
Computing Preferred Answer Sets
in Answer Set Programming

Wakaki, T., Inoue, K., Sakama, C.
and Nitta, K.

Shibaura Institute of Technology
Kobe University, Wakayama University

Tokyo Institute of Technology

**

**

☨

*

*

☨

Contents
1. Introduction

2. Prioritized Logic Programs : PLP

3. Computing preferred answer sets

4. Applications to nonmonotonic reasoning

5. Related works and conclusion

１．Introduction

Prioritized Logic Programs：PLP (P,Φ)
Sakama and Inoue [JICSLP-96，AI-2000]

Different approaches: frameworks and implementations
(e.g.) -ordered logic programs (Delgrande and Schaub ’03)

-preferred answer sets of ELP (Brewka and Eiter ’99, ’03)

Problems of prior works:
Sakama and Inoue’s naïve procedure of computing preferred
answer sets of PLP [AI-2000]
⇒ is applicable to a limited class and is turned unsound.

⇒ explicit representation of priorities in a logic program
⇒ can realize various forms of nonmonotonic reasoning
⇒ Semantics is given by preferred answer sets.

《Our method》

the idea: construct a translated program T[P,Φ,S]
from a PLP (P,Φ) and any answer set S of P
whose answer set is preferable to S,
enables to generate preferences to decide
whether any answer set of P is preferred or not.

We propose a sound and complete procedure
to compute all preferred answer set of PLP
in answer set programming.

- a generate and test algorithm
- meta-programming

《Our method》

the idea: translate a PLP (P,Φ) and any answer set
S of P into a logic program T[P,Φ,S]
whose answer sets are preferable to S,

enables to generate preferences to decide
whether any answer set of P is preferred or not.

We propose a sound and complete procedure
to compute all preferred answer set of PLP
in answer set programming.

- a generate and test algorithm
- meta-programming

The soundness and completeness theorems for
the procedure are proved.

The application to legal reasoning shows the possibility
for our procedure to handle the dynamic preferences
in addition to the original static ones of PLP,

- widen the class of PLPs
- further increase their expressiveness.

2. Preliminaries

a general extended disjunctive program (GEDP)
is a set of rules of the form:

Ll |…| Lk | not Lk+1 |…| not Ll
← Ll+1 , … , Lm , not Lm+1 , … , not Ln (1)

(n m l k 0)
⋜⋜⋜⋜

A rule with variables
⇒ a set of its ground instances

not Li : called a NAF literal

Semantics of GEDP

LitP : a set of all ground literals in the language of P
Definition 1

(1) Let P be a not-free ground GEDP
The answer set of P is the smallest subset S of LitP
satisfying the following conditions:

for any rule such as Ll |…| Lk ← Ll+1 , … , Lm in P,
if {Ll+1 , … , Lm}⊆S , then Li∈S for some i (1≤ i ≤ k).

In particular, for any integrity constraint such as
← Ll+1 , … , Lm in P, {Ll+1 , … , Lm}⊆S holds.

if S contains a pair of complementary literals,
then S = LitP.

(2) Let P be any ground GEDP.
For any set S ⊆ , let P S (so called reduct) be the
not-free ground GEDP obtained as follows:

a rule: L1 |…| Lk ← Ll+1 , … , Lm is in P S

if there is a ground rule in P of the form

where
{Lk+1 , … , Ll }⊆S and {Lm+1 , … , Ln}∩S ＝φ.

For P S, its answer sets have been defined in (1).
Then, S is an answer set of P if S is an answer set of P S.

LitP

Ll |…| Lk | not Lk+1 |…| not Ll ←
Ll+1 , … , Lm , not Lm+1 , … , not Ln

An answer set is consistent if it is not LitP.
The answer set LitP is said to be contradictory.

If a GEDP P has a consistent answer set,
then, it is consistent ;
otherwise, it is inconsistent.

2.2 Prioritized Logic Programs

Definition 2 (priorities between literals)
e1,e2 ∈ LP

*

Definition 3 (prioritized logic programs:PLP)
A prioritized logic program (PLP) is defined as
a pair (P,Φ) where P is a GEDP and Φ is a set
of priorities over LP

*.

e1 e2 : e2 has a higher priority than e1
e1 e2 : e1 e2 and e2 e1

≺

≺ ≺ ≺

LP
* ＝ LitP∪{ not L| L∈ LitP}def

≺ : a priority relation (pre-order on LP
*)

(P,Φ): a PLP
⊑ : a preference relation

defined over the answer sets of P
according to priorities inΦ

S1 ⊑ S2 : preference
S2 is preferable to S1 w.r.t Φ
for answer sets S1 and S2 of P.

Semantics of PLP

For any answer sets S1, S2 and S3 of P,

(ⅰ) S1 ⊑ S1

(ⅱ) S1 ⊑ S2 if
e2∈S2－S1 [∃e1 ∈ S1－S2 such that (e1 e2) ∈Φ*

∧￢∃e3 ∈ S1－S2 such that (e2 e3) ∈ Φ*]

(ⅲ) if S1 ⊑ S2 and S2 ⊑ S3 , then S1 ⊑ S3

≺

Definition 4 (preference between answer sets)

e1

e3

e2S1

S2

≺∃

Definition 5 (preferred answer sets)

An answer set S of P is called a preferred
answer set of PLP (P,Φ) if S ⊏ S’
with respect toΦ for any any answer set S’ of P.

In other words,

An answer set S of P is called a preferred
answer set of PLP (P,Φ)
if S ⊑ S’ implies S’ ⊑ S with respect toΦ

for any answer set S’ of P.

Semantics of PLP

PLP (P,Φ）
P : p← not q, Φ= { p not p }

q← not p,
≺

Example 1

PLP (P’ ,Φ’）
P’ : p← not q, Φ’ = { p p’ }

q ← not p,
p’ ← not p,

≺

preferred answer sets of (P,Φ) : { q }

preferred answer sets of (P’,Φ’) : { p’, q }

3. Computing Preferred Answer Sets

《Our method of computing preferred answer sets》
generate-and-test algorithms

① generate all answer sets of P
② check whether each answer set of P is a preferred

answer set of (P,Φ) using preferences generated
by the translated program T[P,Φ, S] constructed

from PLP (P,Φ) and any answer set S of P.

Let (P,Φ) be a PLP s.t.Φ contains no NAF formulas.

3.1 Translation for Preference Generation

meta-programming：
The priorities ofΦ as well as a GEDP P are represented
in the same translated program T[P,Φ,S] s.t.
a priority: c ≺ d ∈Φ a literal: ≺ (ct , dt)
where ct , dt are terms representing literals c, d.

L∈S is renamed by a newly introduced L*
in order to encode a given answer set S and another
answer set S’ in a same answer set of T[P,Φ,S].

For a term ct representing a literal c as well as its renamed c*,
m1 (ct) means c∈S, and m2 (ct) means c∈S’,

where m1, m2 are predicate symbols.

Given PLP (P,Φ) and an answer set S of P

T[P,Φ,S] ＝ P ∪ Γ∪ Π

Γ is a set of domain dependent rules
constructed from (P,Φ) and S,

Π is a set of domain independent rules.

Definition 7

def

Definition 6
LitP*＝ { L* | L∈LitP} , C＝ {Lt | L∈LitP}
where LitP ： a finite set，

Lt ： a term containing no function symbols．

2. (at , bt) ←, for any a b∈Φ

where at , bt∈C

3. m1(Lt) ← L*, m2(Lt) ← L ,
for any L∈ LitP , L*∈ LitP

*

where Lt∈C

≺

L* ←, for any L∈S

T[P,Φ,S] ＝ P ∪Γ∪ Π

Γ:

1.

def

≺

x

z

S T

y
x≺y

5. (x , z) ← (x , y) , (y , z) .
6. (x , y) ← (x , y) , not (y , x) .
7. gr1(x,y) ← m1(x), ≺(x,y), m2(y), not m2(x), not m1(y).
8. gr2(y,z) ← m2(y), ≺(y,z), m1(z), not m1(y), not m2(z).
9. attacked(y) ← gr2(y,z)
10. defeated(x) ← gr1(x,y), not attacked(y).
11. better ← defeated(x).
12. ← not better.

≺≺
4. (x, x) ←≺Π:

≺ ≺

≺
≺

S
’

Definition 8

A preferred answer set S of a PLP (P,Φ) is called
a tie-preferred if there is another preferred answer
set S ’ of (P,Φ) such that S ⊑ S’ and S’ ⊑ S.
S is called a strictly preferred if S ⊑ S’ for any

preferred answer set S’ of P.

tie-preferred and strictly preferred answer set

Theorem 1 (Soundness/Completeness)
Let T[P,Φ,S] be a GEDP constructed from
a PLP (P,Φ) and an answer set S of P.

Then, if T[P,Φ,S] is consistent, S’ = E∩LitP
is another answer set of P such that S ⊑ S’
for any answer set E of T[P,Φ,S].

Conversely, if there is another answer set S’
of P such that S ⊑ S’, then T[P,Φ,S] is
consistent.

def

Theorem 2

Let T[P,Φ,S] be a GEDP constructed from
a PLP (P,Φ) and an answer set S of P.
Then, T[P,Φ,S] is inconsistent if and only if
S is a strictly preferred answer set of (P,Φ).

Example 2

P : p | q ← Φ: { p q , q r }
q | r ←

Litp = { p, q, r, ￢p, ￢q, ￢r }
Litp = { p*, q*, r*, ￢p*, ￢q*, ￢r* }
C = { pt , qt , rt , npt , nqt , nrt }

PLP (P,Φ)
≺ ≺

*

m1(pt)← p*, m1(npt)← ￢p*,
m2(pt)← p, m2(npt)← ￢p, etc.

Rule 3 :

Rule 2: (pt, qt) ← , (qt, rt) ←≺ ≺

p*←, r*←, (pt, qt) ← , (qt, rt) ←,
m1(pt)← p*, m1(qt)← q*, m1(rt)← r*,
m1(npt)← ￢p*, m1(nqt)←￢q*, m1(nrt)← ￢r*,
m2(pt)←p, m2(qt)← q, m2(rt)← r,
m2(npt)←￢p, m2(nqt)←￢ q, m2(nrt)← ￢r．

P : p | q ← Φ: { p q , q r }
q | r ←

answer sets of P: S1={ p , r }, S2={ q }

T[P,Φ, S1]= P∪Γ1∪Π

Γ1：

PLP (P,Φ)

≺ ≺

≺ ≺

Rule １: p*←, r*←, for S1

Procedure CompPAS (P,Φ,Δ)

Input: a PLP (P,Φ)

Output: the set Δof all preferred answer sets of (P,Φ)
Step1: Compute the set AS of all answer sets of P.
Step2: IfΦ is empty，

(a) then Δ:=AS, return Δ.
(b) otherwise,

i. Ω:={si | 1≦i≦|AS| } //si : the individual constant
ii. To each answer set S∈AS, assign the respective si ∈Ω

called answer set ID.
Step3: if T [P,Φ,S] is consistent for any answer set S∈AS whose

answer set ID is s, do from (a) to (b) for its each answer set E,
(a) put S’:=E∩Litp and find the answer set ID s’ for S’
(b) put Σ:= Σ∪{ ⊑ (s, s’)←｝ //initially Σ is empty.

3.2 A Procedure of Computing Preferred Answer Sets

Step4:
Step4: Compute an answer set U of the logic program as follows;

Ψ ∪Σ∪｛as(s)←｜s∈Ω｝

Step5: Return Δwhich is given by
Δ＝｛S∈AS | S is an answer set whose answer set ID s

satisfies p-as (s)∈U ｝

Table １. A set Ψ of rules
Ψ : ⊑ (x, x)←as(x).

⊑ (x, z)← ⊑ (x, y)， ⊑ (y, z)．
⊏ (x, y)← ⊑ (x, y)，not ⊑ (y, x)．

worse(x)← ⊏ (x, y)．

p-as(x) ← as(x), not worse(x)．

def

Example 2

p*←, r*←, (pt, qt) ← , (qt, rt) ←,
m1(pt)← p*, m1(qt)← q*, m1(rt)← r*,
m1(npt)← ￢p*, m1(nqt)←￢q*, m1(nrt)← ￢r*,
m2(pt)←p, m2(qt)← q, m2(rt)← r,
m2(npt)←￢p, m2(nqt)←￢ q, m2(nrt)← ￢r．

P : p | q ←
q | r ←

Φ: { p q , q r }

answer sets of P:
S1={ p , r }, S2={ q }

Step 3:
T[P,Φ, S1]= P∪Γ1∪Π⇒ inconsistent

Γ1：

PLP (P,Φ)

≺ ≺

≺

T[P,Φ, S2] ⇒ S2 ⊑ S1 S1 : a preferred answer set

Step 1:

≺

Example 5

S1, S2 : preferred answer sets

P : p ← not q, Φ : { p q , ￢s r }
q ← not p.

r← p, ￢s← q.

answer sets of P : S1={ p , r } , S2={ q, ￢s }

≺ ≺

p ・S1
S2・ q

p q≺

r ≺ ￢s
・￢sr ・

T[P,Φ, S1] ⇒ S1 ⊑ S2

T[P,Φ, S2] ⇒ S2 ⊑ S1

Step3: Σ= { ⊑ (s1, s2), ⊑ (s2, s1)}

Step4: Ψ ∪Σ∪｛as (s1)←, as

Σ

P : p ← not q, not r,
q ← not p, not r,
r ← not p, not q,
s ← q

Φ : p q , q p , s r≺ ≺≺

Example 4 strictly preferred answer sets

p ・S1
S2・ q

p q≺

q p

≺

・

Step3 : T [P,Φ,S1] ⇒ S1 ⊑ S2
T [P,Φ,S2] ⇒ S2 ⊑ S1 S2 ⊑ S3
T [P,Φ,S3] : inconsistent
Σ= { ⊑ (s1, s2)←, ⊑ (s2, s1)←, ⊑ (s2, s3)}

Step4 :Ψ ∪Σ∪｛as(s1)←, as (s2)←,

・ rS3

s r≺

P: posses← , ship← , ￢filstate← ,
perfected ← posses, not ab1, (UCC)

￢perfected ← ship, ￢filstate , not ab2, (SMA)

ab1 | not ab1, ab2 | not ab2, ← ab1,ab2,
ucc ← not ab1, sma ← not ab2.

4. Application to Legal Reasoning
《 Legal problem (Gorden, 1993）》

Answer sets of P:
S1={ perfected, posses, ship,￢filstate, ab2, ucc }

S2={ ￢perfected, posses, ship,￢filstate, ab1, sma }
Conflict between UCC and SMA !!

The principle of Lex Posterior gives precedence newer laws.
The principle of Lex Superior gives precedence to laws supported

by the higher authority.
UCC is newer than SMA, and SMA has higher authority than UCC.

Φ1 : moreRecent(ucct , smat)← ,
fed (smat)← , state (ucct)← ,
lp(Y,X) ← moreRecent(X,Y),
ls(Y,X) ← fed(X), state(Y),

≺(Y,X)← lp(Y,X), not conf1(X,Y), (LP)
≺(Y,X)← ls(Y,X), not conf1(X,Y), (LS)

《Extended rule 2 of Γ》

T [P,Φ1 ,S1] ⇒ S1 ⊑ S2
T [P,Φ1 ,S2] ⇒ S2 ⊑ S1

Conflict between LP and LS !!

S1, S2 : preferred answer sets

Meta-priority:
LexPosterior(X,Y) ≺ LexSuperior(U,V)

Φ2 ＝Φ1∪
｛conf1(Y, X)←lp(X, Y), ls(Y, X), not conf2 (X, Y)｝

PLP (P, Φ2):

T [P,Φ1 ,S2] ⇒ inconsistent !
Only S2 is a preferred answer set of a PLP (P, Φ2).

S1={ perfected, posses, ship,￢filstate, ab2, ucc }
S2={ ￢perfected, posses, ship,￢filstate, ab1, sma }

5. Related works and conclusion
propose a procedure to compute preferred answer
sets of a PLP (P,Φ) in answer set programming.
prove the soundness and completeness theorems for
the procedure.
The procedure enables PLPs to handle dynamic
preferences in addition to the original static ones．
Example 5 is a counter example for the soundness
of the Sakama and Inoue’s naïve procedure.
Their procedure becomes sound by using pre-order
priority relation ≺ instead of strict priority relattion ≺

fromΦ.

We are now implementing ouｒ procedure by using
the ASP solver dlv and C++.

More precise formalization to accomodate dynamic
prefernces in the framework of PLPs will be shown
in our subseqent paper.

《Future works》

for your Attention

	 Computing Preferred Answer Sets � in Answer Set Programming
	Contents
	１．Introduction
	《Our method》
	《Our method》
	2. Preliminaries
	Semantics of GEDP
	
	2.2 Prioritized Logic Programs
	
	Semantics of PLP
	 3. Computing Preferred Answer Sets
	3.1 Translation for Preference Generation
	Example 2
	Example 2
	 Example 5
	 Example 4　 strictly preferred answer sets
	5. Related works and conclusion
	《Future works》

