Human Conditional Reasoning in Answer Set Programming

Chiaki Sakama

Wakayama University, Japan

NMR 2023@Rhodes, Greece September 2023

Background

- People use **conditional sentences** and reason with them in everyday life.
- However, human conditional reasoning is not always logically valid.
- In psychology and cognitive science, it is well known that humans are more likely to perform **Logically** invalid but pragmatic inference.

- S: If the team wins the first round tournament, then it advances to the final round.
- **P**: The team wins the first round tournament.
- C: The team advances to the final round.
- Affirming the antecedent (AA) (Modus Ponens) concludes C from S and P.

- S: If the team wins the first round tournament, then it advances to the final round.
- **P**: The team wins the first round tournament.
- C: The team advances to the final round.
- Affirming the antecedent (AA) (Modus Ponens) concludes C from S and P.
- Denying the consequent (DC) (Modus Tollens) concludes ¬ P from S and ¬ C.

- S: If the team wins the first round tournament, then it advances to the final round.
- **P**: The team wins the first round tournament.
- C: The team advances to the final round.
- Affirming the antecedent (AA) (Modus Ponens) concludes C from S and P.
- Denying the consequent (DC) (Modus Tollens) concludes ¬ P from S and ¬ C.
- Affirming the consequent (AC) concludes P from S and C.

- S: If the team wins the first round tournament, then it advances to the final round.
- **P**: The team wins the first round tournament.
- C: The team advances to the final round.
- Affirming the antecedent (AA) (Modus Ponens) concludes C from S and P.
- Denying the consequent (DC) (Modus Tollens) concludes ¬ P from S and ¬ C.
- Affirming the consequent (AC) concludes P from S and C.
- Denying the antecedent (DA) concludes ¬ C from S and ¬ P.

AA and **DC** are **logically valid**, while **AC** and **DA** are **logically invalid** and often called **logical fallacies**.

Purpose

- The need of considering the **pragmatics** of conditional reasoning has been recognized in cognitive psychology, while relatively little attention has been paid for realizing it in **logic programming**.
- We formulate human conditional reasoning in answer set programming (ASP), and realize pragmatic AC and DA inferences as well as DC inference in a uniform manner.
- We characterize **human reasoning tasks** in cognitive psychology, and address applications to **commonsense reasoning** in AI.

Program

A general extended disjunctive program (GEDP) is a set of rules of the form:

 $L_1; \cdots; L_k; not L_{k+1}; \cdots; not L_l \\ \leftarrow L_{l+1}, \ldots, L_m, not L_{m+1}, \ldots, not L_n$

where L_i 's are (positive or negative) literals, and *not* is default negation (NAF). Given a rule r of the above form, $head^+(r) = \{L_1, \ldots, L_k\}, head^-(r) = \{L_{k+1}, \ldots, L_l\},$ $body^+(r) = \{L_{l+1}, \ldots, L_m\},$ and $body^-(r) = \{L_{m+1}, \ldots, L_n\}.$ A rule is called a **constraint** if $head^+(r) = head^-(r) = \emptyset$. A rule is called a **fact** if $body^+(r) = body^-(r) = \emptyset$.

- A program is **consistent** if it has a consistent answer set.
- A program is **contradictory** if it has the answer set *Lit* (the set of all literals).
- A program is **incoherent** if it has no answer set.

Let Π be the progam:

 $p; not q \leftarrow,$ $q; not p \leftarrow.$

Then Π has two answer sets \varnothing and $\{p, q\}$.

An answer set of a GEDP is not always minimal.

Let Π be the progam:

 $p; not q \leftarrow,$ $q; not p \leftarrow.$

Then Π has two answer sets \emptyset and $\{p, q\}$.

An answer set of a GEDP is not always minimal.

The rule

 $not p; not q \leftarrow$

is semantically equivalent to the constraint " $\leftarrow p, q$ ".

When $head^+(r) = \emptyset$, NAF-literals in the head are shifted to literals in the body.

AC Completion (1)

Let Π be a program and $r \in \Pi$ a rule of the form:

$$L_1; \cdots; L_k; not L_{k+1}; \cdots; not L_l$$

$$\leftarrow L_{l+1}, \ldots, L_m, not L_{m+1}, \ldots, not L_n.$$

First, for each disjunct in $head^+(r)$ and $head^-(r)$, converse the implication:

 $L_{l+1}, \ldots, L_m, \text{ not } L_{m+1}, \ldots, \text{ not } L_n \leftarrow L_j \quad (1 \le j \le k)$ $L_{l+1}, \ldots, L_m, \text{ not } L_{m+1}, \ldots, \text{ not } L_n \leftarrow \text{ not } L_j \quad (k+1 \le j \le l). (2)$

In particular, (1) is not produced if $head^+(r) = \emptyset$ or $body^+(r) = body^-(r) = \emptyset$; and (2) is not produced if $head^-(r) = \emptyset$ or $body^+(r) = body^-(r) = \emptyset$. The set of all (1) and (2) is denoted as conv(r).

AC Completion (2)

Next, define

$$ac(\Pi) = \{ \Sigma_1; \cdots; \Sigma_p \leftarrow \ell_j \mid \\ \Sigma_i \leftarrow \ell_j \ (1 \le i \le p) \text{ is in } \bigcup_{r \in \Pi} conv(r) \}$$

where each Σ_i $(1 \le i \le p)$ is a conjunction of literals and NAF-literals and ℓ_j is either a literal L_j $(1 \le j \le k)$ or an NAF-literal *not* L_j $(k + 1 \le j \le l)$.

The **AC** completion of Π is defined as:

 $AC(\Pi) = \Pi \cup ac(\Pi).$

The set $ac(\Pi)$ contains a rule having a disjunction of conjunctions in its head, while it is transformed to rules of a GEDP. That is, the rule:

$$(\ell_1^1,\ldots,\ell_{m_1}^1);\cdots;(\ell_1^p,\ldots,\ell_{m_p}^p)\leftarrow\ell_p$$

is identified with the set of $m_1 \times \cdots \times m_p$ rules of the form:

$$\ell_{i_1}^1$$
; \cdots ; $\ell_{i_p}^p \leftarrow \ell_j$ $(1 \leq i_k \leq m_k; 1 \leq k \leq p).$

By this fact, $AC(\Pi)$ is viewed as a GEDP. The semantics of $AC(\Pi)$ is defined by its answer sets.

Let Π be the program:

 $p; not q \leftarrow r, not s, \quad p \leftarrow q.$

Then $ac(\Pi)$ becomes

 $(r, not s); q \leftarrow p,$ $r, not s \leftarrow not q$

where the 1st rule is identified with

 $r; q \leftarrow p, \quad not s; q \leftarrow p$

and the 2nd rule is identified with

 $r \leftarrow not q, \quad not s \leftarrow not q.$

 $\Pi \cup ac(\Pi) \cup \{p \leftarrow\}$ has two answer sets $\{p, q\}$ and $\{p, r\}$.

Formal Properties

A consistent program Π may produce an inconsistent $AC(\Pi)$. In converse, an inconsistent Π may produce a consistent $AC(\Pi)$.

 $\Pi_1 = \{ p \leftarrow \neg p, p \leftarrow \} \text{ is consistent, but} \\ AC(\Pi_1) = \Pi_1 \cup \{ \neg p \leftarrow p \} \text{ is contradictory.}$

 $\Pi_2 = \{ \leftarrow not \, p, \quad q \leftarrow p, \quad q \leftarrow \} \text{ is incoherent, but} \\ AC(\Pi_2) = \Pi_2 \cup \{ p \leftarrow q \} \text{ is consistent.}$

Formal Properties

A consistent program Π may produce an inconsistent $AC(\Pi)$. In converse, an inconsistent Π may produce a consistent $AC(\Pi)$.

 $\Pi_1 = \{ p \leftarrow \neg p, \quad p \leftarrow \} \text{ is consistent, but} \\ AC(\Pi_1) = \Pi_1 \cup \{ \neg p \leftarrow p \} \text{ is contradictory.}$

 $\Pi_2 = \{ \leftarrow not \, p, \quad q \leftarrow p, \quad q \leftarrow \} \text{ is incoherent, but} \\ AC(\Pi_2) = \Pi_2 \cup \{ p \leftarrow q \} \text{ is consistent.}$

If a program Π contains neither NAF nor constraint, then $AC(\Pi)$ is consistent. Moreover, for any answer set S of Π , there is an answer set T of $AC(\Pi)$ such that $S \subseteq T$.

If a program Π is contradictory, then $AC(\Pi)$ is contradictory.

DC completion (1)

Let Π be a program. For each rule $r \in \Pi$ of the form:

 $L_1; \cdots; L_k; not L_{k+1}; \cdots; not L_l \\ \leftarrow L_{l+1}, \ldots, L_m, not L_{m+1}, \ldots, not L_n$

define wdc(r) as the rule:

$$not L_{l+1}; \cdots; not L_m; L_{m+1}; \cdots; L_n \\ \leftarrow not L_1, \ldots, not L_k, L_{k+1}, \ldots, L_l$$
(3)

and define sdc(r) as the rule:

$$\neg L_{l+1}; \cdots; \neg L_m; L_{m+1}; \cdots; L_n$$

$$\leftarrow \neg L_1, \ldots, \neg L_k, L_{k+1}, \ldots, L_l. \tag{4}$$

(3) or (4) becomes a fact if $head^+(r) = head^-(r) = \emptyset$; and it becomes a constraint if $body^+(r) = body^-(r) = \emptyset$.

DC completion (2)

The weak DC completion of Π is defined by $WDC(\Pi) = \Pi \cup \{wdc(r) \mid r \in \Pi\},\$ the strong DC completion of Π is defined by

 $SDC(\Pi) = \Pi \cup \{ sdc(r) \mid r \in \Pi \}.$

Given $\Pi = \{ p \leftarrow not q \}$, it becomes

 $WDC(\Pi) = \{ p \leftarrow not q, \quad q \leftarrow not p \}, \\ SDC(\Pi) = \{ p \leftarrow not q, \quad q \leftarrow \neg p \}.$

Then $WDC(\Pi)$ has two answer sets $\{p\}$ and $\{q\}$, while $SDC(\Pi)$ has the single answer set $\{p\}$.

Formal Properties

If a program Π has a consistent answer set *S*, then *S* is an answer set of $WDC(\Pi)$.

The converse does not hold in general.

The program $\Pi = \{ \leftarrow not p \}$ has no answer set, while $WDC(\Pi) = \{ \leftarrow not p, p \leftarrow \}$ has the answer set $\{p\}$.

Formal Properties

If a program Π has a consistent answer set *S*, then *S* is an answer set of $WDC(\Pi)$.

The converse does not hold in general.

The program $\Pi = \{ \leftarrow not p \}$ has no answer set, while $WDC(\Pi) = \{ \leftarrow not p, p \leftarrow \}$ has the answer set $\{p\}$.

Let Π be a consistent program s.t. every constraint in Π is not-free. Then, $SDC(\Pi)$ is not contradictory.

If a program Π is contradictory, then both $WDC(\Pi)$ and $SDC(\Pi)$ are contradictory.

Weak DA Completion (1)

Let Π be a program and $r \in \Pi$ a rule of the form:

 $L_1; \cdots; L_k; not L_{k+1}; \cdots; not L_l \\ \leftarrow L_{l+1}, \ldots, L_m, not L_{m+1}, \ldots, not L_n.$

First, inverse the implication:

$$not L_{i} \leftarrow not L_{l+1}; \cdots; not L_{m}; L_{m+1}; \cdots; L_{n}$$
(5)
$$(1 \leq i \leq k)$$
$$L_{i} \leftarrow not L_{l+1}; \cdots; not L_{m}; L_{m+1}; \cdots; L_{n}$$
(6)
$$(k+1 \leq i \leq l)$$

(5) is not produced if $head^+(r) = \emptyset$ or $body^+(r) = body^-(r) = \emptyset$; (6) is not produced if $head^-(r) = \emptyset$ or $body^+(r) = body^-(r) = \emptyset$. The set of rules (5)-(6) is denoted as winv(r). 21/3

Weak DA Completion (2)

Next, define

$$wda(\Pi) = \{ \ell_i \leftarrow \Gamma_1, \dots, \Gamma_p \mid \\ \ell_i \leftarrow \Gamma_j \ (1 \le j \le p) \text{ is in } \bigcup_{r \in \Pi} winv(r) \}$$

where ℓ_i is either a literal L_i $(k + 1 \le i \le l)$ or an NAF literal *not* L_i $(1 \le i \le k)$, and each Γ_j is a disjunction of literals and NAF literals.

The weak **DA** completion of Π is defined as:

 $WDA(\Pi) = \Pi \cup wda(\Pi).$

The set $wda(\Pi)$ contains a rule having a conjuction of disjunctions in its body, while it is transformed to rules of a GEDP. That is, the rule:

$$\pmb{\ell}_i \leftarrow (\pmb{\ell}_1^1;\cdots;\pmb{\ell}_{m_1}^1)$$
 , \ldots , $(\pmb{\ell}_1^p;\cdots;\pmb{\ell}_{m_p}^p)$

is identified with the set of $m_1 \times \cdots \times m_p$ rules of the form:

$$\ell_i \leftarrow \ell_{j_1}^1, \ldots, \ell_{j_p}^p \ (1 \leq j_k \leq m_k; \ 1 \leq k \leq p).$$

By this fact, $WDA(\Pi)$ is viewed as a GEDP. The semantics of $WDA(\Pi)$ is defined by its answer sets.

Let Π be the program:

 $p; q \leftarrow r, not s, q; not r \leftarrow t, s \leftarrow .$

Then $wda(\Pi)$ becomes

 $not p \leftarrow not r; s, not q \leftarrow (not r; s), not t, r \leftarrow not t$

where the 1st rule is identified with

 $not p \leftarrow not r, \quad not p \leftarrow s,$

and the 2nd rule is identified with

 $not q \leftarrow not r, not t, \quad not q \leftarrow s, not t.$

Then, $\Pi \cup wda(\Pi)$ has the answer set $\{s, r\}$.

Let Π be a program and $r \in \Pi$ a rule of the form:

 $L_1; \cdots; L_k; not L_{k+1}; \cdots; not L_l$ $\leftarrow L_{l+1}, \ldots, L_m, not L_{m+1}, \ldots, not L_n.$

First, inverse the implication:

 $\neg L_{i} \leftarrow \neg L_{l+1}; \cdots; \neg L_{m}; L_{m+1}; \cdots; L_{n} \quad (1 \le i \le k) \quad (7)$ $L_{i} \leftarrow \neg L_{l+1}; \cdots; \neg L_{m}; L_{m+1}; \cdots; L_{n} \quad (k+1 \le i \le l) (8)$

As in the case of WDA, the rules (7)-(8) are not produced when their heads or bodies are empty. The set of rules (7)-(8) is denoted as sinv(r).

Strong DA Completion (2)

Next, define

$$sda(\Pi) = \{ \ell_i \leftarrow \Gamma_1, \dots, \Gamma_p \mid \\ \ell_i \leftarrow \Gamma_j \ (1 \le j \le p) \text{ is in } \bigcup_{r \in \Pi} sinv(r) \}$$

where ℓ_i is either a literal L_i $(k + 1 \le i \le l)$ or an NAF literal *not* L_i $(1 \le i \le k)$, and each Γ_j is a disjunction of positive/negative literals.

The **strong DA completion** of Π is defined as:

 $SDA(\Pi) = \Pi \cup sda(\Pi).$

As before, rules in $sda(\Pi)$ are converted into a GEDP, so that $SDA(\Pi)$ is viewed as a GEDP. The semantics of $SDA(\Pi)$ is defined by its answer sets.

Formal Properties

Let Π be an EDP. If S is a consistent answer set of $WDA(\Pi)$, then S is an answer set of Π .

If a program Π is contradictory, then both $WDA(\Pi)$ and $SDA(\Pi)$ are contradictory.

A consistent program Π may produce an inconsistent $WDA(\Pi)$ or $SDA(\Pi)$. In converse, an incoherent Π may produce a consistent $WDA(\Pi)$ or $SDA(\Pi)$.

AC and DA as Default Reasoning

AC and DA often make a program inconsistent. We relax the effects of the AC or DA completion by introducing additional rules as **default rules**.

The **default AC** rule says: given the conditional $\varphi \Rightarrow \psi$ and the fact ψ , conclude φ as a default consequence. The **default DA** rule is read in a similar manner.

Default AC Completion (1)

Let Π be a program. For each rule $r \in \Pi$ of the form:

 $L_1; \cdots; L_k; not L_{k+1}; \cdots; not L_l \\ \leftarrow L_{l+1}, \ldots, L_m, not L_{m+1}, \ldots, not L_n,$

define dac(r) as the set of rules:

 $L_{l+1}, \ldots, L_m, \text{ not } L_{m+1}, \ldots, \text{ not } L_n \leftarrow L_i, \Delta \qquad (9)$ $(1 \le i \le k),$ $L_{l+1}, \ldots, L_m, \text{ not } L_{m+1}, \ldots, \text{ not } L_n \leftarrow \text{ not } L_i, \Delta \qquad (10)$ $(k+1 \le i \le l)$

where

 $\Delta = not \neg L_{l+1}, \ldots, not \neg L_m, not L_{m+1}, \ldots, not L_n.$

Default AC Completion (2)

The **default AC completion** of Π is defined as:

 $DAC(\Pi) = \Pi \cup dac(\Pi)$

in which

$$dac(\Pi) = \{ \Sigma_1; \cdots; \Sigma_p \leftarrow \ell_j, \Delta_i \mid \\ \Sigma_i \leftarrow \ell_j, \Delta_i \ (1 \le i \le p) \text{ is in } \bigcup_{r \in \Pi} dac(r) \}$$

where each $\sum_i (1 \leq i \leq p)$ is a conjunction of literals and NAF-literals and ℓ_j is either a literal L_j $(1 \leq j \leq k)$ or an NAF-literal *not* L_j $(k + 1 \leq j \leq l)$.

Rules in $dac(\Pi)$ are converted into the form of a GEDP.

Formal Properties

 $DAC(\Pi)$ turns a contradictory $AC(\Pi)$ into a consistent program.

Let $\Pi = \{p \leftarrow \neg p, p \leftarrow \}$. Then $AC(\Pi) = \Pi \cup \{\neg p \leftarrow p\}$ is contradictory, while $DAC(\Pi) = \Pi \cup \{\neg p \leftarrow p, not p\}$ has the single answer set $\{p\}$.

Let Π be a consistent program. If $DAC(\Pi)$ has an answer S, then $S \neq Lit$.

Let Π be a program. If $AC(\Pi)$ has a consistent answer set S, then S is an answer set of $DAC(\Pi)$.

Default DA Completion

Let Π be a program. Define

 $wdda(\Pi) = \{ \ell_i \leftarrow \Gamma_1, \dots, \Gamma_p, \, \delta_i^w \mid \\ \ell_i \leftarrow \Gamma_j \, (1 \le j \le p) \text{ is in } \bigcup_{r \in \Pi} winv(r) \}, \\ sdda(\Pi) = \{ \ell_i \leftarrow \Gamma_1, \dots, \Gamma_p, \, \delta_i^s \mid \\ \ell_i \leftarrow \Gamma_j \, (1 \le j \le p) \text{ is in } \bigcup_{r \in \Pi} sinv(r) \}$

where ℓ_i and Γ_j are the same as those in WDA and SDA. $\delta_i^w = not \neg L_i$ if $\ell_i = L_i$, and $\delta_i^w = not L_i$ if $\ell_i = not L_i$; $\delta_i^s = not \neg L_i$ if $\ell_i = L_i$, and $\delta_i^s = not L_i$ if $\ell_i = \neg L_i$. The weak default DA completion and the strong default DA completion of Π are respectively defined as:

> $WDDA(\Pi) = \Pi \cup wdda(\Pi),$ $SDDA(\Pi) = \Pi \cup sdda(\Pi).$

Formal Properties

The WDDA/SDDA eliminates contradictory.

Let $\Pi_1 = \{ \neg p \leftarrow p, \neg p \leftarrow \}$ where $SDA(\Pi_1) = \Pi_1 \cup \{ p \leftarrow \neg p \}$ is contradictory. $SDDA(\Pi_1) = \Pi_1 \cup \{ p \leftarrow \neg p, not \neg p \}$ has the answer set $\{\neg p\}.$

Let Π be a consistent program. If $WDDA(\Pi)$ (or $SDDA(\Pi)$) has an answer set S, then $S \neq Lit$.

Let Π be a program. If $WDA(\Pi)$ (resp. $SDA(\Pi)$) has a consistent answer set S, then S is an answer set of $WDDA(\Pi)$ (resp. $SDDA(\Pi)$).

Comparison (1)

The proposed completion is **different** from **Clark completion** or **weak completion** in normal logic programs.

Let $\Pi_1 = \{ p \leftarrow q, p \leftarrow \}.$

- Clark completion becomes $Comp(\Pi_1) = \{ p \leftrightarrow q \lor \top, q \leftrightarrow \bot \}$ that has the single supported model $\{p\}$.
- Weak completion becomes wcomp(Π1) = { p ↔ T } then p is true but q is unknown.
- AC completion becomes AC(Π1) = Π1 ∪ {q ← p} that has the answer set {p, q}.

As such, Clark completion and weak completion **do not** realize AC inference in general.

Comparison (2)

Let $\Pi_2 = \{ p \leftarrow not q \}.$

- $Comp(\Pi_2) = \{ p \leftrightarrow \neg q, q \leftrightarrow \bot \}$ has the single supported model $\{p\}$.
- $wcomp(\Pi_1) = \{ p \leftrightarrow \neg q \}$ then both p and q are unknown.
- $WDC(\Pi_2) = \Pi_2 \cup \{q \leftarrow not p\}$ has two answer sets $\{p\}$ and $\{q\}$.
- Let $\Pi_3 = \{ p \leftarrow not q, p \leftarrow q, q \leftarrow p \}.$
 - $Comp(\Pi_3) = \{ p \leftrightarrow q \lor \neg q, q \leftrightarrow p \}$ has the single supported model $\{ p, q \}$.
 - $wcomp(\Pi_3) = Comp(\Pi_3)$ then both p and q are true.
 - $WDA(\Pi_3) = \Pi_3 \cup \{ not p \leftarrow q, not q, not q \leftarrow not p \}$ has no answer set.

Final Remark

- In cognitive psychology, empirical studies show people perform AC/DA/DC depending on the context in which a conditional sentence is used. The proposed theory is used for encoding knowledge in a way that people are likely to use it and realizing pragmatic inferences in ASP.
- Completions are defined in a modular way, so one can apply respective completion to specific rules of a program according to their contexts. Different completions can be mixed in the same program.
- Since a GEDP is transformed to a semantically equivalent EDP, answer sets of completed programs are computed using existing answer set solvers.