Interlinking Logic Programs and Argumentation Frameworks

Chiaki Sakama¹ and Tran Cao Son²

¹Wakayama University, Japan ²New Mexico State University, USA

LPNMR 2022@Genova

Background

Logic Program vs. Argumentation Framework

	LP	AF
knowledge	facts & rules	arguments & attacks
reasoning	commonsense reasoning	argumentative reasoning

- LP and AF specify different types of knowledge and realize different types of reasoning.
- In our daily life, we often use two modes of reasoning interchangeably.

Consider a logic program representing knowledge:

get-vaccine \leftarrow safe \land effective

 \neg get-vaccine \leftarrow not safe

where we get a vaccine if it is safe and effective.

Consider a logic program representing knowledge:

 $\textit{get-vaccine} \leftarrow \textit{safe} \land \textit{effective}$

 $\neg get$ -vaccine \leftarrow not safe

where we get a vaccine if it is safe and effective.

- To see whether a vaccine is safe and effective, we consult an expert opinion.
- It is often the case that multiple experts have different opinions.

- In this case, we observe argumentation among experts and take it into account to make a decision.
- The truth value of **safe** is determined by an external argumentation framework *AF* such as:

- In this case, we observe argumentation among experts and take it into account to make a decision.
- The truth value of **safe** is determined by an external argumentation framework *AF* such as:

- A credulous reasoner will accept **safe** under the stable semantics, while a skeptical reasoner will not accept it under the grounded semantics.
- A reasoner determines acceptable arguments under the chosen semantics and makes a decision using his/her own LP.

Motivation

The example tells us that

- We need a framework in which a logic program refers to the result of argumentation.
- A logic programming reasoner has the option to choose the semantics of AF as well as the semantics of LP.
- If an argument is not justified in AF, an LP reasoner will not employ the argument.

Motivation

The example tells us that

- We need a framework in which a logic program refers to the result of argumentation.
- A logic programming reasoner has the option to choose the semantics of AF as well as the semantics of LP.
- If an argument is not justified in AF, an LP reasoner will not employ the argument.
- AF is transformed to LP, and vice versa, and one could perform both argumentative reasoning and deductive reasoning in a single framework.
- However, the transformational approach requires that two frameworks have the corresponding semantics, i.e., an LP reasoner cannot choose an arbitrary AF semantics.

Consider a debate on whether global warming is occurring.

- Scientists and politicians make different claims based on evidences and scientific knowledge.
- AF is used for representing the debate, while arguments appearing in AF are generated as the results of reasoning from background knowledge of participants.

Motivation

The example tells us that

- We need a framework in which an argumentation framework refers to the result of reasoning in LP.
- An AF participant has the option to choose the semantics of LP as well as the semantics of AF.
- If an argument is not supported in LP, an AF participant will not use the argument.

Motivation

The example tells us that

- We need a framework in which an argumentation framework refers to the result of reasoning in LP.
- An AF participant has the option to choose the semantics of LP as well as the semantics of AF.
- If an argument is not supported in LP, an AF participant will not use the argument.
- Argumentation can have internal structure for reasoning about arguments in structured argumentation.
- However, merging argumentation and knowledge bases into a single framework produces a huge argumentation structure that is complicated and hard to manage.

Purpose

- We introduce new frameworks, called **LPAF** and **AFLP**, for interlinking LPs and AFs.
- LPAF uses the result of argumentation in AFs for reasoning in LPs, while AFLP uses the result of reasoning in LPs for arguing in AFs.
- LPAF and AFLP enable to combine different reasoning tasks while keeping independence of each knowledge representation.

LP and AF

• A logic program (LP) is a finite set of rules:

 $p_1 \lor \cdots \lor p_l \leftarrow q_1, \ldots, q_m, not q_{m+1}, \ldots, not q_n$

where p_i and q_j are propositional variables.

- A logic program LP under the μ semantics is denoted by LP $_{\mu}$.
- An argumentation framework (AF) is a pair (A, R)where A is a finite set of arguments and $R \subseteq A \times A$ is an attack relation.
- An argumentation framework AF under the ω semantics is denoted by AF $_{\omega}$.

Example of AF

Given $AF = (\{a, b, c\}, \{(a, b), (b, a), (b, c)\})$:

- AF has 2 stable extensions: $\{a, c\}, \{b\};$
- AF has the single grounded extension \varnothing .

Example of AF

Given $AF = (\{a, b, c\}, \{(a, b), (b, a), (b, c)\})$:

• AF has 2 stable extensions: $\{a, c\}, \{b\};$

• AF has the single grounded extension \varnothing .

Given $AF = (\{a, b\}, \{(a, a), (a, b)\})$:

- AF has no stable extension;
- AF has the single grounded extension \varnothing .

From AF to LP

Assume that AF and LP share the same propositional language, and no rule in LP has an argument in its head.

Given AF = (A, R), LP is partitioned into $LP = LP^{+A} \cup LP^{-A}$ where $LP^{+A} = \{ r \in LP \mid body(r) \cap A \neq \emptyset \}$ and $LP^{-A} = \{ r \in LP \mid body(r) \cap A = \emptyset \}.$

- Each rule in LP^{+A} refers to arguments, and each rule in LP^{-A} is free from arguments.
- Argument $a \in A$ is referred to in LP if a appears in LP.
- Define $A|_{LP} = \{ a \in A \mid a \text{ is referred to in } LP \}.$

From AF to LP

Assume that AF and LP share the same propositional language, and no rule in LP has an argument in its head.

Given AF = (A, R), LP is partitioned into $LP = LP^{+A} \cup LP^{-A}$ where $LP^{+A} = \{ r \in LP \mid body(r) \cap A \neq \emptyset \}$ and $LP^{-A} = \{ r \in LP \mid body(r) \cap A = \emptyset \}.$

- Each rule in LP^{+A} refers to arguments, and each rule in LP^{-A} is free from arguments.
- Argument $a \in A$ is referred to in LP if a appears in LP.
- Define $A|_{LP} = \{ a \in A \mid a \text{ is referred to in } LP \}.$

Let AF = (A, R) and $\mathcal{A} \subseteq 2^A$. Then a μ model of LP extended by \mathcal{A} is:

• a μ model of $LP \cup \{a \leftarrow | a \in E \cap A|_{LP}\}$ for some $E \in \mathcal{A}$ if $\mathcal{A} \neq \emptyset$;

• a μ model of LP^{-A} , otherwise.

Simple LPAF framework

- A simple LPAF framework is a pair $\varphi = \langle LP_{\mu}, AF_{\omega} \rangle$, where LP_{μ} is an LP under the μ semantics and AF_{ω} is an AF under the ω semantics.
- When AF_{ω} has the set of ω extensions $\mathcal{E}^{\omega} = \{E_1, \dots, E_k\}$, an LPAF model of φ is defined as a μ model of LP_{μ} extended by \mathcal{E}^{ω} , i.e., a μ model of

 $LP_{\mu} \cup \{a \leftarrow | a \in E_i \cap A|_{LP_{\mu}}\}$ for some $E_i \in \mathcal{E}^{\omega}$

where $A|_{LP_{\mu}} = \{ a \in A \mid a \text{ appears in } LP_{\mu} \}.$

Simple LPAF framework

- A simple LPAF framework is a pair $\varphi = \langle LP_{\mu}, AF_{\omega} \rangle$, where LP_{μ} is an LP under the μ semantics and AF_{ω} is an AF under the ω semantics.
- When AF_{ω} has the set of ω extensions $\mathcal{E}^{\omega} = \{E_1, \dots, E_k\}$, an LPAF model of φ is defined as a μ model of LP_{μ} extended by \mathcal{E}^{ω} , i.e., a μ model of

 $LP_{\mu} \cup \{a \leftarrow \mid a \in E_i \cap A|_{LP_{\mu}}\}$ for some $E_i \in \mathcal{E}^{\omega}$

where $A|_{LP_{\mu}} = \{ a \in A \mid a \text{ appears in } LP_{\mu} \}.$

If ε^ω = Ø, an LPAF model is constructed by rules that are free from arguments in AF
 (i.e., no use of rules that contain arguments in AF_ω).

Consider $\varphi_1 = \langle LP_{stb}, AF_{stb} \rangle$ where *stb* means *stable*

- $LP_{stb} = \{ p \leftarrow a, q \leftarrow not a \};$
- $AF_{stb} = (\{a, b\}, \{(a, b), (b, a)\}).$
- As AF_{stb} has two stable extensions {a} and {b},
 φ₁ has two LPAF models {p, a} and {q}.

Consider $\varphi_1 = \langle LP_{stb}, AF_{stb} \rangle$ where *stb* means *stable*

- $LP_{stb} = \{ p \leftarrow a, q \leftarrow not a \};$
- $AF_{stb} = (\{a, b\}, \{(a, b), (b, a)\}).$
- As AF_{stb} has two stable extensions $\{a\}$ and $\{b\}$, φ_1 has two LPAF models $\{p, a\}$ and $\{q\}$.
- If $\omega = grounded$ then AF_{grd} has the single extension \emptyset . Then $\langle LP_{stb}, AF_{grd} \rangle$ has the single LPAF model $\{q\}$.

Consider $\varphi_1 = \langle LP_{stb}, AF_{stb} \rangle$ where *stb* means *stable*

- $LP_{stb} = \{ p \leftarrow a, q \leftarrow not a \};$
- $AF_{stb} = (\{a, b\}, \{(a, b), (b, a)\}).$
- As AF_{stb} has two stable extensions $\{a\}$ and $\{b\}$, φ_1 has two LPAF models $\{p, a\}$ and $\{q\}$.
- If $\omega = grounded$ then AF_{grd} has the single extension \emptyset . Then $\langle LP_{stb}, AF_{grd} \rangle$ has the single LPAF model $\{q\}$.

Consider $\varphi_2 = \langle LP_{stb}, AF_{stb} \rangle$ where

- $LP_{stb} = \{ p \leftarrow not a, q \leftarrow not p \};$
- $AF_{stb} = (\{a, b\}, \{(a, b), (a, a)\}).$
- As AF_{stb} has no stable extension and the second rule in LP_{stb} is free from arguments, φ_2 has the single LPAF model $\{q\}$.

Properties (1)

 \mathbf{M}_{φ} : the set of LPAF models of φ .

Let $\varphi_1 = \langle LP_{\mu}, AF_{\omega_1}^1 \rangle$ and $\varphi_2 = \langle LP_{\mu}, AF_{\omega_2}^2 \rangle$ be two LPAFs such that $\mathcal{E}_{AF^1}^{\omega_1} \neq \emptyset$. If $\mathcal{E}_{AF^1}^{\omega_1} \subseteq \mathcal{E}_{AF^2}^{\omega_2}$, then $\mathbf{M}_{\varphi_1} \subseteq \mathbf{M}_{\varphi_2}$.

This implies the inclusion relations with the same AF under different semantics: $\mathbf{M}_{\varphi_1} \subseteq \mathbf{M}_{\varphi_2}$ holds for

$$\begin{aligned} \varphi_1 &= \langle LP_{\mu}, AF_{prf} \rangle \text{ and } \varphi_2 &= \langle LP_{\mu}, AF_{com} \rangle; \\ \varphi_1 &= \langle LP_{\mu}, AF_{stb} \rangle \text{ and } \varphi_2 &= \langle LP_{\mu}, AF_{prf} \rangle; \\ \varphi_1 &= \langle LP_{\mu}, AF_{grd} \rangle \text{ and } \varphi_2 &= \langle LP_{\mu}, AF_{com} \rangle, \end{aligned}$$

where *com*=complete, *prf*=preferred, *stb*=stable, and *grd*=grounded.

Properties (2)

Two programs LP_{μ}^{1} and LP_{μ}^{2} are uniformly equivalent relative to A (denoted $LP_{\mu}^{1} \equiv_{u}^{A} LP_{\mu}^{2}$) if for any set of non-disjunctive facts $F \subseteq A$, the programs $LP_{\mu}^{1} \cup F$ and $LP_{\mu}^{2} \cup F$ have the same set of μ models (Eiter, et al. 2007).

Let
$$\varphi_1 = \langle LP_{\mu}^1, AF_{\omega} \rangle$$
 and $\varphi_2 = \langle LP_{\mu}^2, AF_{\omega} \rangle$ be two
LPAFs such that $\mathcal{E}^{\omega} \neq \emptyset$. Then, $\mathbf{M}_{\varphi_1} = \mathbf{M}_{\varphi_2}$ if
• $LP_{\mu}^1 \equiv_u^A LP_{\mu}^2$, and
• $A|_{LP_{\mu}^1} = A|_{LP_{\mu}^2}$
where $AF_{\omega} = (A, R)$.

General LPAF

A general LPAF framework is defined as a tuple

$$\varphi = \langle \mathcal{LP}^m, \mathcal{AF}^n \rangle$$

where $\mathcal{LP}^{m} = (LP_{\mu_{1}}^{1}, ..., LP_{\mu_{m}}^{m})$ and $\mathcal{AF}^{n} = (AF_{\omega_{1}}^{1}, ..., AF_{\omega_{n}}^{n})$. Each $LP_{\mu_{i}}^{i}$ is a logic program LP^{i} under the μ_{i} semantics and each $AF_{\omega_{j}}^{j}$ is an argumentation framework AF^{j} under the ω_{j} semantics.

A general LPAF framework is used in a situation such that multiple agents have individual LPs as their private KBs and each agent refers to open AFs.

General LPAF

A general LPAF framework is defined as a tuple

$$\varphi = \langle \mathcal{LP}^m, \mathcal{AF}^n \rangle$$

where $\mathcal{LP}^m = (LP_{\mu_1}^1, \dots, LP_{\mu_m}^m)$ and $\mathcal{AF}^n = (AF_{\omega_1}^1, \dots, AF_{\omega_n}^n)$. Each $LP_{\mu_i}^i$ is a logic program LP^i under the μ_i semantics and each $AF_{\omega_j}^j$ is an argumentation framework AF^j under the ω_j semantics.

A general LPAF framework is used in a situation such that multiple agents have individual LPs as their private KBs and each agent refers to open AFs.

The LPAF state of φ is defined as a tuple $(\Sigma_1, \ldots, \Sigma_m)$ where $\Sigma_i = (\mathbf{M}_1^i, \ldots, \mathbf{M}_n^i)$ $(1 \le i \le m)$ and \mathbf{M}_j^i $(1 \le j \le n)$ is the set of LPAF models of $\langle LP_{\mu_i}^i, AF_{\omega_j}^j \rangle$.

General LPAF

Given tuples (S_1, \ldots, S_k) and (T_1, \ldots, T_l) , define $(S_1, \ldots, S_k) \oplus (T_1, \ldots, T_l) = (S_1, \ldots, S_k, T_1, \ldots, T_l).$

Let $\langle \mathcal{LP}^m, \mathcal{AF}^n \rangle$ be a general LPAF framework. The LPAF state $(\Sigma_1, \ldots, \Sigma_m)$ of φ is obtained by

$$(\Sigma_1,\ldots,\Sigma_k)\oplus(\Sigma_{k+1},\ldots,\Sigma_m) \quad (1\leq k\leq m-1)$$

where $(\Sigma_1, \ldots, \Sigma_k)$ is the LPAF state of $\langle \mathcal{LP}^k, \mathcal{AF}^n \rangle$ and $(\Sigma_{k+1}, \ldots, \Sigma_m)$ is the LPAF state of $\langle \mathcal{LP}^m_{k+1}, \mathcal{AF}^n \rangle$ where $\mathcal{LP}^m_{k+1} = (\mathcal{LP}^{k+1}_{\mu_{k+1}}, \ldots, \mathcal{LP}^m_{\mu_m}).$

The above presents that a general LPAF has the modularity property; φ is partitioned into smaller φ_1 and φ_2 , and the introduction of new LPs to φ is done incrementally.

From LP to AF

Assume that no rule in LP has an argument in its body. \mathcal{B}_{LP} : Herbrand base of LP.

Let AF = (A, R) and $M \subseteq \mathcal{B}_{LP}$. Then AF with support M is defined as $AF^M = (A, R')$ where

 $R' = R \setminus \{ (x, a) \mid x \in A \text{ and } a \in A \cap M \}.$

 AF^{M} is an argumentation framework in which every tuple attacking $a \in M$ is removed from R. As a result, every argument included in M is accepted in AF^{M} .

From LP to AF

Assume that no rule in LP has an argument in its body. \mathcal{B}_{LP} : Herbrand base of LP.

Let AF = (A, R) and $M \subseteq \mathcal{B}_{LP}$. Then AF with support M is defined as $AF^M = (A, R')$ where $R' = R \setminus \{ (x, a) \mid x \in A \text{ and } a \in A \cap M \}.$

 AF^{M} is an argumentation framework in which every tuple attacking $a \in M$ is removed from R. As a result, every argument included in M is accepted in AF^{M} .

Let AF = (A, R) and $\mathcal{M} \subseteq 2^{\mathcal{B}_{LP}}$. Then an ω extension of AF supported by \mathcal{M} is an ω extension of AF^M for some $M \in \mathcal{M}$ if $\mathcal{M} \neq \emptyset$; otherwise, it is an ω extension of (A', R') where $A' = A \setminus \mathcal{B}_{LP}$ and $R' = R \cap (A' \times A')$.

Simple AFLP framework

• A simple AFLP framework is defined as a pair $\psi = \langle AF_{\omega}, LP_{\mu} \rangle$.

Simple AFLP framework

- A simple AFLP framework is defined as a pair $\psi = \langle AF_{\omega}, LP_{\mu} \rangle$.
- When LP_μ has the set of μ models M^μ, an AFLP extension of ψ is defined as an ω extension of AF^M = (A, R') where M ∈ M^μ and R' = R \ { (x, a) | x ∈ A and a ∈ A ∩ M }. (i.e., every tuple attacking a∈M is removed from R).

Simple AFLP framework

- A simple AFLP framework is defined as a pair $\psi = \langle AF_{\omega}, LP_{\mu} \rangle$.
- When LP_μ has the set of μ models M^μ, an AFLP extension of ψ is defined as an ω extension of AF^M = (A, R') where M ∈ M^μ and R' = R \ { (x, a) | x ∈ A and a ∈ A ∩ M }. (i.e., every tuple attacking a∈M is removed from R).
- If M^μ = Ø, an AFLP extension of ψ is an ω extension of (A', R') where A' = A \ B_{LP} and R' = R ∩ (A' × A'). (i.e., no use of arguments that rely on LP).

Consider $\psi_1 = \langle AF_{stb}, LP_{stb} \rangle$ where

• $AF_{stb} = (\{a, b\}, \{(a, b), (b, a)\});$

• $LP_{stb} = \{ a \leftarrow p, p \leftarrow not q, q \leftarrow not p \}.$

• LP_{stb} has two stable models $M_1 = \{a, p\}$ and $M_2 = \{q\}$, then $AF_{\omega}^{M_1} = (\{a, b\}, \{(a, b)\})$ and $AF_{\omega}^{M_2} = AF_{\omega}$. As a result, ψ_1 has two AFLP extensions $\{a\}$ and $\{b\}$.

Consider $\psi_1 = \langle AF_{stb}, LP_{stb} \rangle$ where

• $AF_{stb} = (\{a, b\}, \{(a, b), (b, a)\});$

• $LP_{stb} = \{ a \leftarrow p, p \leftarrow not q, q \leftarrow not p \}.$

- LP_{stb} has two stable models $M_1 = \{a, p\}$ and $M_2 = \{q\}$, then $AF_{\omega}^{M_1} = (\{a, b\}, \{(a, b)\})$ and $AF_{\omega}^{M_2} = AF_{\omega}$. As a result, ψ_1 has two AFLP extensions $\{a\}$ and $\{b\}$.
- If we use $\omega = grounded$, then $\langle AF_{grd}, LP_{stb} \rangle$ has two AFLP extensions $\{a\}$ and \emptyset .

Consider $\psi_1 = \langle AF_{stb}, LP_{stb} \rangle$ where

• $AF_{stb} = (\{a, b\}, \{(a, b), (b, a)\});$

• $LP_{stb} = \{ a \leftarrow p, p \leftarrow not q, q \leftarrow not p \}.$

- LP_{stb} has two stable models $M_1 = \{a, p\}$ and $M_2 = \{q\}$, then $AF_{\omega}^{M_1} = (\{a, b\}, \{(a, b)\})$ and $AF_{\omega}^{M_2} = AF_{\omega}$. As a result, ψ_1 has two AFLP extensions $\{a\}$ and $\{b\}$.
- If we use $\omega = grounded$, then $\langle AF_{grd}, LP_{stb} \rangle$ has two AFLP extensions $\{a\}$ and \emptyset .

Consider $\psi_2 = \langle AF_{grd}, LP_{stb} \rangle$ where

- $AF_{grd} = (\{a, b, c\}, \{(a, b), (b, c)\});$
- $LP_{stb} = \{ a \leftarrow p, p \leftarrow not p \}.$
- As LP_{stb} has no stable model, ψ₂ has the AFLP extension {b} as the grounded extension of ({b, c}, {(b, c)}).

Properties (1)

Let $\psi_1 = \langle AF_{\omega}, LP_{\mu_1}^1 \rangle$ and $\psi_2 = \langle AF_{\omega}, LP_{\mu_2}^2 \rangle$ be two AFLPs such that $\mathcal{M}_{LP^1}^{\mu_1} \neq \emptyset$. If $\mathcal{M}_{LP^1}^{\mu_1} \subseteq \mathcal{M}_{LP^2}^{\mu_2}$, then $\mathbf{E}_{\psi_1} \subseteq \mathbf{E}_{\psi_2}$.

Properties (2)

(Baumann 2014) Given $AF_{\omega}^{1} = (A_{1}, R_{1})$ and $AF_{\omega}^{2} = (A_{2}, R_{2})$,

- AF_{ω}^{1} and AF_{ω}^{2} are normal deletion equivalent (denoted $AF_{\omega}^{1} \equiv_{nd} AF_{\omega}^{2}$) if for any set A of arguments $(A'_{1}, R_{1} \cap (A'_{1} \times A'_{1}))$ and $(A'_{2}, R_{2} \cap (A'_{2} \times A'_{2}))$ have the same set of ω extensions where $A'_{1} = A_{1} \setminus A$ and $A'_{2} = A_{2} \setminus A$.
- AF_{ω}^{1} and AF_{ω}^{2} are local deletion equivalent (denoted $AF_{\omega}^{1} \equiv_{ld} AF_{\omega}^{2}$) if for any set *R* of attacks $(A_{1}, R_{1} \setminus R)$ and $(A_{2}, R_{2} \setminus R)$ have the same set of ω extensions.

Let
$$\psi_1 = \langle AF_{\omega}^1, LP_{\mu} \rangle$$
 and $\psi_2 = \langle AF_{\omega}^2, LP_{\mu} \rangle$ be two
AFLPs. Then, $\mathbf{E}_{\psi_1} = \mathbf{E}_{\psi_2}$ if
• $\mathcal{M}^{\mu} = \emptyset$ and $AF_{\omega}^1 \equiv_{nd} AF_{\omega}^2$; or
• $\mathcal{M}^{\mu} \neq \emptyset$ and $AF_{\omega}^1 \equiv_{ld} AF_{\omega}^2$.

General AFLP

A general AFLP framework is defined as a tuple

$$\psi = \langle \, \mathcal{AF}^n, \mathcal{LP}^m \,
angle$$

where $\mathcal{AF}^n = (\mathcal{AF}^1_{\omega_1}, \dots, \mathcal{AF}^n_{\omega_n})$ and $\mathcal{LP}^m = (\mathcal{LP}^1_{\mu_1}, \dots, \mathcal{LP}^m_{\mu_m})$. Each $\mathcal{AF}^j_{\omega_j}$ $(1 \le j \le n)$ is an argumentation framework \mathcal{AF}^j under the ω_j semantics and each $\mathcal{LP}^i_{\mu_i}$ $(1 \le i \le m)$ is a logic program \mathcal{LP}^i under the μ_i semantics.

A general AFLP framework is used in a situation such that argumentative dialogues consult LPs as information sources.

General AFLP

A general AFLP framework is defined as a tuple

$$\psi = \langle \, \mathcal{AF}^n, \mathcal{LP}^m \,
angle$$

where $\mathcal{AF}^n = (AF_{\omega_1}^1, \dots, AF_{\omega_n}^n)$ and $\mathcal{LP}^m = (LP_{\mu_1}^1, \dots, LP_{\mu_m}^m)$. Each $AF_{\omega_j}^j$ $(1 \le j \le n)$ is an argumentation framework AF^j under the ω_j semantics and each $LP_{\mu_i}^i$ $(1 \le i \le m)$ is a logic program LP^i under the μ_i semantics.

A general AFLP framework is used in a situation such that argumentative dialogues consult LPs as information sources.

An **AFLP state** of ψ is defined as a tuple $(\Gamma_1, \ldots, \Gamma_n)$ where $\Gamma_j = (\mathbf{E}_1^j, \ldots, \mathbf{E}_m^j)$ $(1 \le j \le n)$ and \mathbf{E}_i^j $(1 \le i \le m)$ is the set of AFLP extensions of $\langle AF_{\omega_j}^j, LP_{\mu_j}^i \rangle$.

General AFLP

A general AFLP has the modularity property.

Let $\psi = \langle \mathcal{AF}^n, \mathcal{LP}^m \rangle$ be a general AFLP framework. Then the AFLP state $(\Gamma_1, \ldots, \Gamma_n)$ of ψ is obtained by

$$(\Gamma_1, \ldots, \Gamma_k) \oplus (\Gamma_{k+1}, \ldots, \Gamma_n) \quad (1 \le k \le n-1)$$

where $(\Gamma_1, \ldots, \Gamma_k)$ is the AFLP state of $\psi_1 = \langle \mathcal{AF}^k, \mathcal{LP}^m \rangle$ and $(\Gamma_{k+1}, \ldots, \Gamma_n)$ is the AFLP state of $\psi_2 = \langle \mathcal{AF}_{k+1}^n, \mathcal{LP}^m \rangle$ where $\mathcal{AF}_{k+1}^n = (\mathcal{AF}_{\omega_{k+1}}^{k+1}, \ldots, \mathcal{AF}_{\omega_n}^n)$.

Bidirectional LPAF

A simple bidirectional LPAF framework is defined as a pair $\langle \langle LP_{\mu}, AF_{\omega} \rangle \rangle$.

Let $\zeta = \langle \langle LP_{\mu}, AF_{\omega} \rangle \rangle$ be a simple bidirectional LPAF framework. Suppose that a simple AFLP framework $\psi = \langle AF_{\omega}, LP_{\mu} \rangle$ has the set of AFLP extensions \mathbf{E}_{ψ} . Then a BDLPAF model of ζ is defined as a μ model of LP_{μ} extended by \mathbf{E}_{ψ} .

The definition is extended to general bidirectional LPAF.

Consider $\zeta = \langle \langle LP_{stb}, AF_{stb} \rangle \rangle$ where

•
$$LP_{stb} = \{ a \leftarrow not p, q \leftarrow c \};$$

• $AF_{stb} = (\{a, b, c\}, \{(a, b), (b, a), (b, c)\}).$

First, the simple AFLP framework $\langle AF_{stb}, LP_{stb} \rangle$ has the single AFLP extension $E = \{a, c\}$. Then, the BDLPAF model of ζ becomes $\{a, c, q\}$.

Bidirectional AFLP

A simple bidirectional AFLP framework is defined as a pair $\langle \langle AF_{\omega}, LP_{\mu} \rangle \rangle$.

Let $\eta = \langle \langle AF_{\omega}, LP_{\mu} \rangle \rangle$ be a simple bidirectional AFLP framework. Suppose that a simple LPAF framework $\varphi = \langle LP_{\mu}, AF_{\omega} \rangle$ has the set of LPAF models \mathbf{M}_{φ} . Then a BDAFLP extension of η is defined as an ω extension of AF_{ω} supported by \mathbf{M}_{φ} .

The definition is extended to general bidirectional AFLP.

Consider
$$\eta = \langle\!\langle \, {\sf AF}_{grd}, \, \, {\sf LP}_{stb} \,
angle
angle$$
 where

•
$$AF_{grd} = (\{a, b\}, \{(a, b), (b, a)\});$$

•
$$LP_{stb} = \{ p \leftarrow a, q \leftarrow not a, b \leftarrow q \}.$$

First, the simple LPAF framework $\langle LP_{stb}, AF_{grd} \rangle$ has the single LPAF model $M = \{b, q\}$. Then, the BDAFLP extension of η becomes $\{b\}$.

Property

- Given AF_{ω} and LP_{μ} , a series of BDLPAF models or BDAFLP extensions can be build by repeatedly referring with each other.
- Starting with the AFLP extensions \mathbf{E}_{ψ}^{0} , the BDLPAF models \mathbf{M}_{φ}^{1} extended by \mathbf{E}_{ψ}^{0} are produced.
- Then the BDAFLP extensions E¹_ψ supported by M¹_φ are produced, which in turn produce the BDLPAF models M²_φ extended by E¹_ψ, and so on.

Property

- Given AF_{ω} and LP_{μ} , a series of BDLPAF models or BDAFLP extensions can be build by repeatedly referring with each other.
- Starting with the AFLP extensions \mathbf{E}_{ψ}^{0} , the BDLPAF models \mathbf{M}_{φ}^{1} extended by \mathbf{E}_{ψ}^{0} are produced.
- Then the BDAFLP extensions E¹_ψ supported by M¹_φ are produced, which in turn produce the BDLPAF models M²_φ extended by E¹_ψ, and so on.
- Likewise, starting with the LPAF models \mathbf{M}_{φ}^{0} , the sets \mathbf{E}_{ψ}^{1} , \mathbf{M}_{φ}^{1} , \mathbf{E}_{ψ}^{2} , ..., are produced.
- The sequences of BDLPAF models and BDAFLP extensions are written as $[\mathbf{M}_{\varphi}^1, \mathbf{M}_{\varphi}^2, \ldots]$ and $[\mathbf{E}_{\psi}^1, \mathbf{E}_{\psi}^2, \ldots]$, respectively.

Let $[\mathbf{M}_{\varphi}^{1}, \mathbf{M}_{\varphi}^{2}, \ldots]$ and $[\mathbf{E}_{\psi}^{1}, \mathbf{E}_{\psi}^{2}, \ldots]$ be sequences defined as above. Then, $\mathbf{M}_{\varphi}^{i} = \mathbf{M}_{\varphi}^{i+1}$ and $\mathbf{E}_{\psi}^{j} = \mathbf{E}_{\psi}^{j+1}$ for some $i, j \ge 1$.

Final Remarks

- The **complexity** of LPAF/AFLP depends on the complexities of LP and AF. For instance, the model existence problem of a simple LPAF belongs to the complexity class $max(C_{\mu}, C_{\omega})$, where C_{μ} and C_{ω} are the complexity classes of LP_{μ} and AF_{ω} , respectively.
- LPAF/AFLP are applied to several KR frameworks such as deductive argumentation, argument aggregation, multi-context system, and constrained argumentation frameworks.
- If AF is coupled with **probabilistic LP**, an AFLP could be used for computing probabilities of arguments in LP and realizing **probabilistic AF**.