Computing Preferred Answer Sets in Answer Set Programming

Wakaki, T., Inoue, K., Sakama, C^{**} and Nitta, K[†]

Shibaura Institute of Technology Kobe University^{*}, Wakayama University^{**} Tokyo Institute of Technology[†]

1. Introduction

- 2. Prioritized Logic Programs : PLP
- **3. Computing preferred answer sets**
- 4. Applications to nonmonotonic reasoning
- 5. Related works and conclusion

1. Introduction

- **Prioritized Logic Programs**: PLP (P, Φ) Sakama and Inoue [JICSLP-96, AI-2000]
 - \Rightarrow explicit representation of priorities in a logic program
 - \Rightarrow can realize various forms of nonmonotonic reasoning
 - ⇒ Semantics is given by *preferred answer sets*.
- Different approaches: frameworks and implementations
 (e.g.) -ordered logic programs (Delgrande and Schaub '03)
 -preferred answer sets of ELP (Brewka and Eiter '99, '03)
- Problems of prior works:

Sakama and Inoue's naïve procedure of computing preferred answer sets of PLP [AI-2000]

 \Rightarrow is applicable to *a limited class* and is turned *unsound*.

- We propose a sound and complete procedure to compute all preferred answer set of PLP in answer set programming.
 - a generate and test algorithm
 - meta-programming

«Our method»

+ the idea: construct a translated program $T[P, \Phi, S]$ from a PLP (P, Φ) and any answer set S of P whose answer set is preferable to S,

enables to generate preferences to decide whether any answer set of *P* is preferred or not.

- We propose a sound and complete procedure to compute all preferred answer set of PLP in answer set programming.
 - a generate and test algorithm
 - meta-programming

«Our method»

◆ the idea: translate a PLP (P, Φ) and any answer set
 S of P into a logic program T[P, Φ, S] whose answer sets are preferable to S,

enables *to generate preferences* to decide whether any answer set of *P* is preferred or not.

- The soundness and completeness theorems for the procedure are proved.
- The application to legal reasoning shows the possibility for our procedure to handle the dynamic preferences in addition to the original static ones of PLP,
 - widen the class of PLPs
 - further increase their expressiveness.

2. Preliminaries

 a general extended disjunctive program (GEDP) is a set of rules of the form:

$$\begin{array}{l} L_{1}/\ldots/L_{k} \mid not \ L_{k+1} \mid \ldots \mid not \ L_{l} \\ \leftarrow L_{l+1} , \ \ldots , \ L_{m} , \ not \ L_{m+1} , \ \ldots , \ not \ L_{n} \quad (1) \\ (n \geq m \geq l \geq k \geq 0) \end{array}$$

not L_i : called a NAF literal

→ A rule with variables ⇒ a set of its ground instances

Semantics of GEDP

*Lit*_{*P*}: a set of all ground literals in the language of *P* **Definition 1**

(1) Let P be a not-free ground GEDP
The answer set of P is the smallest subset S of Lit_P satisfying the following conditions:

for any rule such as L₁/.../L_k ← L_{l+1}, ..., L_m in P, if {L_{l+1}, ..., L_m} ⊆ S, then L_i ∈ S for some i (1≤ i ≤ k). In particular, for any integrity constraint such as ← L_{l+1}, ..., L_m in P, {L_{l+1}, ..., L_m} ∉ S holds.
if S contains a pair of complementary literals, then S = Lit_p.

(2) Let P be any ground GEDP. For any set $S \subseteq Lit_P$, let P^S (so called *reduct*) be the *not-free* ground GEDP obtained as follows:

* a rule: $L_1/.../L_k \leftarrow L_{l+1}, ..., L_m$ is in P^S

if there is a ground rule in P of the form

$$L_{1}/.../L_{k} / not L_{k+1} / ... / not L_{l} \leftarrow L_{l+1}, ..., L_{m}, not L_{m+1}, ..., not L_{n}$$

where

$$\{L_{k+1},\ldots,L_l\}\subseteq S \text{ and } \{L_{m+1},\ldots,L_n\}\cap S=\phi.$$

For P^{S} , its answer sets have been defined in (1). Then, *S* is an *answer set* of *P* if *S* is an answer set of P^{S} .

- An answer set is *consistent* if it is not Lit_P .
- The answer set Lit_{P} is said to be *contradictory*.

If a GEDP P has a consistent answer set,
 then, it is *consistent*;
 otherwise it is *inconsistent*

otherwise, it is *inconsistent*.

2.2 Prioritized Logic Programs

$$\mathcal{L}_{P}^{*} \stackrel{\text{def}}{=} Lit_{P} \cup \{ not L \mid L \in Lit_{P} \}$$

 \leq : a priority relation (pre-order on \mathcal{L}_{P}^{*})

Definition 2 $e_1, e_2 \in \mathcal{L}_{P}^*$ (priorities between literals)

 $e_1 \le e_2$: e_2 has a higher priority than e_1 $e_1 \le e_2$: $e_1 \le e_2$ and $e_2 \le e_1$

Definition 3 (prioritized logic programs:PLP)

A prioritized logic program (PLP) is defined as a pair (P, Φ) where P is a GEDP and Φ is a set of priorities over \mathcal{L}_{P}^{*} . **Semantics of PLP**

(P, Φ) : a PLP

$\sqsubseteq \text{ a preference relation} \\ \text{defined over the answer sets of } P \\ \text{according to priorities in } \varPhi$

$S_1 \sqsubseteq S_2$: preference S_2 is *preferable* to S_1 w.r.t Φ for answer sets S_1 and S_2 of P.

Definition 4 (preference between answer sets)

For any answer sets S_1 , S_2 and S_3 of P, (i) $S_1 \sqsubseteq S_1$ (ii) $S_1 \sqsubseteq S_2$ if $\exists e_2 \Subset S_2 \neg S_1 [\exists e_1 \Subset S_1 \neg S_2 \text{ such that } (e_1 \le e_2) \Subset \Phi^*]$ $\land \neg \exists e_3 \Subset S_1 \neg S_2 \text{ such that } (e_2 \lt e_3) \Subset \Phi^*]$

(iii) if $S_1 \sqsubseteq S_2$ and $S_2 \sqsubseteq S_3$, then $S_1 \sqsubseteq S_3$

Semantics of PLP

Definition 5 (preferred answer sets)

An answer set S of P is called a *preferred* answer set of PLP (P, Φ) if $S \sqsubseteq S'$ implies $S' \sqsubseteq S$ with respect to Φ for any answer set S' of P.

In other words,

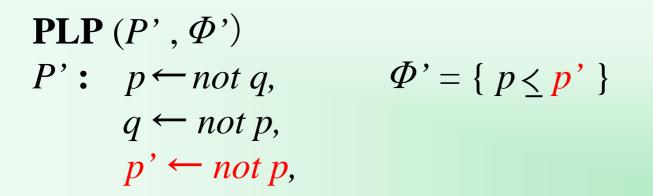
An answer set S of P is called a *preferred answer set* of PLP (P, Φ) if $S \not\subset S'$ with respect to Φ for any any answer set S' of P.

Example 1

PLP (P, Φ) $P: p \leftarrow not q,$ $q \leftarrow not p,$

$$\Phi = \{ p \leq not p \}$$

preferred answer sets of (P, Φ) : { q }



preferred answer sets of (P', Φ') : { p', q }

3. Computing Preferred Answer Sets

Let (P, Φ) be a PLP s.t. Φ contains no NAF formulas.

«Our method of computing *preferred answer sets*» <u>generate-and-test algorithms</u>

- **(1)** generate all answer sets of P
- (2) check whether each answer set of P is a preferred answer set of (P, Φ) using *preferences generated*
 - by the translated program $T[P, \Phi, S]$ constructed from PLP (P, Φ) and any answer set S of P.

3.1 Translation for Preference Generation

meta-programming:

The priorities of Φ as well as a GEDP *P* are represented in the same translated program $T[P, \Phi, S]$ s.t. a *priority*: $c \leq d \in \Phi$ \longleftrightarrow a *literal*: $\leq (c_t, d_t)$ where c_t , d_t are terms representing literals c, d.

- L∈S is renamed by a newly introduced L* in order to encode a given answer set S and another answer set S' in a same answer set of T[P, Φ,S].
- For a term *c_t* representing a literal *c* as well as its renamed *c*^{*}, m₁(*c_t*) means *c*∈*S*, and m₂(*c_t*) means *c*∈*S*', where m₁, m₂ are predicate symbols.

Definition 6

$$Lit_P^* = \{ L^* / L \in Lit_P \}, \quad C = \{ L_t / L \in Lit_P \}$$

where Lit_P : a finite set, L_t : a term containing *no function symbols*.

Definition 7 Given PLP (P, Φ) and an answer set S of P $T[P, \Phi, S] \stackrel{\text{def}}{=} P \cup \Gamma \cup \Pi$

• Γ is a set of *domain dependent* rules constructed from (P, Φ) and S,

• Π is a set of *domain independent* rules.

$T[P, \Phi, S] \stackrel{\text{def}}{=} P \cup \Gamma \cup \Pi$

1. *L** ←,

Γ:

for any $L \in S$

2.
$$\leq (a_t, b_t) \leftarrow$$
,

for any $a \le b \in \Phi$ where $a_t, b_t \in C$

3. $m_1(L_t) \leftarrow L^*$, $m_2(L_t) \leftarrow L$, for any $L \in Lit_P$, $L^* \in Lit_P^*$ where $L_t \in C$

4.
$$\leq (x, x) \leftarrow$$

5. $\leq (x, z) \leftarrow \leq (x, y), \leq (y, z)$.
6. $\langle (x, y) \leftarrow \leq (x, y), not \leq (y, x)$.
7. $gr_1(x,y) \leftarrow m_1(x), \leq (x,y), m_2(y), not m_2(x), not m_1(y)$.
8. $gr_2(y,z) \leftarrow m_2(y), \langle (y,z), m_1(z), not m_1(y), not m_2(z)$.
9. $attacked(y) \leftarrow gr_2(y,z)$
10. $defeated(x) \leftarrow gr_1(x,y), not attacked(y)$.
11. $better \leftarrow defeated(x)$.
12. $\leftarrow not better$.

 \boldsymbol{z}

Π:

tie-preferred and strictly preferred answer set

Definition 8

A preferred answer set S of a PLP (P, Φ) is called a *tie-preferred* if there is another preferred answer set S' of (P, Φ) such that $S \sqsubseteq S'$ and $S' \sqsubseteq S$. S is called a *strictly preferred* if $S \not\sqsubseteq S'$ for any preferred answer set S' of P.

Theorem 1 (Soundness/Completeness) Let $T[P, \Phi, S]$ be a GEDP constructed from a PLP (P, Φ) and an answer set S of P.

- Then, if T[P, Φ,S] is consistent, S' = E ∩ Lit_P is another answer set of P such that S ⊆ S' for any answer set E of T[P, Φ,S].
 - Conversely, if there is another answer set S' of P such that $S \sqsubseteq S'$, then $T[P, \Phi, S]$ is consistent.

Theorem 2

Let T[P, Φ,S] be a GEDP constructed from a PLP (P, Φ) and an answer set S of P.
Then, T[P, Φ,S] is inconsistent if and only if S is a strictly preferred answer set of (P, Φ).

Example 2

PLP (P, Φ) $P: p \mid q \leftarrow \Phi: \{ p \leq q, q \leq r \}$ $q \mid r \leftarrow$

$$Lit_{p} = \{ p, q, r, \neg p, \neg q, \neg r \}$$

$$Lit_{p}^{*} = \{ p^{*}, q^{*}, r^{*}, \neg p^{*}, \neg q^{*}, \neg r^{*} \}$$

$$C = \{ p_{t}, q_{t}, r_{t}, np_{t}, nq_{t}, nr_{t} \}$$

Rule 2: $\leq (p_{p} q_{t}) \leftarrow , \leq (q_{p} r_{t}) \leftarrow$

Rule 3 : $m_1(p_t) \leftarrow p^*$, $m_1(np_t) \leftarrow \neg p^*$, $m_2(p_t) \leftarrow p$, $m_2(np_t) \leftarrow \neg p$, etc.

PLP
$$(P, \Phi)$$

 $P: p \mid q \leftarrow \Phi: \{ p \le q, q \le r \}$
 $q \mid r \leftarrow$
 $q \mid r \leftarrow$
 $P: \{ p \le q, q \le r \}$
 $q \mid r \leftarrow$
 $q \mid r \leftarrow$
 $P: \{ p \le q, q \le r \}$
 $q \mid r \leftarrow$
 $P: \{ p \le q, q \le r \}$
 $q \mid r \leftarrow$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, q \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$
 $P: \{ p \le q, r \le r \}$

 $\begin{array}{cccc} m_2(p_t) \leftarrow p, & m_2(q_t) \leftarrow q, & m_2(r_t) \leftarrow r, \\ m_2(np_t) \leftarrow \neg p, & m_2(nq_t) \leftarrow \neg q, & m_2(nr_t) \leftarrow \neg r. \end{array}$

3.2 A Procedure of Computing Preferred Answer Sets Procedure CompPAS (P, Φ, Δ)

Input: a PLP (P, Φ)

Output: the set Δ of all preferred answer sets of (P, Φ)

Step1: Compute the set *AS* of all answer sets of *P*.

Step2: If $\boldsymbol{\Phi}$ is empty,

(a) then $\Delta := AS$, return Δ .

(b) otherwise,

i. $\Omega:=\{s_i \mid 1 \leq i \leq |AS|\}$ //s_i : the individual constant

ii. To each answer set $S \in AS$, assign the respective $s_i \in \Omega$ called answer set ID.

Step3: if T [P, Φ,S] is consistent for any answer set S∈AS whose answer set ID is s, do from (a) to (b) for its each answer set E, (a) put S':=E ∩ Lit_p and find the answer set ID s' for S'
(b) put Σ:= Σ ∪ { ⊑ (s, s')← } //initially Σ is empty.

Step4: Compute an answer set U of the logic program as follows; $\Psi \cup \Sigma \cup \{as(s) \leftarrow | s \in \Omega\}$

Step5: Return Δ which is given by $\Delta \stackrel{\text{def}}{=} \{S \in AS \mid S \text{ is an answer set whose answer set ID } s$ satisfies p-as $(s) \in U$ }

Table 1. A set \mathcal{V} of rules \mathcal{V} : $\sqsubseteq (x, x) \leftarrow \operatorname{as}(x)$. $\sqsubseteq (x, z) \leftarrow \sqsubseteq (x, y), \sqsubseteq (y, z)$. $\sqsubset (x, y) \leftarrow \sqsubseteq (x, y), not \sqsubseteq (y, x)$. $\operatorname{worse}(x) \leftarrow \sqsubset (x, y)$. $\operatorname{p-as}(x) \leftarrow \operatorname{as}(x), not \operatorname{worse}(x)$.

Example 2

PLP
$$(P, \Phi)$$

 $P: p \mid q \leftarrow$
 $q \mid r \leftarrow$
 $\Phi: \{ p \leq q, q \leq r \}$

Step 1:

* answer sets of P: $S_1 = \{ p, r \}, S_2 = \{ q \}$

Step 3:

$$T[P, \Phi, S_1] = P \cup \Gamma_1 \cup \Pi \Rightarrow inconsistent$$

$$\Gamma_{1}: \begin{array}{cccc} p^{*}\leftarrow, & r^{*}\leftarrow, & \leq (p_{t}, q_{t})\leftarrow, & \leq (q_{t}, r_{t})\leftarrow, \\ m_{1}(p_{t})\leftarrow p^{*}, & m_{1}(q_{t})\leftarrow q^{*}, & m_{1}(r_{t})\leftarrow r^{*}, \\ m_{1}(np_{t})\leftarrow \neg p^{*}, & m_{1}(nq_{t})\leftarrow \neg q^{*}, & m_{1}(nr_{t})\leftarrow \neg r^{*}, \\ m_{2}(p_{t})\leftarrow p, & m_{2}(q_{t})\leftarrow q, & m_{2}(r_{t})\leftarrow r, \\ m_{2}(np_{t})\leftarrow \neg p, & m_{2}(nq_{t})\leftarrow \neg q, & m_{2}(nr_{t})\leftarrow \neg r. \end{array}$$

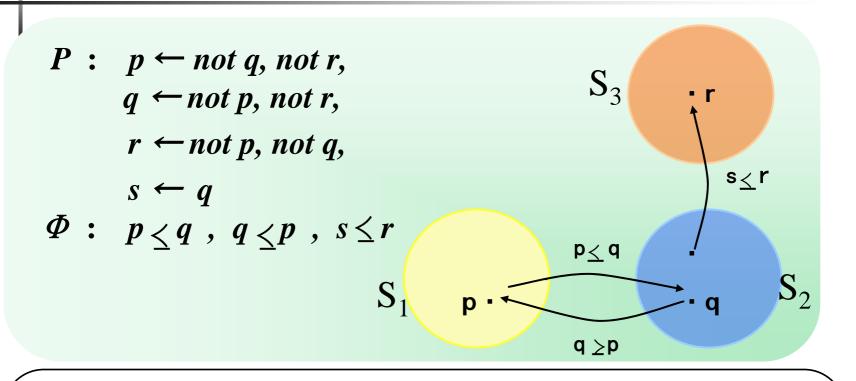
★ T[P, Φ, S₂] ⇒ S₂ ⊆ S₁ S₁: a preferred answer set

Example 5

 $P: p \leftarrow not q, \qquad \Phi: \{ p \leq q, \neg s < r \}$ $q \leftarrow not p.$ $\mathsf{P} \leq \mathsf{q}$ $r \leftarrow p, \neg s \leftarrow q.$ S_2 S_1 answer sets of P: $S_1 = \{p, r\}, S_2 = \{q, \neg s\}$ $T[P, \Phi, S_1] \Rightarrow S_1 \sqsubseteq S_2 \implies \Sigma$ $T[P, \Phi, S_2] \Rightarrow S_2 \sqsubseteq S_1$ Step3: $\Sigma = \{ \sqsubseteq (s_1, s_2), \sqsubseteq (s_2, s_1) \}$ **Step4:** $\Psi \cup \Sigma \cup \{ as(s_1) \leftarrow, as \}$

 S_1, S_2 : preferred answer sets

Example 4 strictly preferred answer sets



Step3 :
$$T [P, \Phi, S_1] \Rightarrow S_1 \sqsubseteq S_2$$

 $T [P, \Phi, S_2] \Rightarrow S_2 \sqsubseteq S_1 \quad S_2 \sqsubseteq S_3$
 $T [P, \Phi, S_3] : inconsistent$
 $\Sigma = \{ \sqsubseteq (s_1, s_2) \leftarrow, \sqsubseteq (s_2, s_1) \leftarrow, \sqsubseteq (s_2, s_3) \}$
Step4 : $\Psi \cup \Sigma \cup \{as(s_1) \leftarrow, as(s_2) \leftarrow, ds(s_2) \leftarrow, ds$

4. Application to Legal Reasoning

《 Legal problem (Gorden, 1993) 》

Answer sets of *P*:

The principle of *Lex Posterior* gives precedence *newer* laws.The principle of *Lex Superior* gives precedence to laws supported by the *higher authority*.

UCC is newer than *SMA*, and *SMA* has higher authority than *UCC*. $\langle \text{Extended rule 2 of } \Gamma \rangle$

$$\Phi_{1}: moreRecent(ucc_{t}, sma_{t}) \leftarrow, fed (sma_{t}) \leftarrow, state (ucc_{t}) \leftarrow, lp(Y,X) \leftarrow moreRecent(X,Y), ls(Y,X) \leftarrow fed(X), state(Y), \leq (Y,X) \leftarrow lp(Y,X), not conf_{1}(X,Y), (LP) \leq (Y,X) \leftarrow ls(Y,X), not conf_{1}(X,Y), (LS)$$
$$\downarrow T [P, \Phi_{1}, S_{1}] \Rightarrow S_{1} \sqsubseteq S_{2} \\ T [P, \Phi_{1}, S_{2}] \Rightarrow S_{2} \sqsubseteq S_{1} \qquad S_{1}, S_{2}: preferred answer sets Conflict between LP and LS !!$$

Meta-priority:

 $LexPosterior(X,Y) \leq LexSuperior(U,V)$

PLP (*P*, Φ_2):

$$\begin{split} \varPhi_2 &= \varPhi_1 \cup \\ \{ conf_1(Y, X) \leftarrow lp(X, Y), \, ls(Y, X), \, not \, conf_2 \, (X, Y) \} \end{split}$$

$$\Rightarrow T [P, \Phi_1, S_2] \Rightarrow \text{inconsistent }!$$

Only S_2 is a preferred answer set of a PLP (P, Φ_2) .

 $S_1 = \{ perfected, posses, ship, \neg filstate, ab2, ucc \}$ $S_2 = \{ \neg perfected, posses, ship, \neg filstate, ab1, sma \}$

5. Related works and conclusion

- ↓ propose a procedure to compute preferred answer sets of a PLP (P, Φ) in answer set programming.
 - prove the *soundness* and *completeness* theorems for the procedure.
 - The procedure enables PLPs to handle dynamic preferences in addition to the original static ones.
 - Example 5 is a counter example for the soundness of the Sakama and Inoue's naïve procedure.
 Their procedure becomes sound by using pre-order priority relation ≤ instead of strict priority relation < from \$\varP\$.

«Future works»

- We are now implementing our procedure by using the ASP solver *dlv* and *C*++.
- More precise formalization to accomodate dynamic prefernces in the framework of PLPs will be shown in our subsequent paper.

Thank you

for your Attention