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Background

Logic Program vs. Argumentation Framework

LP AF
knowledge facts & rules arguments & attacks
reasoning commonsense reasoning argumentative reasoning

LP and AF specify different types of knowledge and
realize different types of reasoning.
In our daily life, we often use two modes of reasoning
interchangeably.
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Example
Consider a logic program representing knowledge:

get-vaccine safe ^ e¸ective
:get-vaccine not safe

where we get a vaccine if it is safe and effective.

To see whether a vaccine is safe and effective, we
consult an expert opinion.

It is often the case that multiple experts have different
opinions.
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Example

In this case, we observe argumentation among experts
and take it into account to make a decision.

The truth value of safe is determined by an external
argumentation framework AF such as:

safe dangerous

A credulous reasoner will accept safe under the stable
semantics, while a skeptical reasoner will not accept it
under the grounded semantics.

A reasoner determines acceptable arguments under the
chosen semantics and makes a decision using his/her
own LP.
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Motivation
The example tells us that

We need a framework in which a logic program refers to
the result of argumentation.

A logic programming reasoner has the option to choose
the semantics of AF as well as the semantics of LP.

If an argument is not justified in AF, an LP reasoner will
not employ the argument.

AF is transformed to LP, and vice versa, and one could
perform both argumentative reasoning and deductive
reasoning in a single framework.

However, the transformational approach requires that
two frameworks have the corresponding semantics, i.e.,
an LP reasoner cannot choose an arbitrary AF semantics.
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Example

Consider a debate on whether global warming is occurring.

Scientists and politicians make different claims based on
evidences and scientific knowledge.

AF is used for representing the debate, while arguments
appearing in AF are generated as the results of
reasoning from background knowledge of participants.

Real Hoax

It is real because .... It is hoax because ....
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Motivation

The example tells us that

We need a framework in which an argumentation
framework refers to the result of reasoning in LP.

An AF participant has the option to choose the
semantics of LP as well as the semantics of AF.

If an argument is not supported in LP, an AF participant
will not use the argument.

Argumentation can have internal structure for reasoning
about arguments in structured argumentation.

However, merging argumentation and knowledge bases
into a single framework produces a huge argumentation
structure that is complicated and hard to manage.
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Purpose

We introduce new frameworks, called LPAF and
AFLP, for interlinking LPs and AFs.

LPAF uses the result of argumentation in AFs for
reasoning in LPs, while AFLP uses the result of
reasoning in LPs for arguing in AFs.

LPAF and AFLP enable to combine different reasoning
tasks while keeping independence of each knowledge
representation.

LPAF

AFLP

LPAF
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LP and AF

A logic program (LP) is a finite set of rules:

p1 _ ´ ´ ´ _ pl  q1; : : : ; qm; not qm+1; : : : ; not qn

where pi and qj are propositional variables.

A logic program LP under the — semantics is denoted by
LP—.

An argumentation framework (AF) is a pair (A;R)
where A is a finite set of arguments and R „ Aˆ A is
an attack relation.

An argumentation framework AF under the ! semantics
is denoted by AF!.
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Example of AF

Given AF = (fa; b; cg; f(a; b); (b; a); (b; c)g):

a b c

AF has 2 stable extensions: fa; cg, fbg;
AF has the single grounded extension ∅.

Given AF = (fa; bg; f(a; a); (a; b)g):

a b

AF has no stable extension;
AF has the single grounded extension ∅.
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From AF to LP
Assume that AF and LP share the same propositional
language, and no rule in LP has an argument in its head.

Given AF=(A;R), LP is partitioned into LP =LP+A[LP`A
where LP+A = f r 2 LP j body(r) \ A 6= ∅g and

LP`A = f r 2 LP j body(r) \ A = ∅g.
Each rule in LP+A refers to arguments, and each rule in
LP`A is free from arguments.
Argument a2A is referred to in LP if a appears in LP .
Define A jLP = f a 2 A j a is referred to in LP g.

Let AF = (A;R) and A „ 2A. Then a — model of LP
extended by A is:
a — model of LP [ fa j a 2 E \ A jLPg for some
E 2 A if A 6= ∅;
a — model of LP`A, otherwise.
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Simple LPAF framework

A simple LPAF framework is a pair ’ = hLP—; AF! i,
where LP— is an LP under the — semantics and AF! is
an AF under the ! semantics.

When AF! has the set of ! extensions
E!=fE1; : : : ; Ekg, an LPAF model of ’ is defined as a
— model of LP— extended by E!, i.e., a — model of

LP— [ fa j a 2 Ei \ A jLP—g for some Ei 2 E!

where A jLP— = f a 2 A j a appears in LP— g.

If E! = ∅, an LPAF model is constructed by rules that
are free from arguments in AF
(i.e., no use of rules that contain arguments in AF!).
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Example

Consider ’1 = hLPstb; AFstb i where stb means stable
LPstb = f p a; q  not a g;
AFstb = (fa; bg; f(a; b); (b; a)g).
As AFstb has two stable extensions fag and fbg,
’1 has two LPAF models fp; ag and fqg.

If ! = grounded then AFgrd has the single extension ∅.
Then hLPstb; AFgrd i has the single LPAF model fqg.

Consider ’2 = hLPstb; AFstb i where
LPstb = f p not a; q  not p g;
AFstb = (fa; bg; f(a; b); (a; a)g).
As AFstb has no stable extension and the second rule in
LPstb is free from arguments, ’2 has the single LPAF
model fqg.
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Properties (1)

M’: the set of LPAF models of ’.

Let ’1 = hLP—; AF 1!1 i and ’2 = hLP—; AF
2
!2 i be two

LPAFs such that E!1
AF 1
6= ∅. If E!1

AF 1
„ E!2

AF 2
, then

M’1 „ M’2.

This implies the inclusion relations with the same AF under
different semantics: M’1 „ M’2 holds for

’1 = hLP—; AFprf i and ’2 = hLP—; AFcom i;
’1 = hLP—; AFstb i and ’2 = hLP—; AFprf i;
’1 = hLP—; AFgrd i and ’2 = hLP—; AFcom i,

where com=complete, prf=preferred, stb=stable, and
grd=grounded.

24 / 48



Properties (2)
Two programs LP 1— and LP 2— are uniformly equivalent
relative to A (denoted LP 1— ”Au LP 2—) if for any set of
non-disjunctive facts F „ A, the programs LP 1— [ F and
LP 2— [ F have the same set of — models (Eiter, et al. 2007).

Let ’1 = hLP 1— ; AF! i and ’2 = hLP 2— ; AF! i be two
LPAFs such that E! 6= ∅. Then, M’1 = M’2 if

LP 1— ”Au LP 2— , and

A jLP 1—= A jLP 2—
where AF! = (A;R).
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General LPAF

A general LPAF framework is defined as a tuple

’ = h LPm;AFn i

where LPm=(LP 1—1;: : :; LP
m
—m) and AF

n=(AF 1!1;: : : ;AF
n
!n).

Each LP i—i is a logic program LP i under the —i semantics
and each AF j!j is an argumentation framework AF

j under
the !j semantics.

A general LPAF framework is used in a situation such that
multiple agents have individual LPs as their private KBs and
each agent refers to open AFs.

The LPAF state of ’ is defined as a tuple (˚1; : : : ;˚m)
where ˚i = (Mi

1; : : : ;M
i
n) (1 » i » m) and Mi

j (1 » j » n)
is the set of LPAF models of hLP i—i; AF

j
!j i.
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General LPAF

Given tuples (S1; : : : ; Sk) and (T1; : : : ; Tl), define

(S1; : : : ; Sk)˘ (T1; : : : ; Tl) = (S1; : : : ; Sk; T1; : : : ; Tl):

Let h LPm;AFn i be a general LPAF framework.
The LPAF state (˚1; : : : ;˚m) of ’ is obtained by

(˚1; : : : ;˚k)˘ (˚k+1; : : : ;˚m) (1 » k » m` 1)

where (˚1; : : : ;˚k) is the LPAF state of h LPk;AFn i and
(˚k+1; : : : ;˚m) is the LPAF state of h LPmk+1;AF

n i where
LPmk+1=(LP

k+1
—k+1;: : :; LP

m
—m).

The above presents that a general LPAF has the modularity
property; ’ is partitioned into smaller ’1 and ’2, and the
introduction of new LPs to ’ is done incrementally.
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From LP to AF

Assume that no rule in LP has an argument in its body.
BLP : Herbrand base of LP.

Let AF = (A;R) and M „ BLP . Then AF with support M
is defined as AFM = (A;R0) where
R0 = R n f (x; a) j x 2 A and a 2 A \M g.

AFM is an argumentation framework in which every tuple
attacking a 2 M is removed from R. As a result, every
argument included in M is accepted in AFM .

Let AF = (A;R) andM„ 2BLP . Then an ! extension of
AF supported byM is an ! extension of AFM for some
M 2 M ifM 6= ∅; otherwise, it is an ! extension of
(A0; R0) where A0 = A n BLP and R0 = R \ (A0 ˆ A0).
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Simple AFLP framework

A simple AFLP framework is defined as a pair
 = hAF!; LP— i.

When LP— has the set of — modelsM—, an AFLP
extension of  is defined as an ! extension of
AFM = (A;R0) where M 2 M— and
R0 = R n f (x; a) j x 2 A and a 2 A \M g.
(i.e., every tuple attacking a2M is removed from R).

IfM— = ∅, an AFLP extension of  is an ! extension
of (A0; R0) where A0 = A n BLP and R0 = R \ (A0 ˆ A0).
(i.e., no use of arguments that rely on LP ).
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Example

Consider  1 = hAFstb; LPstb i where
AFstb = (fa; bg; f(a; b); (b; a)g);
LPstb = f a p; p not q; q  not p g.
LPstb has two stable models M1 = fa; pg and M2 = fqg,
then AFM1! = (fa; bg; f(a; b)g) and AFM2! = AF!.
As a result,  1 has two AFLP extensions fag and fbg.

If we use ! = grounded, then hAFgrd; LPstb i has two
AFLP extensions fag and ∅.

Consider  2 = hAFgrd; LPstb i where
AFgrd = (fa; b; cg; f(a; b); (b; c)g);
LPstb = f a p; p not p g.
As LPstb has no stable model,  2 has the AFLP
extension fbg as the grounded extension of
(fb; cg; f(b; c)g).
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Properties (1)

Let  1 = h AF!; LP 1—1 i and  2 = hAF!; LP
2
—2 i be two

AFLPs such thatM—1
LP 1
6= ∅. IfM—1

LP 1
„M—2

LP 2
, then

E 1 „ E 2.
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Properties (2)

(Baumann 2014) Given AF 1!=(A1; R1) and AF 2!=(A2; R2),
AF 1! and AF 2! are normal deletion equivalent (denoted
AF 1! ”nd AF 2!) if for any set A of arguments
(A01; R1 \ (A01 ˆ A01)) and (A02; R2 \ (A02 ˆ A02)) have the
same set of ! extensions where A01 = A1 n A and
A02 = A2 n A.
AF 1! and AF 2! are local deletion equivalent (denoted
AF 1! ”ld AF 2!) if for any set R of attacks (A1; R1 n R)
and (A2; R2 n R) have the same set of ! extensions.

Let  1 = hAF 1! ; LP— i and  2 = hAF 2! ; LP— i be two
AFLPs. Then, E 1 = E 2 if
M— = ∅ and AF 1! ”nd AF 2! ; or
M— 6= ∅ and AF 1! ”ld AF 2! .
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General AFLP

A general AFLP framework is defined as a tuple

 = hAFn;LPm i

where AFn=(AF 1!1;: : : ;AF
n
!n) and LP

m=(LP 1—1;: : :; LP
m
—m).

Each AF j!j (1 » j » n) is an argumentation framework AF j
under the !j semantics and each LP i—i (1 » i » m) is a
logic program LP i under the —i semantics.

A general AFLP framework is used in a situation such that
argumentative dialogues consult LPs as information sources.

An AFLP state of  is defined as a tuple (`1; : : : ;`n)
where `j = (E

j
1; : : : ;E

j
m) (1 » j » n) and Eji (1 » i » m)

is the set of AFLP extensions of hAF j!j ; LP i—i i.
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General AFLP

A general AFLP has the modularity property.

Let  = hAFn;LPm i be a general AFLP framework.
Then the AFLP state (`1; : : : ;`n) of  is obtained by

(`1; : : : ;`k)˘ (`k+1; : : : ;`n) (1 » k » n` 1)

where (`1; : : : ;`k) is the AFLP state of  1 = hAFk;LPm i
and (`k+1; : : : ;`n) is the AFLP state of
 2 = hAFnk+1;LP

m i where AFnk+1 = (AF
k+1
!k+1; : : : ; AF

n
!n).
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Bidirectional LPAF

A simple bidirectional LPAF framework is defined as a pair
hhLP—; AF! ii.

Let “ = hhLP—; AF! ii be a simple bidirectional LPAF
framework. Suppose that a simple AFLP framework
 = hAF!; LP— i has the set of AFLP extensions E .
Then a BDLPAF model of “ is defined as a — model of LP—
extended by E .

The definition is extended to general bidirectional LPAF.
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Example

Consider “ = hhLPstb; AFstb ii where
LPstb = f a not p; q  c g;
AFstb = (fa; b; cg; f(a; b); (b; a); (b; c)g).

First, the simple AFLP framework hAFstb; LPstb i has the
single AFLP extension E = fa; cg. Then, the BDLPAF
model of “ becomes fa; c; qg.

a b c
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Example

Consider ” = hhAFgrd; LPstb ii where
AFgrd = (fa; bg; f(a; b); (b; a)g);
LPstb = f p a; q  not a; b q g.

First, the simple LPAF framework hLPstb; AFgrd i has the
single LPAF model M = fb; qg. Then, the BDAFLP
extension of ” becomes fbg.
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Property

Given AF! and LP—, a series of BDLPAF models or
BDAFLP extensions can be build by repeatedly referring
with each other.
Starting with the AFLP extensions E0 , the BDLPAF
models M1’ extended by E

0
 are produced.

Then the BDAFLP extensions E1 supported by M
1
’ are

produced, which in turn produce the BDLPAF models
M2’ extended by E

1
 , and so on.

Likewise, starting with the LPAF models M0’, the sets
E1 , M

1
’, E

2
 , : : :, are produced.

The sequences of BDLPAF models and BDAFLP
extensions are written as [M1’;M2’; : : :] and [E

1
 ;E

2
 ; : : :],

respectively.

Let [M1’;M2’; : : :] and [E
1
 ;E

2
 ; : : :] be sequences defined as

above. Then, Mi
’ = M

i+1
’ and Ej = E

j+1
 for some i; j – 1.
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0
 are produced.

Then the BDAFLP extensions E1 supported by M
1
’ are

produced, which in turn produce the BDLPAF models
M2’ extended by E

1
 , and so on.

Likewise, starting with the LPAF models M0’, the sets
E1 , M

1
’, E

2
 , : : :, are produced.

The sequences of BDLPAF models and BDAFLP
extensions are written as [M1’;M2’; : : :] and [E

1
 ;E

2
 ; : : :],

respectively.

Let [M1’;M2’; : : :] and [E
1
 ;E

2
 ; : : :] be sequences defined as

above. Then, Mi
’ = M

i+1
’ and Ej = E

j+1
 for some i; j – 1.
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Final Remarks

The complexity of LPAF/AFLP depends on the
complexities of LP and AF. For instance, the model
existence problem of a simple LPAF belongs to the
complexity class max(C—; C!), where C— and C! are the
complexity classes of LP— and AF!, respectively.

LPAF/AFLP are applied to several KR frameworks such
as deductive argumentation, argument aggregation,
multi-context system, and constrained
argumentation frameworks.

If AF is coupled with probabilistic LP, an AFLP could
be used for computing probabilities of arguments in LP
and realizing probabilistic AF.
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