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Overview and Preliminaries

Overview and Preliminaries

Abductive reasoning (explanation): P=Q

inference to the best explanation starting from a set of observations. Q

Water makes Rainis a
things wet. source of water.

The grass
is wet.

It was rain
recently.

Applications: Model-based diagnosis, belief revision, automated reasoning, ...
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Overview and Preliminaries

Overview and Preliminaries

A PHCAP can be modeled as a quadruple {( ., H, O, P ). Where:
@ Z is the set of all propositional variables.
@ H is the set of all hypotheses.

@ O is the set of observations.

P is a logic program (set of Horn clauses).

@ Goal: find the set of minimal explanations E that satisfies:

@ A set E C His an explanation of a PHCAP (%, H,OQ,P) if PUEE O and P U E is consistent.

An explanation E of @ is minimal if there is no explanation E’ of O such that E/ C E.
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Overview and Preliminaries

Overview and Preliminaries

@ Example 1: An example of PHCAP

& ={p, q, 1, s, h1, hy, hs}, P={p<qAr,

H={h1, ho, h3}, qg< h Vs,

0 = {p}, r<— sV hy,
s< h3}

Set of minimal explanations: E = { {h1, h3}, {h2, h3} }

e Deciding if there is a solution of a PHCAP is NP-complete [1], [2].

[1] Selman and Levesque, “Abductive and Default Reasoning: A Computational Core”, 1990.
[2] Eiter and Gottlob, “The complexity of logic-based abduction”, 1995.
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Overview and Preliminaries

Overview and Preliminaries

@ In this work, we focus on PHCAP with P is an acyclic program [3].
@ For convenience, P is partitioned into Pa,g U Po, where:
- Pang is a set of And-rule (including facts) and

- Por is aset of Or-rule.

And-rule h < biA---Aby (m=>0)
Or-rule h <~ bVv---Vb, (n>1)

o Standardized program: is a definite program such that there is no duplicate head atom.

[3] Apt and Bezem, “Acyclic Programs”, 1991.
Linear Algebraic Abduction with Partial Evaluation
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Overview and Preliminaries

Overview and Preliminaries

@ Example 1 (continue ...): And-Or-graph of a standardized program
L = {pv aq, r, s, hi, ha, h3},
H = {h1, h2, h3},

And-node
0= {p}, @ Q
— -0 e o
Or-node
g+ hi Vs,
r< sV h2 s @'/" Q Hypothesis
s < h3 }
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Linear Algebraic Computation of Abduction

Let P be a standardized program and .Z = {p1, ..., pn}. Then P is represented by a matrix
Mp € R™" such that for each element a;; (1 <i,j < n)in Mp,

Q aj, =+ (L<k<m1<ijk<n)if pj+ py A+ -Apj, (And-rule) is in P;

Q@ a3, =1 (1<k</1<ijk<n)if pip;V---Vp; (Orrule)isinP;
@ aj = 1if p; < (fact) isin P or p; € H (abducible);
Q a; =0, otherwise.

@ Any Horn program can be transformed into a standardized program in linear time.

standardization . tensorization .
@ Horn program —————— standardized program ————— program matrix Mp.

[4] Sakama, Inoue, and Sato, “Linear Algebraic Characterization of Logic Programs”, 2017 =} = = = E DA
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Linear Algebraic Computation of Abduction

Example 1 (continue ...): @ Q And-node

L = {pa q, r, s, hl’ h2’ h3}. /_,

H = {h1, ha, hs}, @—-@ G O Or-node

0 = {p}, ) ‘

P = { p <« q /\ r ’ @‘/ Q Hypothesis
q < hl V ° ’ P q r s hi hy h3
r<sVhy, P /2 1/2

q 1 1
S< h3 } , L L
s 1
hy 1
hy 1
h3 1
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Linear Algebraic Computation of Abduction

Linear Algebraic Computation of Abduction

Suppose a PHCAP has P with its program matrix Mp.
The abductive matrix of P is the transpose of Mp represented as Mp .

Example 1 (continue...): £ ={p, q, r, s, h1, hy, h3}, H = {h1, ha, h3},
O={p},P={p+qgAr, g« Vs, rsVhy, s« hs}.

P q r s h hy h3 P g r (s h h h3
p /2 1/2 p
q 1 1 q 1/2
r 1 1 T r| 1R

Mp = 5 i Mp' = 11
hl 1 h1 1 1
h2 1 h2 1 1
h3 1 h3 1 1
o = - = = wae
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Linear Algebraic Computation of Abduction

@ Every subset of £ = {p, q, r, s, h1, ha, h3} can be represented by a vector.

p p (1

q q

r r

s (—)H:{hl, h2, h3} s <—>@:{p}
hy hy

h2 1 h2

h3 1 h3

Vector of hypotheses Observation vector

@ Linear algebraic computation is a set of transformations converting observation vector O
into a vector representing a subset of H. Each transformation step is an 1-step abduction.

o We refer to the vector representing explanations as explanation vector. An explanation
vector v reaches an answer E if v C H.
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Linear Algebraic Computation of Abduction

@ If the explanation vector v does not contain head of any Or-rule, the abduction step is
realized by matrix multiplication Mp' x v.

P g r s h h h

p
q [ 12 q q [ 1/2
r 1/2 r r 1/2
s 11 X s = s

hy 1 1 m h

ho 1 1 ha ha

hs 1 1 hs hs

To explain p, we have to explain both q and r.

n n
e Initial condition: Z v[i] = 1. A vector is unexplainable if Z v[i] < 1.
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Linear Algebraic Computation of Abduction

o If the correspondent vector contains head of any Or-rule, the abduction step is realized by
solving a Minimal Hitting Sets (MHS) problem [5].

1% q r Sh1 h2 h3

p p p

q [1/2 q | 1/2 q

r 1/2 r 1/2 | solving MHS '

s 1 . — s |1

hy 1 1 h hy 1/2
hy 1 1 ho hy 1/2
hs 1 1 hs hs

To explain g and r, we have 2 Or-rules: g< h1 Vs, r< sV hy.
Solving a MHS problem: {{hi1, s}, {s, h2}}. Answer: {{s}, {h1, ho}}.
To explain q and r, we either need to explain s or to explain both hy and hy.

[5] Gainer-Dewar and Vera-Licona, “The minimal hitting set generation problem: algorithms and computation”, 2017
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Linear Algebraic Computation of Abduction

@ A vector v is Or-computable iff v N head(Po,) # 0.

@ A matrix M is Or-computable iff v € M, v is Or-computable.

© A vector v is And-computable iff v is not Or-computable.

@ A matrix M is And-computable iff Yv € M, v is not Or-computable.

e For And-computable vector/matrix, @ For Or-computable vector/matrix, we
we can compute the explanations by can find the explanations by enumer-
performing matrix multiplication. ating MHSs.
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Partial evaluation

Partial evaluation .
P—{obsc e, | —lobsee

) . . €1 < & A €3,
Example 2: Consider a program: e e A e,
€ < X1 V Xo,
Z = {ObS, €1, €, €3, € < €4 A es,
€3 < 65,
€4, €5, Ep, Hlv H27 H3}v € < é5 A 6,
€4 <— Hl)
H = {Hl, Hg, H3}, €3 < €5,
€5 <— H2,
O = {obs}, e < Hi,
€6 < H3,
&  Ha, X1 ¢ e A\ e
€ < H3}. ! 4 4

X <— e5 N\ eﬁ}.

O—0—@ @ -

Y
O-0/@C
@ Cs/ €3 Q Hypothesis
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Partial evaluation

Example 2 (continue...):

e & e3 e es = Hi  H» H; obs X1 X2
e 1.00
& 0.50
e3 0.50

€4 0.50

e 1.00 050 050
MF7,' — & 0.50

Hy 1.00 1.00

obs
X1 1.00
X2 1.00
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Partial evaluation
Example 2 (continue...):

@ lteration 1:
- M) = H(M;— X I\/I(O)), where M) = ©:

0 el e e e es e Hi  H» Hs obs X1 X2 0

e 1.00 er 1.00 e

(=] e 0.50 (=]

e e 0.50 e

€y ey 0.50 ey

es es 1.00 0.50 0.50 es

e _ e 050 |, e

Hy Hy 1.00 1.00 Hi

Ho Hy 1.00 1.00 A

Hs Hs 1.00 1.00 Hs

obs obs obs | 1.00
X1 X1 1.00 X1
X2 X2 1.00

(*) Vector/matrix can be represented in sparse format : Coordinate (COO) / Compressed Sparse
Row (CSR) / Compressed Sparse Column (CSC).

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation
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Partial evaluation

Partial evaluation

Example 2 (continue...

@ lteration 2:

):

“ M@ = O(ME x M)

0
e
=) 0.50
e 0.50

obs

- Solving MHS: { {xq,
MHS solutions: { {es,

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

& 1.00

& 0.50

e 0.50

ey 0.50
es 1.00 0.50
€6
Hy 1.00 1.00

Ho 1.00 1.00

Hs 1.00 1.00
obs

X1 1.00
X2 1.00

X2}? {63} }
x1}, {es, x} } = MO,

X2

0.50
0.50

Linear Algebraic Abduction with Partial Evaluation
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Partial evaluation

Partial evaluation

Example 2 (continue...):
o lteration 3:
- M®) =ML x MB))

0 1

e e
€ =]
e e
ey 0.25 ey
e 075 0.75 es
€6 0.25 =3
Hy Hy
H, Ha
Hs Hs
obs obs
x1 X1
X2 X2

an Nguyen, Katsumi Inoue and Chiaki Sakama

er

0.50
0.50

1.00

0.50
1.00 0.50

1.00 1.00
1.00 1.00
1.00 1.00

1.00
1.00

X2

0.50
0.50

e
€4
es
Hy

Hs
obs

X2

0.50

0.50

Linear Algebraic Abduction with Partial Evaluation
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Partial evaluation

Example 2 (continue...):
o lteration 4:
- M4 = 9(/\/1; % M(3))

0 1 e e €3 ey e e Hy Hy H; obs x1 X2 0 1
er er 1.00 er
& e 0.50 [>]
e3 e3 0.50 e3
ey ey 0.50 ey 0.25
es s 1.00 0.50 0.50 es 075 0.75
e _ & 050 | o 025
Hy | 0.25 T H 1.00 1.00 Hy
H, | 0.75 0.75 Ho 1.00 1.00 Ho
Hs 0.25 Hs 1.00 1.00 Hs
obs obs obs
x1 X1 1.00 X1
X2 X2 1.00 X2

@ The algorithm stops. Found minimal explanations: { {H1, H2}, {H2, H3} }.
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Partial evaluation

We can obtain a reduct abductive matrix Mp(P'y, ;)7 from the abductive matrix Mp ' by:

© Removing all columns w.r.t. Or-rules in Pg,.

@ Setting 1 at the diagonal corresponding to all atoms which are heads of Or-rules.

Consider the PHCAP in Example 2:

e & & & & & Hi  Hy Hy Jobs [x1 X

e 1.00

e | 050 1.00

e3 | 050

e 0.50

es 1.00 0.50  0.50
M ( ks )T = o 0.50

PA™ And Hy 1.00 1.00
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Partial evaluation

Partial evaluation

Let a PHCAP ( Z,H, O, P ) where P is a standardized program.
For any And—rule r = (h< by A--- A by) in P:
e if body(r) contains an atom b; (1 < i < m) which is not the head of any rule in P, then
remove r.

@ otherwise, for each atom b; € body(r) (i =1,...,m), if there is an And-rule b; <— B; in
P (where B; is a conjunction of atoms), then replace each b; in body(r) by the
conjunction B;.

The resulting rule is denoted by unfold(r). Define

peval(P) = U unfold(r) .

re€Pang

peval(P) is called partial evaluation of P.
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Partial evaluation

Partial evaluation

Example 3: Consider a similar program in Example 2:

& ={obs, e, e, €3, e, €5, 66, Hi, Ha, H3}, H= {H1, Ha, H3}, O = {obs},

P={obs« e, e1 eNes, @ e Nes, & esNes, €34 65, € Hi, &5« Hp, e < Hz}.

Standardized program P’ = {obs « e, e ¢+ e Ae, e+ xiVx, e < e, e <« H, e « Hy, e

Hs, x1 < es N es, xo < es N eg}.

—

And-node

OO0

(A=) Onode

Linear Algebraic Abduction with Partial Evaluation 26 / 48
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Partial evaluation

Partial evaluation

Example 3 (continue...):

-Let PP ={n,..,r}
where:
= (obs « e1),
= (e e Ne3),
= (e + x1V x2),
r4 =(x1 < es N es),
(X2 — e N eﬁ),
= (&3 < es),
(64 < Hl),
rg = (65 < Hz),
= (

- Unfolding rules of P’

becomes:

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

= (obs + e A €3),

=(e1 + e N\ es),

=r;,

(X1 «— Hi A H2)

(X2 — Ho A H3)
= (e3 < H2)
=,

=18,

= 1.

- Then peval(P’)
consists of:
obs < e A e3,
e < e N\ es,
e +— x1V Xo,
x1 <+ Hi A Ho,
xp < Hy N\ H3,
€3 < H2,

€4 < Hl,

€5 < H2,

e < Hs.

Linear Algebraic Abduction with Partial Evaluation
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Partial evaluation

e 1.00
& 0.50 1.00
& 0.50
@ peval(P’) can be obtained “ 050
. " T & 1.00 0.50 0.50
by computing the power of Mp(P7,q)" = = - . 050
. 1 A .
the reduct abductive Ho 100 100
. M r T 2 H; 1.00 1.00
N obs
matrix: ( P(P"And) ) , °
4 x
w T
(Me(Pna)T) . -
k

(Mp( "nd T)2 where k is

the number of peval steps.

(D—®
Example 3 (continue...): G °
(D—®
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Partial evaluation

Partial evaluation

(Mp(Pan))” =

er & e e = & Hi  Hy H; [obs x1 X2

0.50 1.00

®

s 2 Qe

-

o

o

—

o

8
oo
o«
o o

o

o

o

3 0.50

€6

Hy 1.00 1.00 0.50

Hs 1.00 1.00 1.00 0.50 0.50

en, Katsumi Inoue Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation 29 / 48



Partial evaluation

Partial evaluation
2

(Me(Pg)T) | =

e & e e e & Hi  Hy H; [obs x1 X2

0.50 1.00

Hy 1.00 1.00 0.50
H, | 10.50 1.00 1.00 1.00 050 0.50 0.50
Hs 1.00 1.00 0.50

RS
g

- @
e 0.50 G
e

@ Here, we reach a fixpoint at k = 2. We refer to this “sta-
ble" matrix as peval(P) and take it to solve the PHCAP.
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Partial evaluation

Partial evaluation

Example 3 (continue...):
@ [teration 1:
- M) = g(peval(P) x M©®), where M(®) =0

0 e & e ey e & Hy Hy H3 obs xi X2 0
e el €1
e 0.50 e | 050 1.00 0.50 =)
€3 €3 €3
e e e
=3 &5 =3
€6 _ 6 x
Hy Hy 1.00 1.00 0.50 Hy
Hy | 0.50 H> | 0.50 1.00 1.00 1.00 0.50 0.50 0.50 H
Hs Hs 1.00 1.00 0.50 Hs
obs obs obs | 1.00
X1 x1 X1
X2 X

X2

- Solving MHS problem: { {x1, x2}, {Ha2} }.
MHS solutions: { {Ha, x1}, {Ha, xo} } = M?).
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Partial evaluation

Partial evaluation

Example 3 (continue...):
@ [teration 2:
- MGB) = g(peval(P) x M)

0 1 e = e ey es e Hi H» Hz3 obs [x1 X2 0 1
e €1 €1
& e [050 1.00 0.50 &
& =] &
ey € €4
es e es
e _ & e
Hy 025 | = Hi 1.00 1.00 0.50 X H
H, | 0.75 0.75 H | 050 1.00 1.00 1.00 0.50 0.50 [0.50 H, | 050 0.50
Hs | 0.25 Hs 1.00 1.00 0.50 Hs
obs obs obs
X1 X1 X1 0.50
X2 X2 X2 0.50

@ The algorithm stops. Found minimal explanations: { {H1, Ha}, {H2, H3} }.
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Partial evaluation

Partial evaluation

o Partial evaluation is repeatedly performed as:
peval’(P) = P and peval“(P) = peval(peval*~1(P)) (k >1).

@ It is realized as computing the power of the reduct abductive matrix:

(Me(P ) T)s (Mp(Pan) ™)' o (Me (P T)” (k> 1)

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Abduction with Partial Evaluation
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Partial evaluation

Partial evaluation

o Partial evaluation is repeatedly performed as:
peval’(P) = P and peval“(P) = peval(peval*~1(P)) (k >1).
@ It is realized as computing the power of the reduct abductive matrix:
4 2k
(Me(P ) T) " (Me(P ) 7)o (Me(P o)) (2 1)

e Partial evaluation has a fixpoint (the proof is presented in our paper).
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Partial evaluation

Partial evaluation

o Partial evaluation is repeatedly performed as:
peval’(P) = P and peval“(P) = peval(peval*~1(P)) (k >1).

@ |t is realized as computing the power of the reduct abductive matrix:

(Me(P ) T)s (Mp(Pan) ™)' o (Me (P T)” (k> 1)

Partial evaluation has a fixpoint (the proof is presented in our paper).

The k-step partial evaluation has the effect of realizing 2 steps of deduction at once.
Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.
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Partial evaluation

Partial evaluation

o Partial evaluation is repeatedly performed as:
peval’(P) = P and peval“(P) = peval(peval*~1(P)) (k >1).
@ |t is realized as computing the power of the reduct abductive matrix:
2 4 2k
(Me(P'aa)™) " (Mp(Pana)™) s - (Mp(P ) T)™ (k> 1)

Partial evaluation has a fixpoint (the proof is presented in our paper).

The k-step partial evaluation has the effect of realizing 2 steps of deduction at once.
Multiplying an explanation vector and the peval matrix thus realizes exponential speed-up.

@ However, computing the power of matrix is costly. We need to verify the positive effect
can win the tradeoff.
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Experimental Results

Experimental Results

@ We experiment on Failure Modes and Effects Analysis (FMEA)-based benchmark datasets
by Koitz-Hristov and Wotawa which has been used in [6] and [7].

Dataset ‘ Number of instances ‘ Characteristics

deeper but narrower graph structure

Artificial samples | ‘ 166 problems

deeper and wider graph structure, some

Artificial samples Il | 117 problems [8] problems involve solving a large num-
ber of medium-size MHS problems

shallower but wider graph structure,

FMEA samples 213 problems usually involving a few (but) large-size
MHS problems

[6] Koitz-Hristov and Wotawa, “Applying algorithm selection to abductive diagnostic reasoning”, 2018.

[7] Koitz-Hristov and Wotawa, “Faster Horn diagnosis-a performance comparison of abductive reasoning algorithms”, 2020.

[8] Excluded the unresolved problem phcap_140_5_5_5.atms
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Experimental Results

Experimental Results

@ We implement our method as two versions: Dense matrix and Sparse matrix in Python
3.7 (using Numpy and Scipy). Each version we have one with partial evaluation and one

without partial evaluation.
o For large-size MHS problems, which have more than 50,000 posible combinations, we use

MHS enumerator provided by PySAT [9].

@ All the source code and benchmark
datasets in our paper are available
on GitHub:

https://github.com/nqtuan0192/LinearAlgebraicComputationofAbduction.
@ We have demonstrated the performance of linear algebraic approaches in [10].

[9] Ignatiev, Morgado, and Marques-Silva, “PySAT: A Python Toolkit for Prototyping with SAT Oracles”, 2018.
[10] Nguyen, Inoue, and Sakama, “Linear algebraic computation of propositional Horn abduction”, 2021.
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https://github.com/nqtuan0192/LinearAlgebraicComputationofAbduction

Experimental Results - Original benchmark

Artificial samples | Artificial samples Il FMEA samples

8 8 8
-P-- Sparse matriz - peval -P-- Sparse matriz - peval -P- Sparse matriz - peval
7] -©&- Sparse matric 7] -©- Sparse matric 7] -©- Sparse matric
-4~ Dense matriz - peval 'e,()" -4~ Dense matriz - peval -~ Dense matriz - peval
= -&- Dense matriz ,(}’0‘ = == Dense matriz = -$- Dense matriz
M x'a » L T
E¢] 49 E69 | £ |
p Wt | g |z ;
E e /B = 1
£°] A $| =57 A ES i
Z & 4l 2 oY | E A
3 ’ & j @ & g; 1 @ R d
Z 4 K4 > 24 o 20| 2 4 g2y
z / G o b 4 & )| B SEe
E é LS - E ¥ e = %
g 39 ! - & o0 - E 39 v B 5% B E 39
g L e g TR g 2T
S g cy o S _B5
2| £F S| puEE L] R
S /1 S A =Y o
& 21 & 21 & 21 ,B' &
/ 7
S | R K S |G
b i i9
14 14n 140
1 il /
1
0 T T T T T T 0+ T T T T T 0 T T T T
0 250 500 750 1000 1250 1500 0 200 400 600 800 1000 0 500 1000 1500 2000
Number of samples solved x10 Number of samples solved x10 Number of samples solved x10
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Experimental Results

Experimental Results - Original benchmark

Table: Detailed execution results for the original benchmark.

Datasets | Artificial samples 1 (166 problems) | Artificial samples 11 (117 problems) | ~ FMEA samples (213 problems)
Algorithms #solved / t+tp tpeval ‘ #solved / t+tp tpeval ‘ #solved / t+tp toeval
#fastest mean / std mean / std #fastest mean / std mean / std #fastest mean / std mean / std
Sparse matrix - peval ‘ 1,660 4,243 514 ‘ 1,170 29,438 124 ‘ 2,130 49,481 84
89 93 19 246 112 48 726 1,214 4
Sparse matrix ‘ 1,660 3527 ‘ 1170 35,844 - ‘ 2,130 53,553 =
1,401 29 513 62 - 150 1,254 -
Dense matrix - peval ‘ 1,660 811,841 728, 086 ‘ 1,170 140,589 3,599 ‘ 2,130 08,614 25
13 2,227 31, 628 90 1,293 910 1,007 2,950 3
Dense matrix ‘ 1,660 27,569 ‘ 1,170 205,279 ‘ 2, 130 131,734 -
157 183 321 1,866 3,629 -

@ Partial evaluation improves much more in Artificial samples Il and FMEA samples.

@ We see performance degradation happens in Artificial samples | for both dense and sparse
methods, especially with the dense method.
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In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

P = { path(X, Y) < edge(X, Y),
path(X, Y) < edge(X, Z) A path(Z, Y) }
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In this experiment, we enhance the benchmark dataset based on the transitive closure problem:

P = { path(X, Y) < edge(X, Y),
path(X, Y) < edge(X, Z) A path(Z, Y) }

o First, generate a PHCAP based on the transitive closure of a single line graph: edge(1, 2),
edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9), edge(9, 10) .
@ Then we consider the observation to be path(1, 10) , and look for the explanation of it.

@ Next, for each problem instance of the original benchmark, we enumerate rules of the form
e < h , where h is a hypothesis and e is a propositional variable , and append the atom
of the observation of the new PHCAP into this rule with a probability of 20% .

The resulting problem is expected to have the subgraph of And-rules occur more frequently.
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Experimental Results - Enhanced benchmark datasets
Table: Detailed execution results for the enhanced benchmark datasets.

Datasets ‘ Artificial samples | (166 problems) ‘ Artificial samples Il (117 problems) ‘ FMEA samples (213 problems)
Algorithms #solved / t+ip tpeval ‘ #solved / ttip tpeval ‘ #solved / t+tp tpeval
F#fastest mean / std mean / std F#fastest mean / std mean / std F#fastest mean / std mean / std
Sparse matrix - peval ‘ 1,660 12,140 545 ‘ 1,170 95,079 138 ‘ 2,130 72,776 157
116 124 15 254 616 4 384 1,103 5
Sparse matrix ‘ 1,660 16,163 - ‘ 1,170 147 444 - ‘ 2,130 74,861 -
1,389 209 - 516 1,508 - 553 526 -
Dense matrix - peval ‘ 1,660 869,922 799,965 ‘ 1,170 380,033 4,483 ‘ 2,130 81,837 103
5 2,434 58,500 77 2,228 688 436 1,005 10
Dense matrix ‘ 1,660 70,365 - ‘ 1170 613422 - ‘ 2,130 95,096 -
150 681 - 323 3,651 - 757 1,021 -

@ With the dataset enhancement, we now see partial evaluation can improve the performance
for sparse method significantly in the Artificial samples I.

@ However, the problem still remains with the dense method.

@ The graph structure of the Artificial samples | is the cause of the problem. That we take
more time in computing the power of the matrix with the dense format.

o It also hightlights the importance of sparse representation.
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Conclusion

Conclusion

Contributions:

© We have proposed to improve the linear algebraic approach for abduction by employing
partial evaluation.

@ Partial evaluation steps can be realized as the power of the reduct abductive matrix in the
language of linear algebra.

@ Its significant enhancement in terms of execution time has been demonstrated using artificial
benchmarks and real FMEA-based datasets with both dense and sparse representation,
especially more with the sparse format.
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But why do we need linear algebraic method?

@ It simplifies the core algorithm (easy to understand, easy to implement).

@ It can take the advantages of recent advancements in tensor oriented computing hardwares.
© It is expected to be better scalability.
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Future work:
© Handling loops and extending the method to work with non-Horn clauses.
@ Employing an effective prediction to know better when to apply partial evaluation and how
deep we do unfolding before solving the problem.
© Moreover, incorporating some efficient pruning techniques or knowing where to zero out in
the abductive matrix is also a potential topic.
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