Computing Logic Programming Semantics in Linear Algebra

 Hien D. Nguyen, University of Information Technology (UIT), VNU-HCM, Vietnam
 Chiaki Sakama, Wakayama Univ., Japan
 Taisuke Sato, AIST, Japan
 Katsumi Inoue, NII, Japan

MIWAI 2018@Hanoi

Content

Introduction

2

Computing least model of a definite program
 Computing stable model of a normal program
 Experimental results
 Conclusion

Content

Introduction

3

Computing least model of a definite program
 Computing stable model of a normal program
 Experimental results
 Conclusion

Introduction

- □ Logic programming is a type of programming paradigm which is largely based on formal logic.
- Provides languages for declarative problem solving and symbolic reasoning.
- Linear algebra is at the core of many applications of scientific computation.
- □ One of challenging topic in AI is integrating linear algebraic computation and symbolic computation.

Purpose

5

■ Refine the framework of (Sakama et. al. 2017) and present algorithms for finding the least model of a definite program and stable models of a normal program.

Based on the structure of matrices representing logic programs, research some optimization techniques for speeding-up these algorithms.

Evaluate the complexity of proposed algorithms.

Testing and comparing these methods.

Sakama, C., Inoue, K., Sato, T.: *Linear Algebraic Characterization of Logic Programs*, In: Proc. of ^{11/28/2018} KSEM 2017, LNAI 10412, pp.530-533, Springer, Melbourne, Australia (2017)

Content

Introduction

- Computing least model of a definite program
 Computing stable model of a normal program
 Experimental results
- Conclusion

Vector Representation of Interpretations

Given the Herbrand base $B_P = \{ p, q, r, s \}$, an interpretation $I = \{ p, r \}$ is represented by the vector:

$$v = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix}$$

- The *i*-th element of *v* represents the truth value of p_i (written $row_1(v) = p_1 row_2(v) = q_1 row_3(v) = r_1$ etc).
- Given $\mathbf{v} = (a_1, \dots, a_n)^T \in \mathbf{R}^n$, $\mathbf{v}[a_1 \dots a_k]$ represents a (sub)vector $(a_1, \dots, a_k)^T \in \mathbf{R}^k$ (k≤n).

Matrix Representation of Definite Programs

8

 $P = \{ p \leftarrow q, \quad q \leftarrow p \land r, \quad r \leftarrow s, \quad s \leftarrow \} \text{ is represented by } M_P \in \mathbb{R}^{4 \times 4} :$ body 0 0 p h e a d 0 *q* $q \leftarrow p \wedge r$ r 0 0 $r \leftarrow s$! Fact $(s \leftarrow)$ is 0 0 S encoded as $(s \leftarrow s)$.

The *i*-th row represents the atom p_i in the head, and the *j*-th column represents the atom p_j in the body of a rule (written: $row_1(M_P) = p, \ col_2(M_P) = q, \ ... \text{ etc})$

Matrix Representation of Rules with the Same Head

 $P = \{ p \leftarrow q, q \leftarrow p \land r, q \leftarrow s, s \leftarrow \} \text{ is transformed to the program } P^{\delta} = Q \cup D \text{ where:}$ $Q = \{ p \leftarrow q, t \leftarrow p \land r, u \leftarrow s, s \leftarrow \} \text{ and } D = \{ q \leftarrow t \lor u \}.$

 $P^{\delta} \text{ is represented by } M_{P^{\delta}} \subseteq \mathbb{R}^{6 \times 6} : \qquad p q r s t u$

Rules in D are called d-rules.

9

Note: $q \leftarrow t \lor u$ is a shorthand of $q \leftarrow t$ and $q \leftarrow u$, so P^{δ} is considered a definite program.

Computing Least Models

10

Given $P = \{ p \leftarrow q, q \leftarrow p \land r, r \leftarrow s, s \leftarrow \}$, the initial vector $v_0 = (0,0,0,1)^T$ represents facts in *P*. Then,

$$M_{\rm P} v_0 = \begin{cases} p & q & r & s \\ p & q & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{cases} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \quad v_1 = \theta(M_{\rm P} v_0)$$
$$M_{\rm P} v_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad v_2 = \theta(M_{\rm P} v_1) = v_1$$

► v_1 is a fixpoint of $v_k = \theta(M_P v_{k-1})$ ($k \ge 1$). ► $v_1 = (0,0,1,1)^T$ represents the least model { r, s } of P.

11/28/2018

Column Reduction

Consider P^δ = Q ∪ D where Q = { p←q, t←p∧r, u←s, s← } and D = { q←t∨u }.
Reduce columns for newly introduced atoms and produce N_{P^δ} ∈ ℝ^{6×4} :

$$M_{\rm P}^{\delta} = \begin{pmatrix} p & q & r & s & t & u \\ 0 & 1 & 0 & 0 & 0 & 0 \\ q & r \\ s \\ t \\ u \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \qquad \Longrightarrow \qquad N_{\rm P}^{\delta} = \begin{pmatrix} p & q & r & s & t & u \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

11/28/2018

Example (cont.)

 $P^{\delta} = \{ p \leftarrow q, t \leftarrow p \land r, u \leftarrow s, s \leftarrow, q \leftarrow t \lor u \}.$ $Given v = (0,0,0,1)^{T}, it becomes$ $w = N_{P^{\delta}} v = (0,0,0,1,0,1)^{T}.$

0000

0000

0001 5

 $\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{T} \begin{pmatrix} 1 \\ t \\ t \\ u \end{pmatrix}$

• Introduce the rule: if an element in the body $N_{P^{\delta}} = of \ a \ d$ -rule is 1, then the element in the head of the d-rule is set to 1.

Add this rule to the θ -theresholding (written $\theta_{\rm D}$).

Put $d = (q \leftarrow t \lor u)$. Since $row_6(w) = u \in body(d)$ and head(d) = q, applying θ_D to $N_P^{\delta} v$ produces $\theta_D(N_P^{\delta} v) = (0, 1, 0, 1, 0, 1)^T$.

Computing Least Models

13

Then v₂ represents the least model of P^δ and v₂[1...4]=(1,1,0,1) is a vector representing the least model { p, q, s } of P. 14

Theorem 2.3: Let *P* be a definite program with $B_P = \{p_1, ..., p_n\}$, and P^{δ} a transformed d-program with $B_P^{\delta} = \{p_1, ..., p_n, p_{n+1}, ..., p_m\}$. Let $N_{P^{\delta}} \in \mathbb{R}^{m \times n}$ be a submatrix of P^{δ} . Given a vector $v \in \mathbb{R}^n$ representing an interpretation *I* of *P*, let $u = \theta_D(N_{P^{\delta}}v) \in \mathbb{R}^m$.

Then *u* is a vector representing an interpretation *J* of P^{δ} such that:

 $J \cap B_{P^{\delta}} = T_{P}(I).$

15

- In matrix computation, complexity of computing $M_{P^{\delta}} v$ is $O(m^2)$ and computing $\theta(.)$ is O(m). The number of times for iterating $M_{P^{\delta}} v$ is at most (m+1) times. So the complexity of fixpoint computation is $O((m+1) \times (m+m^2)) = O(m^3)$.
- In column reduction, the complexity of computing $N_{P^{\delta}} v$ is $O(m \times n)$ and computing $\theta_{D}(.)$ is $O(m \times n)$. The number of times for iterating $N_{P^{\delta}} v$ is at most (m+1) times. So the complexity of fixpoint computation is:

 $O((m+1)\times(m\times n+m\times n))=O(m^2\times n).$

Column reduction reduces complexity as $m \ge n$ in general.

Conclusion

Matrix Representation of Normal Program

$$P = \{ p \leftarrow q \land \neg r \land s, q \leftarrow \neg t \land q, q \leftarrow s, r \leftarrow \neg t, s \leftarrow, t \leftarrow \}$$

• $P^+ = \{ p \leftarrow q \land r \land s, q \leftarrow t \land q, q \leftarrow s, r \leftarrow t, s \leftarrow, t \leftarrow \}$

•
$$P^{\delta} = Q \cup D$$

where $Q = \{ p \leftarrow q \land \overline{r} \land s, q_1 \leftarrow \overline{t} \land q_2 \in s, r \leftarrow \overline{t}, s \leftarrow, t \leftarrow \}$
and $D = \{ q \leftarrow q_1 \lor q_2 \}$

 $M_P \delta \in \mathbf{R}^{9 \times 9}$

17

$$\boldsymbol{I}_{P'} = \begin{pmatrix} 0 & 1/3 & 0 & 1/3 & 0 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & q \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & r \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & r \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & r \\ 0 & 1/2 & 0 & 0 & 0 & 0 & 0 & 0 & 1/2 & q_1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & q_2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q_2 \\ \hline \boldsymbol{R}_{1} & \boldsymbol{R}_{1} & \boldsymbol{R}_{2} & \boldsymbol{R}_{2} & \boldsymbol{R}_{1} & \boldsymbol{R}_{2} & \boldsymbol{R}_$$

 $p q r s t q_1 q_2 r t$

Initial matrix

Initial matrix $M_o \in \mathbb{R}^{m \times h}$ $(1 \le h \le 2^{m - n})$:

18

• Each row of M_o corresponds to each element of $B_{\underline{P}^{\delta}}$ in a way that $\operatorname{row}_i(M_o) = p_i$ for $1 \le i \le n$ and $\operatorname{row}_i(M_o) = q_i$ for $n+1 \le i \le m$.

• $a_{ij} = 1$ $(1 \le i \le n, 1 \le j \le h)$ iff a fact $p_i \leftarrow$ is in *P*; otherwise, $a_{ij} = 0$.

• $a_{ij} = 0$ $(n + 1 \le i \le m, 1 \le j \le h)$ iff a fact $q_i \leftarrow$ is in *P*; otherwise, there are two possibilities 0 and 1 for a_{ij} , so it is either 0 or 1.

•
$$P^{\delta} = Q \cup D$$

where $Q = \{p \leftarrow q \land \overline{r} \land s, q_1 \leftarrow \overline{t} \land q_2 \leftarrow s, r \leftarrow \overline{t}, s \leftarrow, t \leftarrow \}$
and $D = \{q \leftarrow q_1 \lor q_2\}$

q,

 $(0 \ 0)$ $\begin{array}{c|c} q & 0 & 0 \\ r & 0 & 0 \end{array}$ *s* 1 1 $M_0 = t \begin{vmatrix} 1 & 1 \end{vmatrix}$ $q_1 \mid 0 \mid 0$ $\begin{array}{c|c} q_2 & 0 & 0 \\ \bar{r} & 0 & 1 \\ \bar{t} & 0 & 0 \end{array}$

 $M_0 \in \mathbf{R}^{9 \times 2}$

Computing stable models 19 $\blacksquare P = \{ p \leftarrow q \land \neg r \land s, q \leftarrow \neg t \land q, q \leftarrow s, r \leftarrow \neg t, s \leftarrow, t \leftarrow \}.$ Then, $\begin{array}{c} p \begin{pmatrix} 0 & 0 \\ q & 0 \end{array} \end{array}$ $0 \quad 0$ 0 $p q r s t q_1 q_2 \overline{r} \overline{t}$ 1 1 0 0 1/3 0 1/3 0 0 1/3 0 P 0 0 0 0 1 1 0 0 9 0 $r \mid 0 \mid 0$ 0 0 0 0 0 0 0 *s* 1 1 1 1 1 1 0 0 0 0 0 0 0 1 r 0 0 1 0 0 0 0 $|^{s} M_{0} = t | 1 1 | M_{1} = | 1 1 | M_{2} = | 1 1 | M_{3} = | 1 1$ 0 0 0 1 0 0 0 $M_{P}\delta =$ 0 $q_1 | 0 | 0 |$ 0 0 0 0 0 0 $0 \frac{1}{2} 0 0 0 0 0 0 \frac{1}{2} q_1$ $\begin{array}{c|c} q_2 & 0 & 0 \\ \hline r & 0 & 1 \end{array}$ 1 1 1 1 0 0 1 0 1 0 1 $\frac{1}{t} \begin{pmatrix} 0 & 0 \end{pmatrix}$ $0 0 0 0 0 0 1]_{t}$ $\left| \begin{array}{c} 0 \\ 0 \end{array} \right|$ $0 \quad 0$ $0 \quad 0$ $M_1 = \theta(M_{\rm P}\delta.M_0)$ $M_2 = \theta(M_{\rm P}\delta.M_1)$ $M_3 = \theta(M_{\rm P}\delta.M_2) = M_2$ • M_3 is a fixpoint of $M_k = \theta(M_P \delta M_{k-1})$ $(k \ge 1)$.

 $\mathbf{v}_2 = (1,1,0,1,1,0,1,1,0)^T \text{ represents the set } \mathbf{A} = \{p, q, s, t, q_2, \overline{r}\} \text{ and} \\ \mathbf{A} \cap B_P = \{p, q, s, t\} \text{ is the stable model of } P.$

Column Reduction

20

Consider P^δ = Q ∪ D with representation matrix M_P^δ ∈ R^{9×9}
 Reduce columns for newly introduced atoms and produce N_P^δ ∈ R^{9×7} :

1/28/2018

21

$$P = \{ p \leftarrow q \land \neg r \land s, q \leftarrow \neg t \land q, q \leftarrow s, r \leftarrow \neg t, s \leftarrow, t \leftarrow \}$$

•
$$v_1 \in \mathbb{R}^5$$
 represents the facts in P , $v_1 = (0\ 0\ 0\ 1\ 1)^T$
• $A = \{(0\ 0)^T, (1\ 0)^T, (0\ 1)^T, (1\ 1)^T\}$ with $\operatorname{card}(A) = 2^2 = 4$
• $B = \{(0\ 1)^T, (1\ 1)^T\}$
 $v_2 \in A \notin B = \{(0\ 0)^T, (1\ 0)^T\}$
 $V = \{(v_1\ v_2)^T|\ v_2 \in A \notin B\} = \{(0\ 0\ 0\ 1\ 1\ 0\ 0)^T, (0\ 0\ 0\ 1\ 1\ 1\ 0)^T\}$
(i) For $u_o = (0\ 0\ 0\ 1\ 1\ 0\ 0)^T$:
 $u_1 = \theta_D(N_{P'}u_o) = (0\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 1)^T$
 $u_2 = \theta_D(N_{P'}u_1[1...7]) = (0\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 1)^T = u_1$.
For u_1 a stable model of P .

r

(ii) For
$$u_o = (0\ 0\ 0\ 1\ 1\ 1\ 0)^{\mathrm{T}}$$
:
 $u_1 = \Theta_D(N_{P'}u_o) = (0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1)^{\mathrm{T}},$
 $u_2 = \Theta_D(N_{P'}u_1[1...7]) = (1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1)^{\mathrm{T}},$
 $u_3 = \Theta_D(N_{P'}u_2[1...7]) = (1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1)^{\mathrm{T}}$
 $= u_2$

row₃(u_2) = r and row₆(u_2) = r then $u_2[3] + u_2[6] = 1$ row₅(u_2) = t and row₇(u_2) = \bar{t} then $u_2[5] + u_2[7] = 1$ $\rightarrow u_2$ represents the set { p, q, s, t, \bar{r}, q_2 } and { p, q, s, t, \bar{r} } $\cap B_P = \{p, q, s, t\}$ is the stable model of P.

22

11/28/2018

- The complexity of $M_{P'}M$ is $O(m^2 \times h)$. The number of times for iterating $M_{P^{\delta}}M$ is at most (m + 1) times. Thus, the complexity of computing stable models is $O((m + 1) \times m^2 \times h) = O(m^3 \times h)$.
- In column reduction, the complexity of computing $N_{P^{\delta}} \cdot u_{o}[1...n']$ is $O(m \times r)$ and computing $\theta_{D}(.)$ is $O(m \times r)$. Since the number of times for iterating $N_{P'}u_{o}[1...r]$ is at most (m + 1) times and |V| = h, the complexity of computing stable models is:

 $O((m + 1) \times (m \times r + m \times r) \times h) = O(m^2 \times r \times h)$:

Column reduction reduces complexity as $m \ge r$ in general. 11/28/2018

Content

Introduction

24

Computing least model of a definite program
 Computing stable model of a normal program
 Experimental results

Conclusion

25

Compare 3 algorithms for computing:

- fixpoint by the $T_{\rm P}$ -operator (van Emden & Kowalski, 1976)
- matrix computation
- column reduction
- Testing is done on a machine with the configuration:
 - OS: Linux Ubuntu 16.04 LTS 64bit
 - CPU: Intel Core i7-6800K (3.4GHz/14nm/Cores=6/ Threads=12 /Cache15MB), Memory 32GB, DDR-2400

GPU: GeForce GTX1070TI GDDR5 8GB

Implementation Language: Maple 2017, 64bit

Parameters

Runtime is measured by changing the parameters:

- *n*: size of the Herbrand base $B_{\rm P}$
- m: number of rules in P

Based on (*n*,*m*), randomly generate a program having rules as follows:

Ν	0	1	2	3	4	5	6	7	8
rate	< n/3	4%	4%	10%	40%	35%	4%	2%	$\sim 1\%$

+ N is the number of atoms in the body of a rule + Every program has > 95% rules with |body(r)| > 1

Results of testing on definite programs

n	m	T _p	Matrix Fixpoint/All	Column Reduce Fixpoint/All
20	400	0.07	0.225 / 0.238	0.019 / 0.034
20	8,000	0.628	6.491 / 6.709	0.103 / 0.251
50	2,500	0.499	3.797/ 3.925	0.114/ 0.205
50	12,500	1.952	8.709/ 9.023	0.377/ 0.812
100	5,000	2.056	13.23 / 13.326	0.661 / 0.978
100	10,000	1.935	11.166 / 11.479	0.79 / 1.27
200	400	0.037	0.059 / 0.073	0.012 / 0.06
200	20,000	5.846	25.093 / 25.945	3.973 / 6.73

+ "All" means time for creating a program matrix + computing the fixpoint.

Comparison (fixpoint computation)

Results of testing on normal programs

n	m	k	$\mathbf{T}_{\mathbf{p}}$	Matrix Fixpoint/All	Column Red Fixpoint/All
20	400	8	2.432	19.603 / 19.714	3.338 / 3.362
20	8,000	6	5.531	12.368 / 12.696	4.502 / 4.603
50	2,500	8	36.574	37.863 / 38.463	29.582 / 29.786
50	12,500	7	49.485	30.819 / 32.00	48.883 / 49.32
100	5,000	8	103.586	31.68 / 32.338	69.579 / 69.851
100	10,000	8	264.547	84.899 / 87.142	192.981 / 194.003
200	400	6	0.429	1.928 / 2.021	1.222 / 1.342
200	13,300	6	185.778	48.185 / 49.185	124.119 / 126.255

+ k is the number of negative literals in a program P.

+ "All" means time for creating a program matrix + computing the fixpoint.

11/28/2018

Comparison (fixpoint computation)

Matrix computation is effective when the size of *n* is large (*n* =100 or 200).

- Computation by column reduction is faster than computation by the T_P -operator, while it is slower than the naive method in case of n = 100 or 200.
- To see the effect of computation by column reduction, we would need further environment that realizes efficient computation of matrices.

Content

Introduction

32

Computing least model of a definite program
 Computing stable model of a normal program
 Experimental results
 Conclusion

33

Conclusion

- Develop new algorithms for computing logic programming semantics in linear algebra and the improvement methods for speeding-up those algorithms.
- **Results of testing show that:**
 - * The computation by column reduction is fastest in computing least models.
 - The naive matrix computation on a d-program is often better than column reduction in computing stable models.

The next work

34

Computating the stable models of a normal program:

• Although the size of the program matrix and the initial matrix are large, they have many zero elements (sparse matrix).

 \rightarrow Improve the method for representing matrices in sparse forms which also brings storage advantages with a good matrix library.

Combine partial evaluation to reduce runtime (Sakama et. al. 2018).

Chiaki Sakama, Hien D. Nguyen, Taisuke Sato, Katsumi Inoue: *Partial Evaluation of Logic Programs in Vector Space*, 11th Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2018), Oxford, UK, July 2018.