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Relations between Answer Set Programs 

 LP: the class of all logic programs

 Relation  ⊆ LP× LP 

 P1, P2 ∈ LP : logic programs

 P1P2 : comparison, correspondence, entailment, etc. 

Equivalence/Non-equivalence 
Inclusion/Non-inclusion/Disjoint
Generality/Specificity and Abstraction/Refinement
Preferred/Non-preferred and Higher/Lower Priority
Strength/Weakness and Better/Less Valued
More/Less Informativeness or Supportedness



Ordering Logic Programs 

 Equivalence of logic programs

optimization, debugging, simplification, verification

ordinary (weak)/strong/uniform/relativized/projected

 Direction to refine/abstract programs (minimal revision) 

Inductive Logic Programming (ILP), Ontology

 Synthesis of a common generalized/specialized theory 
from different sources of information [Sakama & Inoue, 
2006,2007,2008]
Multi-Agent Systems (MAS)



Comparing Nonmonotonic Programs

 Example:   

P1 = { p ← not q }.

P2 = { p ← not q,    q ← not p }.   

P1 has the single answer set:  {p}
P2 has two answer sets: {p}, {q} 

 P1 is more informative than P2 in the sense that P1 has the 
skeptical consequences {p} which includes {}.  

 P2 is more informative than P1 in the sense that P2 has the 
credulous consequences {p,q} which includes {p}.  



Generality Relations [Inoue & Sakama, 2006] 

 Smyth (#) and Hoare (♭) orderings between sets of answer sets.  
 Both #- and ♭-generalities are defined in a way that weakly 

equivalent programs belong to the same equivalence class 
induced by these orderings.  

 Both minimal upper and maximal lower bounds can be defined 
for any pair of programs in these generality orderings.  

 #-general programs entail more skeptical consequences, while 
♭- general programs entail more credulous consequences. 

 Both strong #- and strong ♭-generalities are defined in a way 
that strongly equivalent programs belong to the same 
equivalence class  induced by these orderings.  

 The proposed orderings can be applied to the class of extended 
disjunctive programs (EDPs).  



Extensions (in the paper)
 General framework to compare semantic structures—comparing 

composite sets, which are sets of literal sets, under any pre-order 

between literal sets.

 Application of the comparison framework to any class of logic 

programs including nested programs, programs with aggregates, 

and any propositional formulas as well as under other semantics.  

 Variations of generality relations — strong/uniform/relativized  

equivalence/inclusion/generality 

comparison of generality with respect to contexts—robustness

 satisfaction of classical inductive generality

application to formalizing abductive generality



Ordering on Powersets
 pre-order ≤ : binary relation which is reflexive and transitive

 partial order ≤ : pre-order which is also anti-symmetric 

 〈D, ≤〉 : pre-ordered set / poset

 P(D) : the power set of D

 The Smyth order:   for X, Y ∈ P(D), 

X ╞# Y iff  ∀x∈X ∃y∈Y. y ≤ x
 The Hoare order:   for X, Y ∈ P(D), 

X ╞♭ Y iff  ∀y∈Y ∃x∈X. y ≤ x

 Both 〈 P(D), ╞# 〉 and 〈 P(D), ╞♭ 〉 are pre-ordered sets. 



Ordering over the sets of literal sets
 Lit : the set of all ground literals in the language

 composite set Σ :  Σ ∈ P(P(Lit ))     

 A composite set represents a semantic structure of a logic 
program P, e.g., the answer sets (stable models), the 
supported models, the possible models, the minimal models, 
the classical models, the preferred answer sets of P.  

 The Smyth order Σ1 ╞# Σ2 and the Hoare order Σ1 ╞♭ Σ2
can be defined for any two composite sets Σ1, Σ2.  

 If Σ1 and Σ2 represent the semantics of P1 and P2, the 
Smyth/Hoare ordering gives generality relation between them.  



 Rules: 
L1 ; … ; Lk ; not Lk+1 ; … ; not Ll

← Ll+1 , …, Lm , not Lm+1 , …, not Ln

• not : negation as failure, Li : literal, 0≦k ≦l ≦m≦n

• Extended disjunctive program (EDP): k=l. 

• Extended logic program (ELP):  k=l≦1.

• Positive disjunctive program (PDP):  
EDP & ∀Li : atom & m=n. 

• Normal logic program (NLP): ELP & ∀Li : atom.  

General Extended Disjunctive  
Programs (or simply Programs)



Ordering Logic Programs
 LP:  the class of all programs 
 A(P), A(Q) : the answer sets of P, Q ∈ LP 
 P is more #-general than Q : 

P ╞# Q iff  A(P) ╞# A(Q) 

 P is more ♭-general than Q :  
P ╞♭ Q iff  A(P) ╞♭ A(Q)

Theorem:  
(1) P ╞# Q and Q ╞# P iff  min(A(P))=min(A(Q)). 
(2) P ╞♭ Q and Q ╞♭ P iff  max(A(P))=max(A(Q)).
In case of EDP, P ╞#/♭ Q and Q ╞#/♭ P  iff A(P)=A(Q) (i.e. P≡Q).



Ordering Logic Programs

 Example:   

P1 = { p ← not q }.

P2 = { p ← not q,    q ← not p }.  
P3 = { p;q ← }.
P4 = { p ← not ¬p,   q ← p }.

A(P1) = {{p}}, A(P2) = A(P3) = {{p}, {q}},  A(P4) = {{p,q}} 

 P4 ╞# P1 ╞# P2

 P4 ╞♭ P2 ╞♭ P1

 P2 ╞# P3 ╞# P2,    P2 ╞♭ P3 ╞♭ P2 (i.e., P2≡P3)



Skeptically/Credulously Entailed Literals 
in More/Less General Programs 

 Skp(P) : the set of skeptical consequences of P

 Crd(P) : the set of credulous consequences of P

 Theorem: 

 If P ╞# Q then  Skp(P) ⊇ Skp(Q).

 If P ╞♭ Q then  Crd(P) ⊇ Crd(Q). 



Strong/Uniform/Relativized Generality 

 P, Q ∈ LP,   C ⊆ LP

 P is strongly/uniformly more #-general than Q : 
P  Q iff  P  R ╞# Q  R for any R ∈ LP / R ∈P(Lit).

 P is strongly/uniformly more ♭-general than Q :  
P Q iff  P  R ╞♭ Q  R for any R ∈LP / R ∈P(Lit).

 P Q implies P ╞#/♭ Q .  

 Relativized #/♭ -generality requests the above for any R∈C 

 Strong generality is equivalent to strong inclusion [Eiter et 
al., 2005] (for finite programs).  

 Uniform generality for PDPs reduces to classical inductive 
generality, i.e., logical entailment. 

#

♭

#/♭



Abductive Generality
 Explainable generality [Inoue & Sakama, 2008] can be 

characterized by ♭-generality.  That is, the ability to explain more 
observations corresponds to derive more credulous consequences 
when abducibles are represented as choice constructs:

L ; not L ← for any abducible literal L.  

 Explanatory generality [Inoue & Sakama, 2008] can be 
characterized by relativized ♭-generality, in which the set of 
abducibles is set to be the context for comparison.   

 Taking minimal upper/maximal lower bounds of two abductive 
programs can be applied to coordination of multiple abductive 
agents.  



Conclusion: Generality as 
Comparison between Programs 

 Program Verification: testing and debugging with 
respect to specification of a program (equivalence)

 Program Development: testing if a refined theory is 
more detailed from the previous theory (generality)

 Problem Solving: assessment of relative value of each 
theory/ontology (generality, preference)

Machine Learning: criteria to compose better theories 
(generality, preference)

Multiagent Systems: criteria to compare different 
information sources (informativeness, preference)


	Exploring Relations between Answer Set Programs
	Relations between Answer Set Programs 
	Ordering Logic Programs 
	Comparing Nonmonotonic Programs 
	Generality Relations [Inoue & Sakama, 2006] 
	Extensions (in the paper)
	Ordering on Powersets
	Ordering over the sets of literal sets
	General Extended Disjunctive  Programs (or simply Programs)
	Ordering Logic Programs
	Ordering Logic Programs
	Skeptically/Credulously Entailed Literals in More/Less General Programs 
	Strong/Uniform/Relativized Generality 
	Abductive Generality
	Conclusion: Generality as Comparison between Programs 

