Computing Logic Programming Semantics in Linear Algebra

Hien D. Nguyen, University of Information Tec hnology (UIT), VNU-HCM, Vietnam
Chiaki Sakama, Wa ka ya ma Univ., J a pan
Taisuke Sato, AIST, J a pan
Katsumi Inoue, NII, J a pan

MIWAI 2018@Hanoi

Content

- Introduction
- Computing least model of a definite program
- Computing stable model of a nomal program

Experimental results

- Conclusion

Content

- Introduction
- Computing least model of a definite program
- Computing stable model of a nomal program

Experimental results

- Conclusion
\square Logic programming is a type of programming paradigm which is largely based on formal logic.
\square Provides languages for declarative problem solving and symbolic reasoning.

Linear algebra is at the core of many applications of scientific computation.
\square One of challenging topic in AI is integrating linear algebraic computation and symbolic computation.

Purpose

\square Refine the framework of (Sakama et. al. 2017) and present algorithms for finding the least model of a definite program and stable models of a normal program.
\square Based on the structure of matrices representing logic programs, research some optimization techniques for speeding-up these algorithms.
\square Evaluate the complexity of proposed algorithms.
\square Testing and comparing these methods.

Content

- Introduction
- Computing least model of a definite program
- Computing stable model of a nomal program

Experimental results

- Conclusion

Vector Representation of Interpretations

- Given the Herbrand base $B_{\mathrm{P}}=\{p, q, r, s\}$, an interpretation $I=\{p, r\}$ is represented by the vector:

$$
\nu=\left(\begin{array}{l}
\mathbf{1} \\
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right)^{p} \begin{gathered}
p \\
r
\end{gathered}
$$

- The i-th element of \boldsymbol{v} represents the truth value of p_{i} (written $\operatorname{row}_{1}(\boldsymbol{v})=p, \operatorname{row}_{2}(\boldsymbol{v})=q, \operatorname{row}_{3}(\boldsymbol{v})=r$, etc $)$.
- Given $\boldsymbol{v}=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}} \in \mathbf{R}^{\mathrm{n}}, \boldsymbol{v}\left[a_{1} \ldots a_{k}\right]$ represents a (sub) vector $\left(a_{1}, \ldots, a_{\mathrm{k}}\right)^{\mathrm{T}} \in \mathbf{R}^{\mathrm{k}}(\mathrm{k} \leq \mathrm{n})$.

8 Matrix Representation of Definite Programs

- $P=\{p \leftarrow q, \quad q \leftarrow p \wedge r, \quad r \leftarrow s, \quad s \leftarrow\}$ is represented by $M_{\mathrm{P}} \in$ $\mathbf{R}^{4 \times 4}$:
body

The i-th row represents the atom p_{i} in the head, and the j-th column represents the atom p_{j} in the body of a rule (written: $\operatorname{row}_{1}\left(\boldsymbol{M}_{\mathrm{P}}\right)=p, \operatorname{col}_{2}\left(\boldsymbol{M}_{\mathrm{P}}\right)=q, \ldots$ etc $)$

Matrix Representation of Rules with the Same Head

$-P=\{p \leftarrow q, \quad q \leftarrow p \wedge r, \quad q \longleftarrow s, \quad s \leftarrow\}$ is transformed to the program $P^{\delta}=Q \cup D$ where:

$$
Q=\{p \leftarrow q, \quad t \leftarrow p \wedge r, \quad u \leftarrow s, \quad s \leftarrow\} \text { and } D=\{q \leftarrow t \vee u\}
$$

$\Rightarrow P^{\delta}$ is represented by $\boldsymbol{M}_{\mathrm{P}^{\delta}} \in \mathbf{R}^{6 \times 6}$:

pqrstu	
	0 01000
$\stackrel{p}{q}$	0000
	00
s	000
t	$\frac{1}{2}$
	$\left(\begin{array}{lllllll}2 & & 2 & \\ 0 & 0 & 0 & 1 & 0\end{array}\right.$

- Note: $q \leftarrow t \vee u$ is a shorthand of $q \leftarrow t$ and $q \longleftarrow u$, so P^{δ} is considered a definite program.

Computing Least Models

- Given $P=\{p \leftarrow q, \quad q \leftarrow p \wedge r, \quad r \leftarrow s, \quad s \leftarrow\}$, the initial vector $\boldsymbol{v}_{0}=(0,0,0,1)^{\mathrm{T}}$ represents facts in P. Then,

$$
\begin{aligned}
& \boldsymbol{M}_{\mathrm{P}} \boldsymbol{v}_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
\mathbf{0} \\
\frac{1}{2} \\
2 \\
1 \\
1
\end{array}\right) \quad \boldsymbol{v}_{2}=\boldsymbol{\theta}\left(\boldsymbol{M}_{\mathrm{P}} \boldsymbol{v}_{1}\right)=\boldsymbol{v}_{1}
\end{aligned}
$$

- \boldsymbol{v}_{1} is a fixpoint of $\boldsymbol{v}_{k}=\boldsymbol{\theta}\left(\boldsymbol{M}_{\mathrm{P}} \boldsymbol{v}_{k-1}\right)(k \geq 1)$.
- $v_{1}=(0,0,1,1)^{\mathrm{T}}$ represents the least model $\{r, s\}$ of P.

Column Reduction

- Consider $P^{\delta}=Q \cup D$ where

$$
Q=\{p \leftarrow q, \quad t \leftarrow p \wedge r, u \leftarrow s, \quad s \leftarrow\} \text { and } D=\{q \leftarrow t \vee u\} .
$$

- Reduce columns for newly introduced atoms and produce

$$
N_{\mathrm{P}^{\delta}} \in \mathbf{R}^{6 \times 4}:
$$

Example (cont.)

- $P^{\delta}=\{p \leftarrow q, \quad t \leftarrow p \wedge r, \quad u \leftarrow s, \quad s \leftarrow, \quad q \leftarrow t \vee u\}$.
- Given $\boldsymbol{v}=(0,0,0,1)^{\mathrm{T}}$, it becomes

$/ 0100$	
$N_{\mathrm{P}^{\delta}}=$	$\left(\begin{array}{lllll}0 & 0 & 0 & 0\end{array}\right)^{q}$
	00000
	0001

Add this rule to the θ-theresholding (written θ_{D}).

- Put $d=(q \leftarrow t \vee u)$. Since $\operatorname{row}_{6}(w)=u \in \operatorname{body}(d)$ and head $(d)=q$, applying θ_{D} to $\boldsymbol{N}_{\mathrm{P}^{\delta} \boldsymbol{v}}$ produces $\theta_{\mathrm{D}}\left(\boldsymbol{N}_{\mathrm{P}^{\delta}} \boldsymbol{v}\right)=(0,1,0,1,0,1)^{\mathrm{T}}$.

Computing Least Models

- $P^{\delta}=\{p \leftarrow q, \quad t \leftarrow p \wedge r, \quad u \leftarrow s, \quad s \leftarrow, \quad q \leftarrow t \vee u\}$.
- Given $\boldsymbol{v}_{0}=(0,0,0,1,0,0)^{\mathrm{T}}, \boldsymbol{v}_{0}[1 \ldots 4]=(0,0,0,1)^{\mathrm{T}}$. \quad p q r s

$$
\begin{aligned}
& \boldsymbol{v}_{1}=\theta_{\mathrm{D}}\left(\boldsymbol{N}_{\mathrm{P}^{\delta}} \boldsymbol{v}_{0}[1 \ldots 4]\right)=(0,1,0,1,0,1)^{\mathrm{T}} \\
& \boldsymbol{v}_{2}=\theta_{\mathrm{D}}\left(\boldsymbol{N}_{\mathrm{P}} \boldsymbol{v}_{1}[1 \ldots 4]\right)=(1,1,0,1,0,1)^{\mathrm{T}} \\
& \boldsymbol{v}_{3}=\theta_{\mathrm{D}}\left(\boldsymbol{N}_{\mathrm{P}} \delta \boldsymbol{v}_{2}[1 \ldots 4]\right)=(1,1,0,1,0,1)^{\mathrm{T}}=\boldsymbol{v}_{2}
\end{aligned}
$$

- Then \boldsymbol{v}_{2} represents the least model of P^{δ} and $\boldsymbol{v}_{2}[1 \ldots 4]=(1,1,0,1)$ is a vector representing the least model $\{p, q, s\}$ of P.

Theorem 2.3: Let P be a definite program with $B_{P}=\left\{p_{1}, \ldots, p_{n}\right\}$, and P^{δ} a transformed d-program with $B_{P^{\delta}}=\left\{p_{1}, \ldots, p_{n}, p_{n+1}, \ldots, p_{m}\right\}$.
Let $\boldsymbol{N}_{\mathrm{P}^{\delta}} \in \mathbf{R}^{m \times n}$ be a submatrix of P^{δ}. Given a vector $v \in \mathbf{R}^{n}$ representing an interpretation I of P, let $u=\theta_{D}\left(N_{\mathrm{P}^{\delta}} v\right) \in \mathbf{R}^{m}$.
Then u is a vector representing an interpretation J of P^{δ} such that:

$$
J \cap B_{P^{\delta}}=T_{P}(I) .
$$

Complexities

- In matrix computation, complexity of computing $\boldsymbol{M}_{\mathrm{p}^{\delta} \boldsymbol{v}}$ is $O\left(m^{2}\right)$ and computing $\theta($.$) is O(m)$. The number of times for iterating $\boldsymbol{M}_{\mathrm{P}^{\delta} \boldsymbol{V}} \boldsymbol{V}$ is at most (m+1) times. So the complexity of fixpoint computation is $O\left((m+1) \times\left(m+m^{2}\right)\right)=O\left(m^{3}\right)$.
- In column reduction, the complexity of computing $N_{\mathrm{P}^{\delta}} \boldsymbol{v}$ is $O(m \times n)$ and computing $\theta_{\mathrm{D}}($.$) is O(m \times n)$. The number of times for iterating $N_{\mathrm{P}^{\delta}} \boldsymbol{v}$ is at most ($m+1$) times. So the complexity of fixpoint computation is:

$$
O((m+1) \times(m \times n+m \times n))=O\left(m^{2} \times n\right) .
$$

- Column reduction reduces complexity as $m \gg n$ in general.

Content

- Introduction
- Computing least model of a definite program
- Computing stable model of a nomal program

Experimental results

- Conclusion
- $P=\{p \leftarrow q \wedge \neg r \wedge s, q \leftarrow \neg t \wedge q, q \leftarrow s, r \leftarrow \neg t, s \leftarrow, t \leftarrow\}$
- $P^{+}=\{p \leftarrow q \wedge \bar{r} \wedge s, q \leftarrow \bar{t} \wedge q, q \leftarrow s, r \leftarrow \bar{t}, s \leftarrow, t \leftarrow\}$
- $P^{\delta}=Q \cup D \quad p \quad q \quad r \quad s \quad t \quad q_{1} q_{2} \bar{r} \quad \bar{t}$

Initial matrix

Initial matrix $M_{o} \in \mathbf{R}^{m \times h}\left(1 \leq h \leq 2^{m-n}\right)$:

- Each row of M_{o} corresponds to each element of $B_{P^{\delta}}$ in a way that $\operatorname{row}_{i}\left(M_{o}\right)=p_{i}$ for $1 \leq i \leq n$ and $\operatorname{row}_{i}\left(M_{o}\right)=\boldsymbol{q}_{i}$ for $n+1 \leq i \leq m$.
- $a_{i j}=1(1 \leq i \leq n, 1 \leq j \leq h)$ iff a fact $p_{i} \leftarrow$ is in P; otherwise, $a_{i j}=0$.
- $a_{i j}=0(n+1 \leq i \leq m, 1 \leq j \leq h)$ iff a fact $q_{i} \leftarrow$ is in P; otherwise, there are two possibilities 0 and 1 for $a_{i j}$, so it is either 0 or 1.
- $P^{\delta}=Q \cup D$
where $Q=\left\{p \leftarrow q \wedge \bar{r} \wedge s, q_{1} \leftarrow \bar{t} \wedge q\right.$,

$$
M_{0}=\begin{array}{r}
p \\
q \\
r \\
s \\
q_{1} \\
q_{1} \\
q_{2} \\
\bar{r} \\
\bar{t}
\end{array}\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \left.q_{2} \leftarrow s, r \leftarrow \bar{t}, s \leftarrow, t \leftarrow\right\} \\
& \quad \text { and } D=\left\{q \leftarrow q_{1} \vee q_{2}\right\}
\end{aligned}
$$

$$
\boldsymbol{M}_{0} \in \mathbf{R}^{9 \times 2}
$$

Computing stable models

$P=\{p \longleftarrow q \wedge \neg r \wedge s, q \longleftarrow \neg t \wedge q, q \longleftarrow S, r \longleftarrow \neg t, S \longleftarrow, t \longleftarrow\}$
Then,

$$
\begin{aligned}
& M_{1}=\theta\left(M_{\mathrm{P}} \delta . M_{0}\right) \quad M_{2}=\theta\left(M_{\mathrm{P}} \delta . M_{1}\right) \quad M_{3}=\theta\left(M_{\mathrm{P}} \delta . M_{2}\right)=M_{2}
\end{aligned}
$$

- \boldsymbol{M}_{3} is a fixpoint of $\boldsymbol{M}_{k}=\boldsymbol{\theta}\left(\boldsymbol{M}_{\mathrm{P}} \delta_{\cdot} \boldsymbol{M}_{k-1}\right)(k \geq 1)$.
- $\boldsymbol{v}_{2}=(1,1,0,1,1,0,1,1,0)^{\mathrm{T}}$ represents the set $\mathrm{A}=\left\{p, q, s, t, q_{2}, \bar{r}\right\}$ and
$\mathrm{A} \cap B_{P}=\{p, q, s, t\}$ is the stable model of P.
- Consider $\mathrm{P}^{\delta}=Q \cup D$ with representation matrix $M_{P^{\delta}} \in \mathbf{R}^{9 \times 9}$
- Reduce columns for newly introduced atoms and produce $\boldsymbol{N}_{\mathrm{P}^{\delta}}$ $\in \mathbf{R}^{9 \times 7}$:

$$
\begin{array}{llllllll}
p & q & r & s & t & \bar{r} & \bar{t}
\end{array}
$$

$$
N_{P^{\delta}}=\left(\begin{array}{ccccccc|l}
0 & 1 / 3 & 0 & 1 / 3 & 0 & 1 / 3 & 0 & p \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & q \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & r \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & s \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & t \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \bar{r} \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & \bar{t} \\
0 & 1 / 2 & 0 & 0 & 0 & 0 & 1 / 2 & q_{1} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & q_{2} \\
q_{2} 1 / 2822018
\end{array}\right.
$$

$$
\begin{aligned}
& \begin{array}{lllllllll}
p & q & r & s & t & q_{1} & q_{2} & \bar{r} & \bar{t}
\end{array} \\
& M p=\left(\begin{array}{ccccccccc|l}
0 & 1 / 3 & 0 & 1 / 3 & 0 & 0 & 0 & 1 / 3 & 0 & p \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & q \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & r \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & s \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & t \\
0 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 & q_{1} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & q_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \frac{r}{r} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \bar{t}
\end{aligned}
$$

$$
P=\{p \leftarrow q \wedge \neg r \wedge s, q \leftarrow \neg t \wedge q, q \leftarrow s, r \leftarrow \neg t, s \leftarrow, t \leftarrow\}
$$

- $v_{1} \in \mathbf{R}^{5}$ represents the facts in $P, v_{1}=\left(\begin{array}{lll}0 & 0 & 0\end{array} 11\right)^{\mathrm{T}}$
- $A=\left\{\left(\begin{array}{ll}0 & 0\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}1 & 0\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}0 & 1\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}1 & 1\end{array}\right)^{\mathrm{T}}\right\}$ with $\operatorname{card}(\mathrm{A})=2^{2}=4$
- $B=\left\{\left(\begin{array}{ll}0 & 1\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}1 & 1\end{array}\right)^{\mathrm{T}}\right\}$

$$
v_{2} \in A ¥ B=\left\{\left(\begin{array}{ll}
0 & 0
\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{\mathrm{T}}\right\}
$$

$$
V \neq\left\{\left(v_{1} v_{2}\right)^{\mathrm{T}} \mid v_{2} \in A ¥ B\right\}=\left\{(00011100)^{\mathrm{T}},\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)^{\mathrm{T}}\right\}
$$

(i) For $u_{o}=\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}\right)^{\mathrm{T}}$:

$$
\begin{aligned}
& u_{1}=\theta_{D}\left(N_{P}, u_{o}\right)=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array} 001\right)^{\mathrm{T}} \\
& u_{2}=\theta_{D}\left(N_{P}, u_{1}[1 \ldots 7]\right)=\left(\begin{array}{lllll}
0 & 1 & 0 & 1 & 1
\end{array} 0001\right)^{\mathrm{T}}=u_{1}
\end{aligned}
$$

$\operatorname{row}_{3}\left(u_{1}\right)=r$ and $\operatorname{row}_{6}\left(u_{1}\right)=\bar{r}$ then $u_{1}[3]+u_{1}[6]=0$,
$\rightarrow u_{1}$ does not represent a stable model of P.
(ii) For $u_{o}=(0001110)^{\mathrm{T}}$:
$u_{1}=\theta_{D}\left(N_{P}, u_{o}\right)=\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array} 01\right)^{\mathrm{T}}$,
$u_{2}=\theta_{D}\left(N_{P}, u_{1}[1 \ldots 7]\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1001\end{array}\right)^{\mathrm{T}}$,
$u_{3}=\theta_{D}\left(N_{P}, u_{2}[1 \ldots 7]\right)=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array} 001\right)^{\mathrm{T}}$

$$
=u_{2}
$$

$\operatorname{row}_{3}\left(u_{2}\right)=r$ and $\operatorname{row}_{6}\left(u_{2}\right)=\bar{r}$ then $u_{2}[3]+u_{2}[6]=1$
$\operatorname{row}_{5}\left(u_{2}\right)=t$ and $\operatorname{row}_{7}\left(u_{2}\right)=\bar{t}$ then $u_{2}[5]+u_{2}[7]=1$
$\rightarrow u_{2}$ represents the set $\left\{p, q, s, t, \bar{r}, q_{2}\right\}$ and $\{p, q, s, t, ;\} \cap B_{P}=\{p, q, s, t\}$ is the stable model of P.

Complexities

- The complexity of M_{P}, M is $\mathrm{O}\left(m^{2} \times h\right)$. The number of times for iterating $M_{\mathrm{P}^{\delta}} . M$ is at most $(\boldsymbol{m}+1)$ times. Thus, the complexity of computing stable models is $\mathrm{O}\left((m+1) \times m^{2} \times h\right)=\mathbf{O}\left(\boldsymbol{m}^{3} \times \boldsymbol{h}\right)$.
- In column reduction, the complexity of computing $N_{\mathrm{P}^{\delta}} \cdot u_{0}\left[1 \ldots n^{\prime}\right]$ is $\mathrm{O}(m \times r)$ and computing $\theta_{D}($.$) is \mathrm{O}(m \times r)$. Since the number of times for iterating $N_{P}, u_{0}[1 \ldots r]$ is at most $(m+1)$ times and $|V|=h$, the complexity of computing stable models is:

$$
\mathrm{O}((m+1) \times(m \times r+m \times r) \times h)=\mathbf{O}\left(m^{2} \times r \times h\right):
$$

- Column reduction reduces complexity as $m \gtrdot r$ in general.

Content

- Introduction
- Computing least model of a definite program
- Computing stable model of a nomal program
- Experimental results
- Conclusion

Experiments

- Compare 3 algorithms for computing:
- fixpoint by the T_{P}-operator (van Emden \& Kowalski, 1976)
- matrix computation
- column reduction
- Testing is done on a machine with the configuration:
- OS: Linux Ubuntu 16.04 LTS 64bit
- CPU: Intel Core i7-6800K (3.4GHz/14nm/Cores=6/ Threads=12 /Cache15MB), Memory 32GB, DDR-2400
- GPU: GeForce GTX1070TI GDDR5 8GB
- Implementation Language: Maple 2017, 64bit

Parameters

- Runtime is measured by changing the parameters:
- n : size of the Herbrand base B_{P}
- m : number of rules in P
- Based on (n, m), randomly generate a program having rules as follows:

\mathbf{N}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
rate	$<\mathrm{n} / 3$	4%	4%	10%	40%	35%	4%	2%	$\sim 1 \%$

+N is the number of atoms in the body of a rule

+ Every program has $>95 \%$ rules with $|\operatorname{body}(r)|>1$

Results of testing on definite programs

\mathbf{n}	\mathbf{m}	$\mathbf{T}_{\mathbf{p}}$	Matrix Fixpoint/All	Column Reduce Fixpoint/All
20	400	0.07	$0.225 / 0.238$	$0.019 / 0.034$
20	8,000	0.628	$6.491 / 6.709$	$0.103 / 0.251$
50	2,500	0.499	$3.797 / 3.925$	$0.114 / 0.205$
50	12,500	1.952	$8.709 / 9.023$	$0.377 / 0.812$
100	5,000	2.056	$13.23 / 13.326$	$0.661 / 0.978$
100	10,000	1.935	$11.166 / 11.479$	$0.79 / 1.27$
200	400	0.037	$0.059 / 0.073$	$0.012 / 0.06$
200	20,000	5.846	$25.093 / 25.945$	$3.973 / 6.73$

+ "All" means time for creating a program matrix + computing the fixpoint.

Comparison (fixpoint computation)

(sec)

Results of testing on normal programs

\mathbf{n}	\mathbf{m}	\mathbf{k}	$\mathbf{T}_{\mathbf{p}}$	Matrix Fixpoint/All	Column Red Fixpoint/All
20	400	8	2.432	$19.603 / 19.714$	$3.338 / 3.362$
20	8,000	6	5.531	$12.368 / 12.696$	$4.502 / 4.603$
50	2,500	8	36.574	$37.863 / 38.463$	$29.582 / 29.786$
50	12,500	7	49.485	$30.819 / 32.00$	$48.883 / 49.32$
100	5,000	8	103.586	$31.68 / 32.338$	$69.579 / 69.851$
100	10,000	8	264.547	$84.899 / 87.142$	$192.981 / 194.003$
200	400	6	0.429	$1.928 / 2.021$	$1.222 / 1.342$
200	13,300	6	185.778	$48.185 / 49.185$	$124.119 / 126.255$

$+k$ is the number of negative literals in a program P.

+ "All" means time for creating a program matrix + computing the fixpoint.

Comparison
 (fixpoint computation)

* Matrix computation is effective when the size of n is large ($n=100$ or 200).
* Computation by column reduction is faster than computation by the T_{P}-operator, while it is slower than the naive method in case of $n=100$ or 200.
* To see the effect of computation by column reduction, we would need further environment that realizes efficient computation of matrices.

Content

- Introduction
- Computing least model of a definite program
- Computing stable model of a nomal program

Experimental results

- Conclusion

Conclusion

\square Develop new algorithms for computing logic programming semantics in linear algebra and the improvement methods for speeding-up those algorithms.
\square Results of testing show that:
The computation by column reduction is fastest in computing least models.
The naive matrix computation on a d-program is often better than column reduction in computing stable models.

Computating the stable models of a normal program:

o Although the size of the program matrix and the initial matrix are large, they have many zero elements (sparse matrix).
\rightarrow Improve the method for representing matrices in sparse forms which also brings storage advantages with a good matrix library.

Combine partial evaluation to reduce runtime (Sakama et. al. 2018).

Chiaki Sakama, Hien D. Nguyen, Taisuke Sato, Katsumi Inoue: Partial Evaluation of Logic Programs in Vector Space, $11^{\text {th }}$ Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2018), Oxford, UK, July 2018.

