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Background

People use conditional sentences and reason with
them in everyday life.

However, human conditional reasoning is not always
logically valid.

In psychology and cognitive science, it is well known
that humans are more likely to perform logically
invalid but pragmatic inference.
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Example

S: If the team wins the first round tournament,
then it advances to the final round.

P: The team wins the first round tournament.
C: The team advances to the final round.

Affirming the antecedent (AA) (Modus Ponens)
concludes C from S and P.

Denying the consequent (DC) (Modus Tollens)
concludes :P from S and :C .
Affirming the consequent (AC) concludes P from S
and C.
Denying the antecedent (DA) concludes :C from S
and :P.

AA and DC are logically valid, while AC and DA are
logically invalid and often called logical fallacies.
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Purpose

The need of considering the pragmatics of conditional
reasoning has been recognized in cognitive psychology,
while relatively little attention has been paid for
realizing it in logic programming.

We formulate human conditional reasoning in answer
set programming (ASP), and realize pragmatic AC
and DA inferences as well as DC inference in a uniform
manner.

We characterize human reasoning tasks in cognitive
psychology, and address applications to commonsense
reasoning in AI.
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Program

A general extended disjunctive program (GEDP) is a
set of rules of the form:

L1 ; ´ ´ ´ ; Lk ; not Lk+1 ; ´ ´ ´ ; not Ll
 Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln

where Li’s are (positive or negative) literals, and not is
default negation (NAF). Given a rule r of the above form,
head+(r)=fL1; : : : ; Lkg, head`(r)=fLk+1; : : : ; Llg,
body+(r)=fLl+1; : : : ; Lmg,and body`(r)=fLm+1; : : : ; Lng.
A rule is called a constraint if head+(r)=head`(r)=∅.
A rule is called a fact if body+(r)=body`(r)=∅.

A program is consistent if it has a consistent answer set.
A program is contradictory if it has the answer set Lit
(the set of all literals).
A program is incoherent if it has no answer set. 8 / 36



Example

Let ˝ be the progam:

p ; not q  ;
q ; not p :

Then ˝ has two answer sets ∅ and fp; qg.

An answer set of a GEDP is not always minimal.

The rule
not p ; not q  

is semantically equivalent to the constraint “ p; q".

When head+(r)=∅, NAF-literals in the head are shifted to
literals in the body.

9 / 36



Example

Let ˝ be the progam:

p ; not q  ;
q ; not p :

Then ˝ has two answer sets ∅ and fp; qg.

An answer set of a GEDP is not always minimal.

The rule
not p ; not q  

is semantically equivalent to the constraint “ p; q".

When head+(r)=∅, NAF-literals in the head are shifted to
literals in the body.

10 / 36



AC Completion (1)

Let ˝ be a program and r 2 ˝ a rule of the form:

L1 ; ´ ´ ´ ; Lk ; not Lk+1 ; ´ ´ ´ ; not Ll
 Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln:

First, for each disjunct in head+(r) and head`(r),
converse the implication:

Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln  Lj (1 » j » k) (1)
Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln  not Lj (k+ 1 » j » l):(2)

In particular, (1) is not produced if head+(r) = ∅ or
body+(r) = body`(r) = ∅; and (2) is not produced if
head`(r) = ∅ or body+(r) = body`(r) = ∅.
The set of all (1) and (2) is denoted as conv(r).
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AC Completion (2)

Next, define

ac(˝) = f ˚1 ; ´ ´ ´ ; ˚p  ‘j j
˚i  ‘j (1 » i » p) is in

[

r2˝
conv(r) g

where each ˚i (1 » i » p) is a conjunction of literals and
NAF-literals and ‘j is either a literal Lj (1 » j » k) or an
NAF-literal not Lj (k+ 1 » j » l).

The AC completion of ˝ is defined as:

AC(˝) = ˝ [ ac(˝):
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AC Completion (3)

The set ac(˝) contains a rule having a disjunction of
conjunctions in its head, while it is transformed to rules of a
GEDP. That is, the rule:

(‘11; : : : ; ‘
1
m1
) ; ´ ´ ´ ; (‘p1; : : : ; ‘

p
mp) ‘j

is identified with the set of m1 ˆ ´ ´ ´ ˆmp rules of the
form:

‘1i1 ; ´ ´ ´ ; ‘
p
ip
 ‘j (1 » ik » mk; 1 » k » p):

By this fact, AC(˝) is viewed as a GEDP.
The semantics of AC(˝) is defined by its answer sets.
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Example

Let ˝ be the program:

p ; not q  r; not s; p q:

Then ac(˝) becomes

(r; not s) ; q  p; r; not s not q

where the 1st rule is identified with

r ; q  p; not s ; q  p

and the 2nd rule is identified with

r  not q; not s not q:

˝ [ ac(˝) [ fp g has two answer sets fp; qg and fp; rg.
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Formal Properties

A consistent program ˝ may produce an inconsistent
AC(˝). In converse, an inconsistent ˝ may produce a
consistent AC(˝).

˝1 = f p : p; p g is consistent, but
AC(˝1) = ˝1 [ f: p p g is contradictory.

˝2 = f not p; q  p; q  g is incoherent, but
AC(˝2) = ˝2 [ f p q g is consistent.

If a program ˝ contains neither NAF nor constraint, then
AC(˝) is consistent. Moreover, for any answer set S of ˝,
there is an answer set T of AC(˝) such that S „ T .

If a program ˝ is contradictory, then AC(˝) is contradictory.
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DC completion (1)

Let ˝ be a program. For each rule r 2 ˝ of the form:

L1 ; ´ ´ ´ ; Lk ; not Lk+1 ; ´ ´ ´ ; not Ll
 Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln

define wdc(r) as the rule:

not Ll+1; ´ ´ ´ ;not Lm ; Lm+1; ´ ´ ´ ;Ln
 not L1; : : : ; not Lk; Lk+1; : : : ; Ll (3)

and define sdc(r) as the rule:

:Ll+1; ´ ´ ´ ;:Lm ; Lm+1; ´ ´ ´ ;Ln
 :L1; : : : ;:Lk; Lk+1; : : : ; Ll: (4)

(3) or (4) becomes a fact if head+(r) = head`(r) = ∅;
and it becomes a constraint if body+(r) = body`(r) = ∅.
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DC completion (2)

The weak DC completion of ˝ is defined by

WDC(˝) = ˝ [ fwdc(r) j r 2 ˝ g;

the strong DC completion of ˝ is defined by

SDC(˝) = ˝ [ f sdc(r) j r 2 ˝ g:

Given ˝ = f p not q g, it becomes

WDC(˝) = f p not q; q  not p g;
SDC(˝) = f p not q; q  : p g:

Then WDC(˝) has two answer sets fpg and fqg, while
SDC(˝) has the single answer set fpg.
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Formal Properties

If a program ˝ has a consistent answer set S, then S is an
answer set of WDC(˝).

The converse does not hold in general.

The program ˝ = f not p g has no answer set, while
WDC(˝) = f not p; p g has the answer set fpg.

Let ˝ be a consistent program s.t. every constraint in ˝ is
not-free. Then, SDC(˝) is not contradictory.

If a program ˝ is contradictory, then both WDC(˝) and
SDC(˝) are contradictory.
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Weak DA Completion (1)

Let ˝ be a program and r 2 ˝ a rule of the form:

L1 ; ´ ´ ´ ; Lk ; not Lk+1 ; ´ ´ ´ ; not Ll
 Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln:

First, inverse the implication:

not Li  not Ll+1; ´ ´ ´ ;not Lm ; Lm+1; ´ ´ ´ ;Ln (5)
(1 » i » k)

Li  not Ll+1; ´ ´ ´ ;not Lm ; Lm+1; ´ ´ ´ ;Ln (6)
(k+ 1 » i » l)

(5) is not produced if head+(r) = ∅
or body+(r) = body`(r) = ∅;

(6) is not produced if head`(r) = ∅
or body+(r) = body`(r) = ∅.

The set of rules (5)–(6) is denoted as winv(r). 21 / 36



Weak DA Completion (2)

Next, define

wda(˝) = f ‘i  `1; : : : ;`p j
‘i  `j (1 » j » p) is in

[

r2˝
winv(r) g

where ‘i is either a literal Li (k+ 1 » i » l) or an NAF
literal not Li (1 » i » k), and each `j is a disjunction of
literals and NAF literals.

The weak DA completion of ˝ is defined as:

WDA(˝) = ˝ [ wda(˝):
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Weak DA Completion (3)

The set wda(˝) contains a rule having a conjuction of
disjunctions in its body, while it is transformed to rules of a
GEDP. That is, the rule:

‘i  (‘11; ´ ´ ´ ; ‘1m1
) ; : : : ; (‘

p
1; ´ ´ ´ ; ‘

p
mp)

is identified with the set of m1 ˆ ´ ´ ´ ˆmp rules of the
form:

‘i  ‘1j1; : : : ; ‘
p
jp
(1 » jk » mk; 1 » k » p):

By this fact, WDA(˝) is viewed as a GEDP.
The semantics of WDA(˝) is defined by its answer sets.
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Example

Let ˝ be the program:

p ; q  r; not s; q ; not r  t; s :

Then wda(˝) becomes

not p not r; s; not q  (not r; s); not t; r  not t

where the 1st rule is identified with

not p not r; not p s;

and the 2nd rule is identified with

not q  not r; not t; not q  s; not t:

Then, ˝ [ wda(˝) has the answer set fs; rg.
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Strong DA Completion (1)

Let ˝ be a program and r 2 ˝ a rule of the form:

L1 ; ´ ´ ´ ; Lk ; not Lk+1 ; ´ ´ ´ ; not Ll
 Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln:

First, inverse the implication:

:Li  :Ll+1; ´ ´ ´ ;:Lm;Lm+1; ´ ´ ´ ;Ln (1 » i » k) (7)
Li  :Ll+1; ´ ´ ´ ;:Lm;Lm+1; ´ ´ ´ ;Ln (k+ 1 » i » l)(8)

As in the case of WDA, the rules (7)–(8) are not produced
when their heads or bodies are empty. The set of
rules (7)–(8) is denoted as sinv(r).
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Strong DA Completion (2)

Next, define

sda(˝) = f ‘i  `1; : : : ;`p j
‘i  `j (1 » j » p) is in

[

r2˝
sinv(r) g

where ‘i is either a literal Li (k+ 1 » i » l) or an NAF
literal not Li (1 » i » k), and each `j is a disjunction of
positive/negative literals.

The strong DA completion of ˝ is defined as:

SDA(˝) = ˝ [ sda(˝):

As before, rules in sda(˝) are converted into a GEDP,
so that SDA(˝) is viewed as a GEDP. The semantics of
SDA(˝) is defined by its answer sets.
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Formal Properties

Let ˝ be an EDP. If S is a consistent answer set of
WDA(˝), then S is an answer set of ˝.

If a program ˝ is contradictory, then both WDA(˝) and
SDA(˝) are contradictory.

A consistent program ˝ may produce an inconsistent
WDA(˝) or SDA(˝). In converse, an incoherent ˝ may
produce a consistent WDA(˝) or SDA(˝).
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AC and DA as Default Reasoning

AC and DA often make a program inconsistent. We relax
the effects of the AC or DA completion by introducing
additional rules as default rules.

(defaultAC)
(’)  ) ^  : ’

’

(defaultDA)
(’)  ) ^ :’ : : 

: 

The default AC rule says: given the conditional ’)  

and the fact  , conclude ’ as a default consequence.
The default DA rule is read in a similar manner.
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Default AC Completion (1)

Let ˝ be a program. For each rule r 2 ˝ of the form:

L1 ; ´ ´ ´ ; Lk ; not Lk+1 ; ´ ´ ´ ; not Ll
 Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln;

define dac(r) as the set of rules:

Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln  Li; ´ (9)
(1 » i » k);

Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln  not Li; ´ (10)
(k+ 1 » i » l)

where
´ = not:Ll+1; : : : ; not:Lm; not Lm+1; : : : ; not Ln.
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Default AC Completion (2)

The default AC completion of ˝ is defined as:

DAC(˝) = ˝ [ dac(˝)

in which

dac(˝) = f ˚1 ; ´ ´ ´ ; ˚p  ‘j; ´i j
˚i  ‘j; ´i (1 » i » p) is in

[

r2˝
dac(r) g

where each ˚i (1 » i » p) is a conjunction of literals and
NAF-literals and ‘j is either a literal Lj (1 » j » k) or an
NAF-literal not Lj (k+ 1 » j » l).

Rules in dac(˝) are converted into the form of a GEDP.
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Formal Properties

DAC(˝) turns a contradictory AC(˝) into a consistent
program.

Let ˝ = fp :p; p g. Then AC(˝) = ˝ [ f:p pg is
contradictory, while DAC(˝) = ˝ [ f:p p; not pg has
the single answer set fpg.

Let ˝ be a consistent program. If DAC(˝) has an answer S,
then S 6= Lit.

Let ˝ be a program. If AC(˝) has a consistent answer set
S, then S is an answer set of DAC(˝).
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Default DA Completion

Let ˝ be a program. Define

wdda(˝) = f ‘i  `1; : : : ;`p; ‹
w
i j

‘i  `j (1 » j » p) is in
[

r2˝
winv(r) g;

sdda(˝) = f ‘i  `1; : : : ;`p; ‹
s
i j

‘i  `j (1 » j » p) is in
[

r2˝
sinv(r) g

where ‘i and `j are the same as those in WDA and SDA.
‹wi = not:Li if ‘i = Li, and ‹wi = not Li if ‘i = not Li;
‹si = not:Li if ‘i = Li, and ‹si = not Li if ‘i = :Li.
The weak default DA completion and the strong
default DA completion of ˝ are respectively defined as:

WDDA(˝) = ˝ [ wdda(˝);

SDDA(˝) = ˝ [ sdda(˝):
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Formal Properties

The WDDA/SDDA eliminates contradictory.

Let ˝1 = f:p p; :p g where
SDA(˝1) = ˝1 [ fp :pg is contradictory.
SDDA(˝1)=˝1 [ f p : p; not:p g has the answer set
f:pg.

Let ˝ be a consistent program. If WDDA(˝) (or
SDDA(˝)) has an answer set S, then S 6= Lit.

Let ˝ be a program. If WDA(˝) (resp. SDA(˝)) has a
consistent answer set S, then S is an answer set of
WDDA(˝) (resp. SDDA(˝)).
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Comparison (1)

The proposed completion is different from Clark
completion or weak completion in normal logic programs.

Let ˝1 = f p q; p g.
Clark completion becomes
Comp(˝1) = f p$ q _ >; q $ ?g
that has the single supported model fpg.
Weak completion becomes wcomp(˝1) = f p$ >g
then p is true but q is unknown.
AC completion becomes AC(˝1) = ˝1 [ f q  p g that
has the answer set fp; qg.

As such, Clark completion and weak completion do not
realize AC inference in general.
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Comparison (2)

Let ˝2 = f p not q g.
Comp(˝2) = f p$ :q; q $ ?g has the single
supported model fpg.
wcomp(˝1) = f p$ :q g then both p and q are
unknown.
WDC(˝2) = ˝2 [ f q  not p g has two answer sets
fpg and fqg.

Let ˝3 = f p not q; p q; q  p g.
Comp(˝3) = f p$ q _ :q; q $ p g has the single
supported model fp; qg.
wcomp(˝3) = Comp(˝3) then both p and q are true.
WDA(˝3) = ˝3 [ fnot p q; not q; not q  not p g
has no answer set.
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Final Remark

1 In cognitive psychology, empirical studies show people
perform AC/DA/DC depending on the context in which
a conditional sentence is used. The proposed theory is
used for encoding knowledge in a way that people are
likely to use it and realizing pragmatic inferences in ASP.

2 Completions are defined in a modular way, so one can
apply respective completion to specific rules of a
program according to their contexts. Different
completions can be mixed in the same program.

3 Since a GEDP is transformed to a semantically
equivalent EDP, answer sets of completed programs are
computed using existing answer set solvers.
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