$P=\left\{o b s \leftarrow e_{1}, e_{1} \leftarrow e_{2} \wedge e_{3}, e_{2} \leftarrow e_{4} \wedge e_{5}, e_{2} \leftarrow e_{5} \wedge e_{6}, e_{3} \leftarrow e_{5}, e_{4} \leftarrow H_{1}, e_{5} \leftarrow H_{2}, e_{6} \leftarrow H_{3}\right\}$.
Standardized program $P^{\prime}=\left\{o b s \leftarrow e_{1}, \quad e_{1} \leftarrow e_{2} \wedge e_{3}, \quad e_{2} \leftarrow x_{1} \vee x_{2}, \quad e_{3} \leftarrow e_{5}, \quad e_{4} \leftarrow H_{1}, \quad e_{5} \leftarrow H_{2}, \quad e_{6} \leftarrow\right.$ $\left.H_{3}, x_{1} \leftarrow e_{4} \wedge e_{5}, x_{2} \leftarrow e_{5} \wedge e_{6}\right\}$.

Partial evaluation

Example 3 (continue...):

- Let $P^{\prime}=\left\{r_{1}, \ldots, r_{9}\right\}$ where:
$r_{1}=\left(o b s \leftarrow e_{1}\right)$,
$r_{2}=\left(e_{1} \leftarrow e_{2} \wedge e_{3}\right)$,
$r_{3}=\left(e_{2} \leftarrow x_{1} \vee x_{2}\right)$,
$r_{4}=\left(x_{1} \leftarrow e_{4} \wedge e_{5}\right)$,
$r_{5}=\left(x_{2} \leftarrow e_{5} \wedge e_{6}\right)$,
$r_{6}=\left(e_{3} \leftarrow e_{5}\right)$,
$r_{7}=\left(e_{4} \leftarrow H_{1}\right)$,
$r_{8}=\left(e_{5} \leftarrow H_{2}\right)$,
$r_{9}=\left(e_{6} \leftarrow H_{3}\right)$.
- Unfolding rules of P^{\prime} becomes:
unfold $\left(r_{1}\right)=\left(o b s \leftarrow e_{2} \wedge e_{3}\right)$,
unfold $\left(r_{2}\right)=\left(e_{1} \leftarrow e_{2} \wedge e_{5}\right)$,
$\operatorname{unfold}\left(r_{3}\right)=r_{3}$,
unfold $\left(r_{4}\right)=\left(x_{1} \leftarrow H_{1} \wedge H_{2}\right)$,
unfold $\left(r_{5}\right)=\left(x_{2} \leftarrow H_{2} \wedge H_{3}\right)$,
unfold $\left(r_{6}\right)=\left(e_{3} \leftarrow H_{2}\right)$,
$\operatorname{unfold}\left(r_{7}\right)=r_{7}$,
unfold $\left(r_{8}\right)=r_{8}$,
unfold $\left(r_{9}\right)=r_{9}$.
- Then peval(P^{\prime}) consists of: obs $\leftarrow e_{2} \wedge e_{3}$, $e_{1} \leftarrow e_{2} \wedge e_{5}$, $e_{2} \leftarrow x_{1} \vee x_{2}$, $x_{1} \leftarrow H_{1} \wedge H_{2}$, $x_{2} \leftarrow H_{2} \wedge H_{3}$,
$e_{3} \leftarrow H_{2}$,
$e_{4} \leftarrow H_{1}$,
$e_{5} \leftarrow H_{2}$,
$e_{6} \leftarrow H_{3}$.

Partial evaluation

- peval $\left(P^{\prime}\right)$ can be obtained by computing the power of $M_{P}\left(P_{A n d}^{\prime r}\right)^{T}=$ the reduct abductive matrix: $\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{2}$, $\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{4}, \ldots$
$\left(M_{P}\left(P_{A n d}^{r}\right)^{T}\right)^{2^{k}}$ where k is the number of peval steps.
Example 3 (continue...):

Partial evaluation

$\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{2}=$

Partial evaluation

$\left(\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{2}\right)^{2}=$

- Here, we reach a fixpoint at $k=2$. We refer to this "stable" matrix as peval (P) and take it to solve the PHCAP.

Partial evaluation

Example 3 (continue...):

- Iteration 1:
- $M^{(1)}=\theta\left(\operatorname{peval}(P) \times M^{(0)}\right)$, where $M^{(0)}=\mathbb{O}$

	0		e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	H_{1}	H_{2}	H_{3}	obs	x_{1}	x_{2}		0
e_{1} e_{2}	(0.50)	e_{1} e_{2}	0.50	1.00								0.50)	e_{1} e_{2}	(
e_{3}		e_{3}													e_{3}	
e_{4}		e_{4}													e_{4}	
e_{5}		e_{5}													e_{5}	
e_{6}		$=e_{6}$													$\times{ }^{+}{ }_{6}$	
H_{1}		$=H_{1}$				1.00			1.00				0.50		$\times{ }^{\times}$	
H_{2}	0.50	H_{2}	0.50		1.00		1.00			1.00		0.50	0.50	0.50	H_{2}	
H_{3}		H_{3}						1.00			1.00			0.50	H_{3}	
obs		obs														1.00
x_{1} x_{2}		x_{1} x_{2}													x_{1} x_{2}	

- Solving MHS problem: $\left\{\left\{x_{1}, x_{2}\right\},\left\{H_{2}\right\}\right\}$.

MHS solutions: $\left\{\left\{H_{2}, x_{1}\right\},\left\{H_{2}, x_{2}\right\}\right\}=M^{(2)}$.

Partial evaluation

Example 3 (continue...):

- Iteration 2 :
- $M^{(3)}=\theta\left(\operatorname{peval}(P) \times M^{(2)}\right)$

	0	1		e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	H_{1}	H_{2}	H_{3}	obs	x_{1}	x_{2}		0	1
e_{1} e_{2}	($\begin{aligned} & e_{1} \\ & e_{2} \end{aligned}$	(0.50	1.00								0.50			e_{1} e_{2}		
e_{3}			e_{3}													e_{3}		
e_{4}			e_{4}													e_{4}		
e_{5}			e_{5}													e_{5}		
e_{6}			e_{6}													$\times e_{6}$		
H_{1}		0.25	H_{1}				1.00			1.00				0.50		$\times{ }^{+}$		
H_{2}	0.75	0.75	H_{2}	0.50		1.00		1.00			1.00		0.50	0.50	0.50	H_{2}	0.50	0.50
H_{3}	0.25		H_{3}						1.00			1.00			0.50	H_{3}		
obs			obs													obs		
x_{1}			x_{1}													x_{1}		0.50
x_{2}	()		()	x_{2}	0.50)

- The algorithm stops. Found minimal explanations: $\left\{\left\{H_{1}, H_{2}\right\},\left\{H_{2}, H_{3}\right\}\right\}$.

Partial evaluation

- Partial evaluation is repeatedly performed as:

$$
\operatorname{peval}^{0}(P)=P \quad \text { and } \quad \operatorname{peval}^{k}(P)=\operatorname{peval}\left(\operatorname{peval}^{k-1}(P)\right)(k \geq 1)
$$

- It is realized as computing the power of the reduct abductive matrix:

$$
\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{2},\left(M_{P}\left(P_{A n d}^{r}\right)^{T}\right)^{4}, \ldots\left(M_{P}\left(P_{A n d}^{, r}\right)^{T}\right)^{2^{k}}(k \geq 1)
$$

Partial evaluation

- Partial evaluation is repeatedly performed as:

$$
\operatorname{peval}^{0}(P)=P \text { and } \operatorname{peval}^{k}(P)=\operatorname{peval}\left(\text { peval }^{k-1}(P)\right) \quad(k \geq 1)
$$

- It is realized as computing the power of the reduct abductive matrix:

$$
\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{2},\left(M_{P}\left(P_{A n d}^{r}\right)^{T}\right)^{4}, \ldots\left(M_{P}\left(P_{A n d}^{, r}\right)^{T}\right)^{2^{k}}(k \geq 1)
$$

- Partial evaluation has a fixpoint (the proof is presented in our paper).

Partial evaluation

- Partial evaluation is repeatedly performed as:

$$
\operatorname{peval}^{0}(P)=P \quad \text { and } \quad \operatorname{peval}^{k}(P)=\operatorname{peval}\left(\text { peval }^{k-1}(P)\right) \quad(k \geq 1)
$$

- It is realized as computing the power of the reduct abductive matrix:

$$
\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{2},\left(M_{P}\left(P_{A n d}^{r}\right)^{T}\right)^{4}, \ldots\left(M_{P}\left(P_{A n d}^{, r}\right)^{T}\right)^{2^{k}}(k \geq 1)
$$

- Partial evaluation has a fixpoint (the proof is presented in our paper).
- The k-step partial evaluation has the effect of realizing 2^{k} steps of deduction at once. Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.

Partial evaluation

- Partial evaluation is repeatedly performed as:

$$
\operatorname{peval}^{0}(P)=P \text { and } \operatorname{peval}^{k}(P)=\operatorname{peval}\left(\text { peval }^{k-1}(P)\right) \quad(k \geq 1)
$$

- It is realized as computing the power of the reduct abductive matrix:

$$
\left(M_{P}\left(P_{A n d}^{\prime r}\right)^{T}\right)^{2},\left(M_{P}\left(P_{A n d}^{r}\right)^{T}\right)^{4}, \ldots\left(M_{P}\left(P_{A n d}^{, r}\right)^{T}\right)^{2^{k}}(k \geq 1)
$$

- Partial evaluation has a fixpoint (the proof is presented in our paper).
- The k-step partial evaluation has the effect of realizing 2^{k} steps of deduction at once. Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.
- However, computing the power of matrix is costly. We need to verify the positive effect can win the tradeoff.

Outline

(1) Overview and Preliminaries
(2) Linear Algebraic Computation of Abduction
(3) Partial evaluation

4 Experimental Results
(5) Conclusion

Experimental Results

- We experiment on Failure Modes and Effects Analysis (FMEA)-based benchmark datasets by Koitz-Hristov and Wotawa which has been used in [6] and [7].

Dataset	Number of instances	Characteristics
Artificial samples I	166 problems	deeper but narrower graph structure
Artificial samples II	117 problems [8]	deeper and wider graph structure, some problems involve solving a large num- ber of medium-size MHS problems
FMEA samples	213 problems	shallower but wider graph structure, usually involving a few (but) large-size MHS problems

[6] Koitz-Hristov and Wotawa, "Applying algorithm selection to abductive diagnostic reasoning", 2018.
[7] Koitz-Hristov and Wotawa, "Faster Horn diagnosis-a performance comparison of abductive reasoning algorithms", 2020.
[8] Excluded the unresolved problem phcap_140_5_5_5.atms

Experimental Results

- We implement our method as two versions: Dense matrix and Sparse matrix in Python 3.7 (using Numpy and Scipy). Each version we have one with partial evaluation and one without partial evaluation.
- For large-size MHS problems, which have more than 50,000 posible combinations, we use MHS enumerator provided by PySAT [9].
- All the source code and benchmark datasets in our paper are available on GitHub:

https://github.com/nqtuan0192/LinearAlgebraicComputationofAbduction.
- We have demonstrated the performance of linear algebraic approaches in [10].

Experimental Results - Original benchmark

Artificial samples I

Artificial samples II

FMEA samples

Experimental Results - Original benchmark

Table: Detailed execution results for the original benchmark.

Datasets	Artificial samples I (166 problems)			Artificial samples II (117 problems)			FMEA samples (213 problems)		
Algorithms	\#solved / \#fastest	$\begin{gathered} t+t_{p} \\ \text { mean } / \text { std } \\ \hline \end{gathered}$	$\begin{gathered} t_{\text {peval }} \\ \text { mean } / \text { std } \end{gathered}$	\#solved / \#fastest	$\begin{gathered} t+t_{p} \\ \text { mean / std } \end{gathered}$	$\begin{gathered} t_{\text {peval }} \\ \text { mean } / \text { std } \end{gathered}$	\#solved / \#fastest	$\begin{gathered} t+t_{p} \\ \text { mean / std } \end{gathered}$	$\begin{gathered} t_{\text {peval }} \\ \text { mean } / \text { std } \end{gathered}$
Sparse matrix - peval	1,660	4,243	514	1,170	29,438	124	2,130	49,481	84
	89	93	19	246	112	48	726	1,214	4
Sparse matrix	1,660	3,527	-	1,170	35,844	-	2,130	53,553	-
	1,401	29	-	513	62	-	150	1,254	-
Dense matrix - peval	1,660	811,841	728,086	1,170	140,589	3,599	2,130	98,614	25
	13	2,227	31,628	90	1,293	910	1,007	2,950	3
Dense matrix	1,660	27,569	-	1,170	205,279	-	2,130	131,734	-
	157	183	-	321	1,866	-	247	3,629	-

- Partial evaluation improves much more in Artificial samples II and FMEA samples.
- We see performance degradation happens in Artificial samples I for both dense and sparse methods, especially with the dense method.

Experimental Results - Enhanced benchmark datasets

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$
\left.\left.\begin{array}{rl}
P=\{ & \operatorname{path}(X, Y)
\end{array}\right) \operatorname{edge}(X, Y), \quad \text { path }(X, Y) \leftarrow \operatorname{edge}(X, Z) \wedge \operatorname{path}(Z, Y)\right\}
$$

Experimental Results - Enhanced benchmark datasets

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$
\left.\begin{array}{rl}
P=\{ & \operatorname{path}(X, Y)
\end{array}\right) \operatorname{edge}(X, Y),
$$

- First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2), edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10).

Experimental Results - Enhanced benchmark datasets

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$
\left.\begin{array}{rl}
P=\{ & \operatorname{path}(X, Y)
\end{array}\right) \operatorname{edge}(X, Y),
$$

- First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2), edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10).
- Then we consider the observation to be path $(1,10)$, and look for the explanation of it.

Experimental Results - Enhanced benchmark datasets

In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

$$
\left.\begin{array}{rl}
P=\{ & \operatorname{path}(X, Y)
\end{array}\right) \operatorname{edge}(X, Y),
$$

- First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2), edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10).
- Then we consider the observation to be path $(1,10)$, and look for the explanation of it.
- Next, for each problem instance of the original benchmark, we enumerate rules of the form $e \leftarrow h$, where h is a hypothesis and e is a propositional variable, and append the atom of the observation of the new PHCAP into this rule with a probability of 20%.
The resulting problem is expected to have the subgraph of And-rules occur more frequently.

Experimental Results - Enhanced benchmark datasets

Artificial samples I

Artificial samples II

FMEA samples

Experimental Results - Enhanced benchmark datasets

Table: Detailed execution results for the enhanced benchmark datasets.

Datasets	Artificial samples I (166 problems)			Artificial samples II (117 problems)			FMEA samples (213 problems)		
Algorithms	\#solved / \#fastest	$\begin{gathered} t+t_{p} \\ \text { mean / std } \end{gathered}$	$\begin{gathered} t_{\text {peval }} \\ \text { mean } / \text { std } \end{gathered}$	\#solved / \#fastest	$\begin{gathered} t+t_{p} \\ \text { mean } / \text { std } \\ \hline \end{gathered}$	$\begin{gathered} t_{\text {peval }} \\ \text { mean } / \text { std } \end{gathered}$	\#solved / \#fastest	$\begin{gathered} t+t_{p} \\ \text { mean } / \text { std } \end{gathered}$	$\begin{gathered} t_{\text {peval }} \\ \text { mean } / \text { std } \end{gathered}$
Sparse matrix - peval	1,660	12,140	545	1,170	95,079	138	2,130	72,776	157
	116	124	15	254	616	4	384	1,103	5
Sparse matrix	1,660	16,163		1,170	147,444	-	2,130	74,861	
	1,389	209	-	516	1,508	-	553	526	-
Dense matrix - peval	1,660	869,922	799,965	1,170	380,033	4,483	2,130	81,837	103
	5	2,434	58,500	77	2,228	688	436	1,005	10
Dense matrix	1,660	70,365	-	1,170	613,422	-	2,130	95,996	-
	150	681	-	323	3,651	-	757	1,021	-

- With the dataset enhancement, we now see partial evaluation can improve the performance for sparse method significantly in the Artificial samples I.
- However, the problem still remains with the dense method.
- The graph structure of the Artificial samples \mathbf{I} is the cause of the problem. That we take more time in computing the power of the matrix with the dense format.
- It also hightlights the importance of sparse representation.

Outline

(1) Overview and Preliminaries
(2) Linear Algebraic Computation of Abduction
(3) Partial evaluation

4 Experimental Results
(5) Conclusion

Conclusion

Contributions:
(1) We have proposed to improve the linear algebraic approach for abduction by employing partial evaluation.
(2) Partial evaluation steps can be realized as the power of the reduct abductive matrix in the language of linear algebra.
(3) Its significant enhancement in terms of execution time has been demonstrated using artificial benchmarks and real FMEA-based datasets with both dense and sparse representation, especially more with the sparse format.

Conclusion

But why do we need linear algebraic method?
(1) It simplifies the core algorithm (easy to understand, easy to implement).
(2) It can take the advantages of recent advancements in tensor oriented computing hardwares.
(3) It is expected to be better scalability.

Conclusion

Future work:
(1) Handling loops and extending the method to work with non-Horn clauses.
(2) Employing an effective prediction to know better when to apply partial evaluation and how deep we do unfolding before solving the problem.
(3) Moreover, incorporating some efficient pruning techniques or knowing where to zero out in the abductive matrix is also a potential topic.

References I

Apt, Krzysztof R. and Marc Bezem. "Acyclic Programs". In: New Generation Computing 9 (1991), pp. 335-364.
Eiter, Thomas and Georg Gottlob. "The complexity of logic-based abduction". In: Journal of the ACM (JACM) 42.1 (1995), pp. 3-42.
Gainer-Dewar, Andrew and Paola Vera-Licona. "The minimal hitting set generation problem: algorithms and computation". In: SIAM Journal on Discrete Mathematics 31.1 (2017), pp. 63-100.
Ignatiev, Alexey, Antonio Morgado, and Joao Marques-Silva. "PySAT: A Python Toolkit for Prototyping with SAT Oracles". In: SAT. 2018, pp. 428-437.
Koitz-Hristov, Roxane and Franz Wotawa. "Applying algorithm selection to abductive diagnostic reasoning". In: Applied Intelligence 48.11 (2018), pp. 3976-3994.

- ."Faster Horn diagnosis-a performance comparison of abductive reasoning algorithms". In: Applied Intelligence 50.5 (2020), pp. 1558-1572.

References II

Nguyen, Tuan Quoc, Katsumi Inoue, and Chiaki Sakama. "Linear algebraic computation of propositional Horn abduction". In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE. 2021, pp. 240-247. DOI: 10.1109/ICTAI52525.2021.00040.
Sakama, Chiaki, Katsumi Inoue, and Taisuke Sato. "Linear Algebraic Characterization of Logic Programs". In: International Conference on Knowledge Science, Engineering and Management. Springer. 2017, pp. 520-533.
Selman, Bart and Hector J Levesque. "Abductive and Default Reasoning: A Computational Core". In: AAAI. 1990, pp. 343-348.

Thank you for your attention

[^0]: [1] Selman and Levesque, "Abductive and Default Reasoning: A Computational Core", 1990.
 [2] Eiter and Gottlob, "The complexity of logic-based abduction", 1995.

