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Introduction 

Logic programming is a type of programming paradigm which is 
largely based on formal logic. 

Provides languages for declarative problem solving and symbolic 
reasoning. 
 

Linear algebra is at the core of many applications of scientific 
computation. 

One of challenging topic in AI is integrating linear algebraic 
computation and symbolic computation. 
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Purpose 

Refine the framework of (Sakama et. al. 2017) and present 
algorithms for finding the least model of a definite program and 
stable models of a normal program.  

Based on the structure of matrices representing logic programs, 
research some optimization techniques for speeding-up these 
algorithms.  

Evaluate the complexity of proposed algorithms.  
Testing and comparing these methods. 
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Vector Representation of Interpretations 

Given the Herbrand base  BP = { p, q, r, s }, an interpretation  
I = { p, r } is represented by the vector: 

                                    v =

𝟏
𝟎
𝟏
𝟎

 

The i-th element of v represents the truth value of pi (written  
row1(v)= p,  row2(v)= q, row3(v)= r, etc). 

• Given v =(a1 ,…,an)T ∈ Rn, v[a1…ak] represents a 
(sub)vector (a1 ,…,ak)T ∈ Rk  (k≤n). 

p  

q 

r 

s 
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P ={ p←q,    q←p ∧ r,    r←s,    s← } is represented by MP ∈ 
R4×4 :  
 
 
 
 
 

 
The i-th row represents the atom pi in the head, and the j-th 

column represents the atom pj in the body of a rule (written:  
row1(MP)= p,  col2(MP)= q,  … etc)  
 
 

 
 
 
 
 
 

 

𝟎   𝟏   𝟎   𝟎  
𝟏
𝟐

   𝟎   𝟏
𝟐

  𝟎 
𝟎   𝟎   𝟎   𝟏  
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p   q    r   s     
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q 
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p←q 

 q←p ∧ r  

 r←s   
 s←  

body 

h 
e 
a 
d 

Matrix Representation of Definite Programs 

! Fact (s←) is  
  encoded as (s←s).  
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Matrix Representation of Rules  
with the Same Head 
P ={ p←q,   q←p ∧ r,   q←s,   s← } is transformed to the 

program Pδ = Q ∪ D  where: 
     Q = { p←q,   t←p ∧ r,   u←s,   s← } and  D = { q←t ∨ u }. 
Pδ is represented by MPδ ∈ R6×6 :  

 
Rules in D are called d-rules.  

 
 

Note: q←t  ∨ u is a shorthand of q←t and q←u,  
so Pδ  is considered a definite program.   
 
 
 
 
 
 
 
 

 

𝟎  𝟏  𝟎  𝟎  𝟎  𝟎
𝟎  𝟎  𝟎  𝟎  𝟏  𝟏
 𝟎  𝟎  𝟎  𝟎  𝟎  𝟎 
 𝟎  𝟎  𝟎  𝟏  𝟎  𝟎  
𝟏
𝟐

  𝟎  𝟏
𝟐

  𝟎  𝟎  𝟎
𝟎  𝟎  𝟎  𝟏  𝟎  𝟎

 

p q r  s  t  u    
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t 
u 

11/28/2018 

9 



Computing Least Models 

Given P ={ p←q,   q←p ∧ r,   r←s,   s← }, the initial 
vector  v0 =(0,0,0,1)T  represents facts in P. Then,  
 
 
 
 
 

 
v1  is a fixpoint of vk = 𝜽(MPvk−1) (k≥1). 
v1 =(0,0,1,1)T represents the least model { r, s } of P.  

 
 

 
 
 
 
 
 

MPv0 =      

𝟎   𝟏   𝟎   𝟎   
𝟏
𝟐
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𝟐
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𝟎
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       v1 = 𝜽(MPv0 
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p   q    r   s     
p  
q 
r 
s 

 MPv1 =  

𝟎   𝟏   𝟎   𝟎   
𝟏
𝟐

   𝟎   𝟏
𝟐

   𝟎  
𝟎   𝟎   𝟎   𝟏  
𝟎   𝟎   𝟎   𝟏  

 
𝟎
𝟎
𝟏
𝟏

=

𝟎
𝟏
𝟐
𝟏
𝟏

      v2 = 𝜽(MPv1) = v1 
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Column Reduction 

Consider Pδ = Q ∪ D  where  
     Q = { p←q,   t←p ∧ r,   u←s,   s← } and  D = { q←t ∨ u }. 
Reduce columns for newly introduced atoms and produce 

NPδ ∈ R6×4 : 
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MPδ = NPδ = 
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Example (cont.) 

Pδ = { p←q,   t←p ∧ r,   u←s,   s←,   q←t ∨ u }. 
Given v =(0,0,0,1)T , it becomes  

w = NPδ v =(0,0,0,1,0,1)T.  
Introduce the rule: if an element in the body   

of a d-rule is 1, then the element in the head 
 of the d-rule is set to 1.   

Add this rule to the θ-theresholding (written θD ). 
Put d =(q← t ∨ u). Since row6(w)=u ∈ body(d) and  

head(d)=q, applying θD to NPδ v  produces  
θD (NPδ v)=(0,1,0,1,0,1)T.  
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Computing Least Models 

Pδ = { p←q,   t←p ∧ r,   u←s,   s←,   q←t ∨ u }. 
Given v0 =(0,0,0,1,0,0)T, v0[1…4]=(0,0,0,1)T: 

 
v1= θD (NPδ v0[1…4])=(0,1,0,1,0,1)T   
v2= θD (NPδ v1[1…4])=(1,1,0,1,0,1)T  
v3= θD (NPδ v2[1…4])=(1,1,0,1,0,1)T= v2

 

 

Then v2 represents the least model of Pδ  and 
v2[1…4]=(1,1,0,1) is a vector representing the least 
model { p, q, s } of P.  
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Theorem 2.3: Let P be a definite program with BP = {p1,…,pn}, and 
Pδ a transformed d-program with BPδ = {p1,…,pn, pn+1,…,pm}.  
Let NPδ ∈Rm×n be a submatrix of Pδ. Given a vector v ∈Rn 
representing an interpretation I of P, let u = θD(NPδ v) ∈Rm. 
Then u is a vector representing an interpretation J of Pδ such that:  

J ∩ BPδ = TP(I).  

14 
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Complexities 

In matrix computation, complexity of computing MPδ v is 
O(m2) and computing θ(.) is O(m). The number of times for 
iterating MPδ v is at most (m+1) times. So the complexity of 
fixpoint computation is O((m+1)⨯(m+m2))= O(m3).   

In column reduction, the complexity of computing NPδ v is 
O(m⨯n) and computing θD(.) is O(m⨯n). The number of 
times for iterating NPδ v is at most (m+1) times. So the 
complexity of fixpoint computation is: 

 O((m+1)⨯(m⨯n+m⨯n))= O(m2⨯n).   

Column reduction reduces complexity as m⪢n in general.  

 
11/28/2018 
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P ={ p ← q ∧ ¬r ∧ s,  q ← ¬t ∧ q,  q ← s,  r ← ¬t,  s ←,  t←} 
 

 

17 Matrix Representation of Normal Program 

 { ,  ,  ,  ,  ,  }P p q r s q t q q s r t s t+• = ← ∧ ∧ ← ∧ ← ← ← ←

1

2

1 2

 

where { ,  ,  

,  ,  ,  }
     and { }

P Q D

Q p q r s q t q

q s r t s t
D q q q

δ• = ∪

= ← ∧ ∧ ← ∧

← ← ← ←
= ← ∨

1 2

'

1

2

                                                   

0 1/3 0 1/3 0 0 0 1/3 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 ½ 0 0 0 0 0 0 ½
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

P

p q r s t q q r t
p
q
r
s
tM
q
q

r

t

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

   

MPδ ∈ R9×9 
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Initial matrix 
       Initial matrix Mo ∈Rm×h (1 ≤ h ≤ 2m-n): 

• Each row of Mo corresponds to each element of BPδ in a 
way that rowi(Mo) = pi for 1 ≤ i ≤ n and rowi(Mo) =       for 
n +1 ≤ i ≤ m. 

• aij = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ h) iff a fact pi ← is in P; 
otherwise, aij = 0. 

• aij = 0 (n + 1 ≤ i ≤ m, 1≤ j ≤ h) iff a fact qi ← is in P; 
otherwise, there are two possibilities 0 and 1 for aij, so it is 
either 0 or 1. 
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Computing stable models 
P ={ p ← q ∧ ¬r ∧ s,  q ← ¬t ∧ q,  q ← s,  r ← ¬t,  s ←, t←}. 

Then,  
 
 
 
 
 

 
 

 
M3  is a fixpoint of Mk = 𝜽(MP𝜹.Mk−1) (k≥1). 
v2 =(1,1,0,1,1,0,1,1,0)T represents the set A={p, q, s, t, q2,   } and  
A ∩ BP = {p, q, s, t} is the stable model of P. 
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M1 = 𝜃(MP𝜹.M0) M2 = 𝜃(MP𝜹.M1) M3 = 𝜃(MP𝜹.M2) =M2 
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Column Reduction 
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Consider Pδ = Q ∪ D  with representation matrix MPδ ∈ R9×9 
Reduce columns for newly introduced atoms and produce NPδ 
∈ R9×7 : 
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• v1 ∈ R5 represents the facts in P, v1 = (0 0 0 1 1)T 
• A = {(0  0)T, (1  0)T, (0  1)T, (1  1)T} with card(A) = 22 = 4 
• B = {(0  1)T, (1  1)T}      
   v2 ∈ A ¥ B = {(0  0)T, (1  0)T} 
  V = {(v1  v2)T| v2 ∈ A ¥ B} = {(0 0 0 1 1 0 0)T, (0 0 0 1 1 1 0)T}  
(i) For uo = (0 0 0 1 1 0 0)T:  
           u1 = θD(NP’uo) = (0 1 0 1 1 0 0 0 1)T 
           u2 = θD(NP’u1[1…7]) = (0 1 0 1 1 0 0 0 1)T = u1. 

21 P ={ p ← q ∧ ¬r ∧ s,  q ← ¬t ∧ q,  q ← s,  r ← ¬t,  s ←, t←} 

11/28/2018 



(ii) For uo = (0 0 0 1 1 1 0)T:   
u1 = θD(NP’uo) = (0 1 0 1 1 1 0 0 1)T,     
u2 = θD(NP’u1[1…7]) = (1 1 0 1 1 1 0 0 1)T,  
u3 = θD(NP’u2[1…7]) = (1 1 0 1 1 1 0 0 1)T  
                                   = u2 

22 

                           

11/28/2018 



Complexities 

The complexity of MP’M is O(m2×h). The number of times for 
iterating MPδ .M is at most (m + 1) times. Thus, the complexity of 
computing stable models is O((m + 1) ×m2×h) = O(m3×h).   

In column reduction, the complexity of computing 
NPδ .uo[1…n’] is O(m × r) and computing θD(.) is O(m × r). 
Since the number of times for iterating NP’uo[1… r] is at 
most (m + 1) times and |V | = h, the complexity of 
computing stable models is:  

O((m + 1)×(m×r + m×r)×h) =  O(m2×r×h): 

Column reduction reduces complexity as m⪢r in general.  

 

11/28/2018 

23 



Content 

Introduction 
Computing least model of a definite program 
Computing stable model of a normal program 
Experimental results 
Conclusion 

24 

11/28/2018 



Experiments 

Compare 3 algorithms for computing:  
 fixpoint by the TP-operator (van Emden & Kowalski, 1976) 
 matrix computation 
 column reduction 

Testing is done on a machine with the configuration:  
OS:  Linux Ubuntu 16.04 LTS 64bit 
CPU: Intel Core i7-6800K (3.4GHz/14nm/Cores=6/ Threads=12 

/Cache15MB), Memory 32GB, DDR-2400  
GPU: GeForce GTX1070TI GDDR5 8GB 
Implementation Language:  Maple 2017, 64bit 11/28/2018 
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  Runtime is measured by changing the parameters:  
 n: size of the Herbrand base BP  
 m: number of rules in P  

Based on (n,m), randomly generate a program  having 
rules as follows:  

 

Parameters 

N 0 1 2 3 4 5 6 7 8 
rate < n/3 4% 4% 10% 40% 35% 4% 2% ～1% 

+ N is the number of atoms in the body of a rule 
+ Every program has > 95% rules with |body(r)| > 1 

11/28/2018 
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n m Tp Matrix 
Fixpoint/All 

Column Reduce 
Fixpoint/All 

20 400 0.07 0.225 / 0.238 0.019 / 0.034 
20 8,000 0.628 6.491 / 6.709 0.103 / 0.251  
50 2,500 0.499 3.797/ 3.925 0.114/ 0.205 
50 12,500 1.952 8.709/ 9.023 0.377/ 0.812 
100 5,000 2.056 13.23 / 13.326 0.661 / 0.978 
100 10,000 1.935 11.166 / 11.479 0.79 / 1.27 
200 400 0.037 0.059 / 0.073 0.012 / 0.06 
200 20,000 5.846 25.093 / 25.945 3.973 / 6.73 

+ “All” means time for creating a program matrix + computing the fixpoint. 

Results of testing on definite programs  

11/28/2018 

27 



Comparison  
(fixpoint computation) 

(sec) 
 

11/28/2018 
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Results of testing on normal programs  

+ k is the number of negative literals in a program P. 
+ “All” means time for creating a program matrix + computing the fixpoint. 

 
n m k Tp Matrix 

Fixpoint/All 
Column Red 
Fixpoint/All 

20 400 8 2.432 19.603 / 19.714 3.338 / 3.362 
20 8,000 6 5.531 12.368 / 12.696 4.502 / 4.603 
50 2,500 8 36.574 37.863 / 38.463 29.582 / 29.786 
50 12,500 7 49.485 30.819 / 32.00 48.883 / 49.32 
100 5,000 8 103.586 31.68 / 32.338 69.579 / 69.851 
100 10,000 8 264.547 84.899 / 87.142 192.981 / 194.003 
200 400 6 0.429 1.928 / 2.021 1.222 / 1.342 
200 13,300 6 185.778 48.185 / 49.185 124.119 / 126.255 

11/28/2018 
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Comparison  
(fixpoint computation) 

(sec) 
 

11/28/2018 
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Matrix computation is effective when the size of n is large (n =100 
or 200).  

Computation by column reduction is faster than computation by 
the TP-operator, while it is slower than the naive method in case of 
n = 100 or 200.  

To see the effect of computation by column reduction, we would 
need further environment that realizes efficient computation of 
matrices.  

31 
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Conclusion 
  Develop new algorithms for computing logic programming semantics in 

linear algebra and the improvement methods for speeding-up those 
algorithms. 

  Results of testing show that: 
 The computation by column reduction is fastest in computing least models. 
 The naive matrix computation on a d-program is often better than column 

reduction in computing stable models. 

33 
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 Computating the stable models of a normal program:  
o Although the size of the program matrix and the initial matrix are large, 

they have many zero elements (sparse matrix).  

→ Improve the method for representing matrices in sparse forms which 
also brings storage advantages with a good matrix library.  
 
 Combine partial evaluation to reduce runtime (Sakama et. al. 2018). 
 

The next work 34 
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