A Causal Theory of Speech Acts

Chiaki Sakama Wakayama University, Japan

LORI-VI, Sapporo, September 2017,

Background

- An **assertive speech act** commits a speaker to the truth of the expressed proposition, but she does not always have complete knowledge about the world.
- It may happen that a speaker utters a believed-true sentence which is actually false. In this case, a speaker acts truthfully but a hearer would consider the speaker untrustful.
- Whether a speech act is truthful or not depends on the belief state of a speaker, while whether a speech act is trustful or not is judged by the truth of information conveyed by the utterance.

Contribution

- We formulate assertive speech acts by agents having incomplete knowledge using a nonmonotonic causal logic.
- It distinguishes (un)truthful and/or (un)trustful speech acts and represents performative effects on hearers.
- A causal theory is implemented by logic programming.

Causal Logic

(Giunchiglia, et al., Artif. Intell. 153, 2004)

• A causal theory T consists of causal rules of the form:

 $\varphi \Rightarrow \psi$ " ψ is caused if φ is true"

where φ and ψ are propositional formulas.

- In particular, a **constraint** is represented as $\varphi \Rightarrow \perp \quad ``\varphi$ cannot be true"
- An interpretation *I* (complete & consistent finite set of literals) is a **model** of *T* iff $I=\{L \mid T' \vDash L\}$ where $T'=\{\psi \mid (\varphi \Rightarrow \psi) \in T \text{ for some } \varphi \text{ and } I \vDash \varphi \}.$
- *I* is a model of *T* iff *I* is the unique model of T'.

Actions & Fluents

- $Utter_t(x,\sigma)$: an agent x utters a sentence σ at time t
- $Hold_t(\sigma)$: a sentence σ is true at time t
- $Bel_t(x,\sigma)$: an agent x believes a sentence σ at time t
- The following relations are defined:
 Hold_t(T) ≡ Bel_t(x,T) ≡ T, Hold_t(⊥) ≡ Bel_t(x,⊥) ≡ ⊥
 Hold_t(¬σ) ≡ ¬ Hold_t(σ) for any x, σ, t
 where T represents true and ⊥ represents false.

Causal Theory of Speech Acts

• A causal theory of speech acts $CT_{x\sigma}^{t}$ consists of rules:

 $(\neg)Utter_t(x,\sigma) \Rightarrow (\neg)Utter_t(x,\sigma)$ (action rule)

``if an action (*Utter*) occurs at *t*, there is a cause of this"

$$(\neg)Hold_t(\sigma) \Rightarrow (\neg)Hold_t(\sigma)$$
$$(\neg)Bel_t(x,\sigma) \Rightarrow (\neg)Bel_t(x,\sigma)$$

(fluent rules)

``if a fluent (*Hold* or *Bel*) holds at *t*, there is a cause of this" $(\neg)Hold_t(\sigma) \land (\neg)Hold_{t+1}(\sigma) \Rightarrow (\neg)Hold_{t+1}(\sigma)$ $(\neg)Bel_t(x,\sigma) \land (\neg)Bel_{t+1}(x,\sigma) \Rightarrow (\neg)Bel_{t+1}(x,\sigma)$

(inertia rules)

``if the truth value of a fluent (*Hold* or *Bel*) at *t* is identical with the value at *t*+1, then the value at *t*+1 is caused by persistence"

(Un)trustful/(Un)truthful Speech Acts

A (un)trustful speech act of a sentence σ by an agent
 a at time *t* is defined as:

Trustful (a,σ,t) := $CT_{a\sigma}^{t} \cup \{ Utter_{t}(a,\sigma) \land \neg Hold_{t}(\sigma) \Rightarrow \bot \}$ **Untrustful** (a,σ,t) := $CT_{a\sigma}^{t} \cup \{ Utter_{t}(a,\sigma) \land Hold_{t}(\sigma) \Rightarrow \bot \}$

A (un)truthful speech act of a sentence σ by an agent
 a at time t is defined as:

Truthful (a,σ,t) := $CT_{a\sigma}^{t} \cup \{ Utter_{t}(a,\sigma) \land \neg Bel_{t}(a,\sigma) \Rightarrow \bot \}$

Untruthful (a,σ,t) := $CT_{a\sigma}^{t} \cup \{ Utter_{t}(a,\sigma) \land Bel_{t}(a,\sigma) \Rightarrow \bot \}$

Properties

- **Trustful**(a,σ,t) \land **Untrustful**(a,σ,t) $\supset \neg$ *Utter*_t(a,σ)
- **Truthful**(a,σ,t) \land **Untruthful**(a,σ,t) $\supset \neg$ *Utter*_t(a,σ)
- **Trustful**(a,σ,t) \land **Truthful**(a,σ,t) \supset ($Utter_t(a,\sigma) \supset Hold_t(\sigma) \land Bel_t(a,\sigma)$)
- **Trustful**(a,σ,t) \land **Untruthful**(a,σ,t) \supset ($Utter_t(a,\sigma) \supset Hold_t(\sigma) \land \neg Bel_t(a,\sigma)$)
- Untrustful(a,σ,t) \land Truthful(a,σ,t) \supset ($Utter_t(a,\sigma) \supset \neg Hold_t(\sigma) \land Bel_t(a,\sigma)$)
- Untrustful(a,σ,t) \land Untruthful(a,σ,t) \supset ($Utter_t(a,\sigma) \supset \neg Hold_t(\sigma) \land \neg Bel_t(a,\sigma)$)

Effect of Speech Acts on Hearers

Suppose that a speaker *a* utters a sentence *σ* at time *t*, which brings about a hearer *b*'s believing *σ* at time *t*+1.
 It is represented by the causal rule:

 $Utter_t(a,\sigma) \Rightarrow Bel_{t+1}(b,\sigma)$

• A hearer would believe an utterance only when it is consistent with her own belief. The situation is represented by the constraint:

 $Bel_s(b, \neg \sigma) \land Bel_s(b, \sigma) \Rightarrow \bot$ for s=t, t+1

(Mis)inform/(In)sincere

• Let *a* and *b* two agents. Define **Inform** (a, b, σ, t) := **Trustful** $(a, \sigma, t) \cup \Delta_{ab\sigma}^{t}$ **Misinform** (a, b, σ, t) := **Untrustful** $(a, \sigma, t) \cup \Delta_{ab\sigma}^{t}$ **Sincere**(*a*,*b*, σ ,*t*):= **Truthful**(*a*, σ ,*t*) $\cup \Delta_{ab\sigma}^{t}$ **Insincere**(*a*,*b*, σ ,*t*):= **Untruthful**(*a*, σ ,*t*) $\cup \Delta_{ab\sigma}^{t}$ where $\Delta_{ab\sigma}^{t}$ consists of rules: $(\neg)Bel_t(b,\delta) \Rightarrow (\neg)Bel_t(b,\delta)$ where $\delta \in \{\sigma, \neg \sigma\}$ $(\neg)Bel_{t}(b,\delta) \wedge (\neg)Bel_{t+1}(b,\delta) \Rightarrow (\neg)Bel_{t+1}(b,\delta)$ $Utter_t(a,\sigma) \Rightarrow Bel_{t+1}(b,\sigma)$ $Bel_{c}(b, \neg \sigma) \land Bel_{c}(b, \sigma) \Rightarrow \bot$ for s=t, t+1

Misleading/Deceiving

• Misinform has the model representing misleading:

{ $Utter_t(a,\sigma), Bel_t(a,\sigma), \neg Bel_t(b,\sigma), \neg Bel_t(b,\neg\sigma), \neg Hold_t(\sigma), Bel_{t+1}(a,\sigma), Bel_{t+1}(b,\sigma), \neg Bel_{t+1}(b,\neg\sigma), \neg Hold_{t+1}(\sigma)$ }

``a speaker a utters a **believed-true** sentence σ that is **actually false**, and it causes a hearer b's **acquiring the false belief**''

• Insincere has the model representing deceiving:

{ $Utter_t(a,\sigma), \neg Bel_t(a,\sigma), \neg Bel_t(b,\sigma), \neg Bel_t(b,\neg\sigma), \neg Hold_t(\sigma),$ $\neg Bel_{t+1}(a,\sigma), Bel_{t+1}(b,\sigma), \neg Bel_{t+1}(b,\neg\sigma), \neg Hold_{t+1}(\sigma)$ }

``a speaker σ utters a **disbelieved** sentence σ that is **actually false**, and it causes a hearer b's **acquiring the false belief**''

Encoding in Logic Programming

• A causal theory of speech acts $CT_{x\sigma}^{t}$ is encoded into a logic program $\Pi_{x\sigma}^{t}$ such that

 $\begin{aligned} & \textit{Utter}_t(x,\sigma) \leftarrow \mathsf{not} \neg \textit{Utter}_t(x,\sigma), \quad \neg \textit{Utter}_t(x,\sigma) \leftarrow \mathsf{not} \textit{Utter}_t(x,\sigma) \\ & \textit{Hold}_t(\sigma) \leftarrow \mathsf{not} \neg \textit{Hold}_t(\sigma), \quad \neg \textit{Hold}_t(\sigma) \leftarrow \mathsf{not} \textit{Hold}_t(\sigma) \\ & \textit{Hold}_{t+1}(\sigma) \leftarrow \mathsf{not} \neg \textit{Hold}_t(\sigma), \mathsf{not} \neg \textit{Hold}_{t+1}(\sigma) \\ & \neg \textit{Hold}_{t+1}(\sigma) \leftarrow \mathsf{not} \textit{Hold}_t(\sigma), \mathsf{not} \textit{Hold}_{t+1}(\sigma) \\ & \textit{Bel}_t(x,\sigma) \leftarrow \mathsf{not} \neg \textit{Bel}_t(x,\sigma), \quad \neg \textit{Bel}_t(x,\sigma) \leftarrow \mathsf{not} \textit{Bel}_t(x,\sigma) \\ & \textit{Bel}_{t+1}(x,\sigma) \leftarrow \mathsf{not} \neg \textit{Bel}_t(x,\sigma), \mathsf{not} \neg \textit{Bel}_{t+1}(x,\sigma) \\ & \neg \textit{Bel}_{t+1}(x,\sigma) \leftarrow \mathsf{not} \textit{Bel}_t(x,\sigma), \mathsf{not} \textit{Bel}_{t+1}(x,\sigma) \end{aligned}$

- Then *I* is a model of $CT_{x\sigma}^{t}$ iff *I* is an answer set of $\Pi_{x\sigma}^{t}$.
- The effect of assertive speech acts is computed in **answer set programming**.