
Computing Logic Programming
Semantics in Linear Algebra

Hien D. Nguyen, University of Information Technology
(UIT), VNU-HCM, Vietnam

Chiaki Sakama, Wakayama Univ., Japan
Taisuke Sato, AIST, Japan
Katsumi Inoue, NII, Japan

MIWAI 2018@Hanoi

11/28/2018

1

Content

Introduction
Computing least model of a definite program
Computing stable model of a normal program
Experimental results
Conclusion

2

11/28/2018

Content

Introduction
Computing least model of a definite program
Computing stable model of a normal program
Experimental results
Conclusion

3

11/28/2018

Introduction

Logic programming is a type of programming paradigm which is
largely based on formal logic.

Provides languages for declarative problem solving and symbolic
reasoning.

Linear algebra is at the core of many applications of scientific
computation.

One of challenging topic in AI is integrating linear algebraic
computation and symbolic computation.

4

11/28/2018

Purpose

Refine the framework of (Sakama et. al. 2017) and present
algorithms for finding the least model of a definite program and
stable models of a normal program.

Based on the structure of matrices representing logic programs,
research some optimization techniques for speeding-up these
algorithms.

Evaluate the complexity of proposed algorithms.
Testing and comparing these methods.

5

11/28/2018 Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs, In: Proc. of
KSEM 2017, LNAI 10412, pp.530-533, Springer, Melbourne, Australia (2017)

Content

Introduction
Computing least model of a definite program
Computing stable model of a normal program
Experimental results
Conclusion

6

11/28/2018

Vector Representation of Interpretations

Given the Herbrand base BP = { p, q, r, s }, an interpretation
I = { p, r } is represented by the vector:

 v =

𝟏
𝟎
𝟏
𝟎

The i-th element of v represents the truth value of pi (written
row1(v)= p, row2(v)= q, row3(v)= r, etc).

• Given v =(a1 ,…,an)T ∈ Rn, v[a1…ak] represents a
(sub)vector (a1 ,…,ak)T ∈ Rk (k≤n).

p

q

r

s

11/28/2018

7

P ={ p←q, q←p ∧ r, r←s, s← } is represented by MP ∈
R4×4 :

The i-th row represents the atom pi in the head, and the j-th

column represents the atom pj in the body of a rule (written:
row1(MP)= p, col2(MP)= q, … etc)

𝟎 𝟏 𝟎 𝟎
𝟏
𝟐

 𝟎 𝟏
𝟐

 𝟎
𝟎 𝟎 𝟎 𝟏
𝟎 𝟎 𝟎 𝟏

p q r s
p
q
r
s

p←q

 q←p ∧ r

 r←s
 s←

body

h
e
a
d

Matrix Representation of Definite Programs

! Fact (s←) is
 encoded as (s←s).

11/28/2018

8

Matrix Representation of Rules
with the Same Head
P ={ p←q, q←p ∧ r, q←s, s← } is transformed to the

program Pδ = Q ∪ D where:
 Q = { p←q, t←p ∧ r, u←s, s← } and D = { q←t ∨ u }.
Pδ is represented by MPδ ∈ R6×6 :

Rules in D are called d-rules.

Note: q←t ∨ u is a shorthand of q←t and q←u,
so Pδ is considered a definite program.

𝟎 𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏 𝟏
 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎
𝟏
𝟐

 𝟎 𝟏
𝟐

 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏 𝟎 𝟎

p q r s t u
p
q
r
s
t
u

11/28/2018

9

Computing Least Models

Given P ={ p←q, q←p ∧ r, r←s, s← }, the initial
vector v0 =(0,0,0,1)T represents facts in P. Then,

v1 is a fixpoint of vk = 𝜽(MPvk−1) (k≥1).
v1 =(0,0,1,1)T represents the least model { r, s } of P.

MPv0 =

𝟎 𝟏 𝟎 𝟎
𝟏
𝟐

 𝟎 𝟏
𝟐

 𝟎
𝟎 𝟎 𝟎 𝟏
𝟎 𝟎 𝟎 𝟏

𝟎
𝟎
𝟎
𝟏

=

𝟎
𝟎
𝟏
𝟏

 v1 = 𝜽(MPv0
)

p q r s
p
q
r
s

 MPv1 =

𝟎 𝟏 𝟎 𝟎
𝟏
𝟐

 𝟎 𝟏
𝟐

 𝟎
𝟎 𝟎 𝟎 𝟏
𝟎 𝟎 𝟎 𝟏

𝟎
𝟎
𝟏
𝟏

=

𝟎
𝟏
𝟐
𝟏
𝟏

 v2 = 𝜽(MPv1) = v1

11/28/2018

10

𝟎 𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏 𝟏

 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎
𝟏
𝟐

 𝟎 𝟏
𝟐

 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏 𝟎 𝟎

Column Reduction

Consider Pδ = Q ∪ D where
 Q = { p←q, t←p ∧ r, u←s, s← } and D = { q←t ∨ u }.
Reduce columns for newly introduced atoms and produce

NPδ ∈ R6×4 :

𝟎 𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏 𝟏

 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎
𝟏
𝟐

 𝟎 𝟏
 𝟐

 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏 𝟎 𝟎

p q r s t u
p
q
r
s
t
u

p q r s t u
p
q
r
s
t
u

MPδ = NPδ =

11/28/2018

11

Example (cont.)

Pδ = { p←q, t←p ∧ r, u←s, s←, q←t ∨ u }.
Given v =(0,0,0,1)T , it becomes

w = NPδ v =(0,0,0,1,0,1)T.
Introduce the rule: if an element in the body

of a d-rule is 1, then the element in the head
 of the d-rule is set to 1.

Add this rule to the θ-theresholding (written θD).
Put d =(q← t ∨ u). Since row6(w)=u ∈ body(d) and

head(d)=q, applying θD to NPδ v produces
θD (NPδ v)=(0,1,0,1,0,1)T.

𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟏
𝟏
𝟐

 𝟎 𝟏
𝟐

 𝟎
 𝟎 𝟎 𝟎 𝟏

p q r s
p
q
r
s
t
u

NPδ =

11/28/2018

12

Computing Least Models

Pδ = { p←q, t←p ∧ r, u←s, s←, q←t ∨ u }.
Given v0 =(0,0,0,1,0,0)T, v0[1…4]=(0,0,0,1)T:

v1= θD (NPδ v0[1…4])=(0,1,0,1,0,1)T
v2= θD (NPδ v1[1…4])=(1,1,0,1,0,1)T
v3= θD (NPδ v2[1…4])=(1,1,0,1,0,1)T= v2

Then v2 represents the least model of Pδ and
v2[1…4]=(1,1,0,1) is a vector representing the least
model { p, q, s } of P.

𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟏
𝟏
𝟐

 𝟎 𝟏
𝟐

 𝟎
 𝟎 𝟎 𝟎 𝟏

p q r s
p
q
r
s
t
u

NPδ =

11/28/2018

13

Theorem 2.3: Let P be a definite program with BP = {p1,…,pn}, and
Pδ a transformed d-program with BPδ = {p1,…,pn, pn+1,…,pm}.
Let NPδ ∈Rm×n be a submatrix of Pδ. Given a vector v ∈Rn
representing an interpretation I of P, let u = θD(NPδ v) ∈Rm.
Then u is a vector representing an interpretation J of Pδ such that:

J ∩ BPδ = TP(I).

14

11/28/2018

Complexities

In matrix computation, complexity of computing MPδ v is
O(m2) and computing θ(.) is O(m). The number of times for
iterating MPδ v is at most (m+1) times. So the complexity of
fixpoint computation is O((m+1)⨯(m+m2))= O(m3).

In column reduction, the complexity of computing NPδ v is
O(m⨯n) and computing θD(.) is O(m⨯n). The number of
times for iterating NPδ v is at most (m+1) times. So the
complexity of fixpoint computation is:

 O((m+1)⨯(m⨯n+m⨯n))= O(m2⨯n).

Column reduction reduces complexity as m⪢n in general.

11/28/2018

15

Content

Introduction
Computing least model of a definite program
Computing stable model of a normal program
Experimental results
Conclusion

16

11/28/2018

P ={ p ← q ∧ ¬r ∧ s, q ← ¬t ∧ q, q ← s, r ← ¬t, s ←, t←}

17 Matrix Representation of Normal Program

 { , , , , , }P p q r s q t q q s r t s t+• = ← ∧ ∧ ← ∧ ← ← ← ←

1

2

1 2

where { , ,

, , , }
 and { }

P Q D

Q p q r s q t q

q s r t s t
D q q q

δ• = ∪

= ← ∧ ∧ ← ∧

← ← ← ←
= ← ∨

1 2

'

1

2

0 1/3 0 1/3 0 0 0 1/3 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 ½ 0 0 0 0 0 0 ½
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

P

p q r s t q q r t
p
q
r
s
tM
q
q

r

t

 =

MPδ ∈ R9×9
11/28/2018

Initial matrix
 Initial matrix Mo ∈Rm×h (1 ≤ h ≤ 2m-n):

• Each row of Mo corresponds to each element of BPδ in a
way that rowi(Mo) = pi for 1 ≤ i ≤ n and rowi(Mo) = for
n +1 ≤ i ≤ m.

• aij = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ h) iff a fact pi ← is in P;
otherwise, aij = 0.

• aij = 0 (n + 1 ≤ i ≤ m, 1≤ j ≤ h) iff a fact qi ← is in P;
otherwise, there are two possibilities 0 and 1 for aij, so it is
either 0 or 1.

18

iq

0

1

2

0 0
0 0
0 0
1 1

 1 1
0 0
0 0
0 1
0 0

p
q
r
s
tM
q
q

r

t

 =

 1

2

1 2

where { , ,

, , , }
 and { }

P Q D

Q p q r s q t q

q s r t s t
D q q q

δ• = ∪

= ← ∧ ∧ ← ∧

← ← ← ←
= ← ∨ M0 ∈ R9×2 11/28/2018

Computing stable models
P ={ p ← q ∧ ¬r ∧ s, q ← ¬t ∧ q, q ← s, r ← ¬t, s ←, t←}.

Then,

M3 is a fixpoint of Mk = 𝜽(MP𝜹.Mk−1) (k≥1).
v2 =(1,1,0,1,1,0,1,1,0)T represents the set A={p, q, s, t, q2, } and
A ∩ BP = {p, q, s, t} is the stable model of P.

1 2

'

1

2

0 1/3 0 1/3 0 0 0 1/3 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 ½ 0 0 0 0 0 0 ½
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

P

p q r s t q q r t
p
q
r
s
tM
q
q

r

t

 =

0 1 2 3

1

2

0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 1 0 1 0 1 0
0 0 0 0 0 0

p
q
r
s
tM M M M
q
q

r

t

 = = = =

1
0 0

M1 = 𝜃(MP𝜹.M0) M2 = 𝜃(MP𝜹.M1) M3 = 𝜃(MP𝜹.M2) =M2

r
11/28/2018

19

δ

Column Reduction

1 2

'

1

2

0 1/3 0 1/3 0 0 0 1/3 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 ½ 0 0 0 0 0 0 ½
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

P

p q r s t q q r t
p
q
r
s
tM
q
q

r

t

 =

Consider Pδ = Q ∪ D with representation matrix MPδ ∈ R9×9
Reduce columns for newly introduced atoms and produce NPδ
∈ R9×7 :

'

1

2

0 1/ 3 0 1/ 3 0 1/ 3 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 ½ 0 0 0 0 ½
0 0 0 1 0 0 0

P

p q r s t r t
p
q
r
s
tN
r

t
q
q

 =

 11/28/2018

20

δ δ

• v1 ∈ R5 represents the facts in P, v1 = (0 0 0 1 1)T
• A = {(0 0)T, (1 0)T, (0 1)T, (1 1)T} with card(A) = 22 = 4
• B = {(0 1)T, (1 1)T}
 v2 ∈ A ¥ B = {(0 0)T, (1 0)T}
 V = {(v1 v2)T| v2 ∈ A ¥ B} = {(0 0 0 1 1 0 0)T, (0 0 0 1 1 1 0)T}
(i) For uo = (0 0 0 1 1 0 0)T:
 u1 = θD(NP’uo) = (0 1 0 1 1 0 0 0 1)T
 u2 = θD(NP’u1[1…7]) = (0 1 0 1 1 0 0 0 1)T = u1.

21 P ={ p ← q ∧ ¬r ∧ s, q ← ¬t ∧ q, q ← s, r ← ¬t, s ←, t←}

11/28/2018

(ii) For uo = (0 0 0 1 1 1 0)T:
u1 = θD(NP’uo) = (0 1 0 1 1 1 0 0 1)T,
u2 = θD(NP’u1[1…7]) = (1 1 0 1 1 1 0 0 1)T,
u3 = θD(NP’u2[1…7]) = (1 1 0 1 1 1 0 0 1)T
 = u2

22

11/28/2018

Complexities

The complexity of MP’M is O(m2×h). The number of times for
iterating MPδ .M is at most (m + 1) times. Thus, the complexity of
computing stable models is O((m + 1) ×m2×h) = O(m3×h).

In column reduction, the complexity of computing
NPδ .uo[1…n’] is O(m × r) and computing θD(.) is O(m × r).
Since the number of times for iterating NP’uo[1… r] is at
most (m + 1) times and |V | = h, the complexity of
computing stable models is:

O((m + 1)×(m×r + m×r)×h) = O(m2×r×h):

Column reduction reduces complexity as m⪢r in general.

11/28/2018

23

Content

Introduction
Computing least model of a definite program
Computing stable model of a normal program
Experimental results
Conclusion

24

11/28/2018

Experiments

Compare 3 algorithms for computing:
 fixpoint by the TP-operator (van Emden & Kowalski, 1976)
 matrix computation
 column reduction

Testing is done on a machine with the configuration:
OS: Linux Ubuntu 16.04 LTS 64bit
CPU: Intel Core i7-6800K (3.4GHz/14nm/Cores=6/ Threads=12

/Cache15MB), Memory 32GB, DDR-2400
GPU: GeForce GTX1070TI GDDR5 8GB
Implementation Language: Maple 2017, 64bit 11/28/2018

25

 Runtime is measured by changing the parameters:
 n: size of the Herbrand base BP
 m: number of rules in P

Based on (n,m), randomly generate a program having
rules as follows:

Parameters

N 0 1 2 3 4 5 6 7 8
rate < n/3 4% 4% 10% 40% 35% 4% 2% ～1%

+ N is the number of atoms in the body of a rule
+ Every program has > 95% rules with |body(r)| > 1

11/28/2018

26

n m Tp Matrix
Fixpoint/All

Column Reduce
Fixpoint/All

20 400 0.07 0.225 / 0.238 0.019 / 0.034
20 8,000 0.628 6.491 / 6.709 0.103 / 0.251
50 2,500 0.499 3.797/ 3.925 0.114/ 0.205
50 12,500 1.952 8.709/ 9.023 0.377/ 0.812
100 5,000 2.056 13.23 / 13.326 0.661 / 0.978
100 10,000 1.935 11.166 / 11.479 0.79 / 1.27
200 400 0.037 0.059 / 0.073 0.012 / 0.06
200 20,000 5.846 25.093 / 25.945 3.973 / 6.73

+ “All” means time for creating a program matrix + computing the fixpoint.

Results of testing on definite programs

11/28/2018

27

Comparison
(fixpoint computation)

(sec)

11/28/2018

28

Results of testing on normal programs

+ k is the number of negative literals in a program P.
+ “All” means time for creating a program matrix + computing the fixpoint.

n m k Tp Matrix

Fixpoint/All
Column Red
Fixpoint/All

20 400 8 2.432 19.603 / 19.714 3.338 / 3.362
20 8,000 6 5.531 12.368 / 12.696 4.502 / 4.603
50 2,500 8 36.574 37.863 / 38.463 29.582 / 29.786
50 12,500 7 49.485 30.819 / 32.00 48.883 / 49.32
100 5,000 8 103.586 31.68 / 32.338 69.579 / 69.851
100 10,000 8 264.547 84.899 / 87.142 192.981 / 194.003
200 400 6 0.429 1.928 / 2.021 1.222 / 1.342
200 13,300 6 185.778 48.185 / 49.185 124.119 / 126.255

11/28/2018

29

Comparison
(fixpoint computation)

(sec)

11/28/2018

30

Matrix computation is effective when the size of n is large (n =100
or 200).

Computation by column reduction is faster than computation by
the TP-operator, while it is slower than the naive method in case of
n = 100 or 200.

To see the effect of computation by column reduction, we would
need further environment that realizes efficient computation of
matrices.

31

11/28/2018

Content

Introduction
Computing least model of a definite program
Computing stable model of a normal program
Experimental results
Conclusion

32

11/28/2018

Conclusion
 Develop new algorithms for computing logic programming semantics in

linear algebra and the improvement methods for speeding-up those
algorithms.

 Results of testing show that:
 The computation by column reduction is fastest in computing least models.
 The naive matrix computation on a d-program is often better than column

reduction in computing stable models.

33

11/28/2018

 Computating the stable models of a normal program:
o Although the size of the program matrix and the initial matrix are large,

they have many zero elements (sparse matrix).

→ Improve the method for representing matrices in sparse forms which
also brings storage advantages with a good matrix library.

 Combine partial evaluation to reduce runtime (Sakama et. al. 2018).

The next work 34

Chiaki Sakama, Hien D. Nguyen, Taisuke Sato, Katsumi Inoue: Partial Evaluation of Logic Programs in Vector
Space, 11th Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2018), Oxford,
UK, July 2018.

	Computing Logic Programming Semantics in Linear Algebra
	Content
	Content
	Introduction
	Purpose
	Content
	Vector Representation of Interpretations
	Matrix Representation of Definite Programs
	Matrix Representation of Rules �with the Same Head
	Computing Least Models
	Column Reduction
	Example (cont.)
	Computing Least Models
	スライド番号 14
	Complexities
	Content
	スライド番号 17
	Initial matrix
	Computing stable models
	Column Reduction
	スライド番号 21
	スライド番号 22
	Complexities
	Content
	Experiments
	スライド番号 26
	スライド番号 27
	Comparison �(fixpoint computation)
	Results of testing on normal programs
	Comparison �(fixpoint computation)
	スライド番号 31
	Content
	Conclusion
	スライド番号 34

