Linear Algebraic Characterization of Logic Programs

Chiaki Sakama (Wakayama Univ., Japan)
Katsumi Inoue (NII, Japan)
Taisuke Sato (AIST, Japan)

Why LP in LA?

- Linear algebra is at the core of many applications of scientific computation, and integrating linear algebraic and symbolic computation is a challenging topic in AI.
- Linear algebraic computation has potential to cope with Web scale symbolic data, and several studies develop scalable techniques to process huge relational knowledge bases.
- The next challenge is applying LA to relational facts with rules, which would enable us to use efficient (parallel) algorithms of numerical linear algebra for computing LP.

Logical Reasoning in LA

- Grefenstette (2013) introduces tensor-based predicate calculus.
- Yang, et al. (2015) mine Horn clauses from relational facts in a vector space.
- Serafini, et al. (2016) integrate deductive reasoning and relational learning in logic tensor networks.
- Sato (2017) formalizes FOL in vector spaces and realizes efficient computation of Datalog.
! These studies do not target at computing LP semantics.

Contribution

1. A propositional Herbrand base is represented in a vector space and if-then rules in a logic program are encoded in a matrix.
2. The least model of a (propositional) Horn logic program is computed using matrix products.
3. Disjunctive logic programs are represented in 3rdorder tensors and their minimal models are computed by algebraic manipulation of tensors.
4. Normal logic programs are represented by 3rdorder tensors in terms of disjunctive LPs, and stable models are computed using tensor products.

Tensor Logic Programming

- A Horn program is a finite set of rules of the form

$$
h \leftarrow b_{1} \wedge \cdots \wedge b_{\mathrm{m}} \quad(\mathrm{~m} \geq 0)
$$

where h and b_{i} are propositional variables.

- Given a rule r of the above form, $h e a d(r)=h$ and $\operatorname{body}(r)=\left\{b_{1}, \ldots, b_{\mathrm{m}}\right\}$.
- A rule $h \leftarrow \mathrm{~T}$ is a fact where T represents true.
- A rule $\perp \leftarrow b_{1} \wedge \cdots \wedge b_{\mathrm{m}}$ is a constraint where \perp represents false.
- The set of all propositional variables appearing in a program P is the Herbrand base of $P\left(\right.$ written $\left.B_{\mathrm{p}}\right)$.

T_{p} Operator

- Given an interpretation / s.t. $\{T\} \subseteq I \subseteq B_{p}$, a mapping $T_{p}: 2^{B p} \rightarrow 2^{B p}$ is defined as $T_{\mathrm{p}}(I)=\left\{h \mid h \leftarrow b_{1} \wedge \cdots \wedge b_{\mathrm{m}} \in P\right.$ and $\left.\left\{b_{1}, \ldots, b_{\mathrm{m}}\right\} \subseteq I\right\}$ if $\perp \notin I$; otherwise, $T_{\mathrm{P}}(I)=B_{\mathrm{P}}$
- The powers of T_{p} are defined as

$$
T_{\mathrm{p}}^{\mathrm{k}+1}(I)=T_{\mathrm{p}}\left(T_{\mathrm{p}}^{\mathrm{k}}(I)\right) \quad(\mathrm{k} \geq 0) \text { and } T_{\mathrm{p}}^{0}(I)=I
$$

- Given $\{T\} \subseteq I \subseteq B_{\mathrm{p}}$ there is a fixpoint $T_{\mathrm{p}}^{\mathrm{n}+1}(I)=T_{\mathrm{p}}^{\mathrm{n}}(I)$ ($\mathrm{n} \geq 0$).
- For a definite program, the fixpoint $T_{\mathrm{P}}{ }^{\mathrm{n}}(\{T\})$ coincides with the least model of P.

Multiple Definitions (MD) Condition

- We assume a Horn program satisfying the condition:
for any two rules r_{1} and r_{2} in P, head $\left(r_{1}\right)=$ head $\left(r_{2}\right)$ implies $\left|\operatorname{body}\left(r_{1}\right)\right| \leq 1$ and $\left|\operatorname{body}\left(r_{2}\right)\right| \leq 1$
i.e., if two different rules have the same head, those rules contain at most one atom in their bodies.
- Every Horn program P is transformed to a semantically equivalent program P^{\prime} that satisfies the MD condition.

Example

- $P=\{p \leftarrow q \wedge r, \quad p \leftarrow r \wedge s, \quad p \leftarrow t, \quad r \leftarrow t, \quad s \leftarrow, \quad t \leftarrow\}$ is transformed to

$$
\begin{aligned}
P^{\prime}= & \{p 1 \leftarrow q \wedge r, \quad p 2 \leftarrow r \wedge s, \quad p \leftarrow t, \quad r \leftarrow t, \quad s \leftarrow, \quad t \leftarrow, \\
& p \leftarrow p 1, \quad p \leftarrow p 2\}
\end{aligned}
$$

where $p 1$ and $p 2$ are new propositional variables.

- P^{\prime} has the least model $M^{\prime}=\{p, p 2, r, s, t\}$ and $M^{\prime} \cap B_{p}=\{p, r, s, t\}$ is the least model of P.
- We consider programs satisfying the MD condition without loss of generality.

Vector Representation of Interpretations

- Let $B_{\mathrm{p}}=\left\{p_{1}, \ldots, p_{\mathrm{n}}\right\}$ be the Herbrand base. An interpretation $I\left(\{T\} \subseteq I \subseteq B_{p}\right)$ of a program P is represented by a column vector $v=\left(a_{1}, \ldots, a_{n}\right)^{\top} \in \mathbf{R}^{n}$ where each a_{i} represents the truth value of the proposition p_{i} such that
$-a_{i}=1$ if $p_{i} \in I(1 \leq i \leq n)$
- $a_{i}=0$ otherwise
- The vector representing $l=\{T\}$ is written by v_{0}
- We write $\operatorname{row}_{i}(\boldsymbol{v})=p_{i}$

Matrix Representation of Horn Programs

- Let P be a Horn program and $B_{\mathrm{P}}=\left\{p_{1}, \ldots, p_{\mathrm{n}}\right\}$. P is represented by a matrix $\boldsymbol{M}_{\mathrm{p}} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ s.t. for each element $a_{i j}(1 \leq i, j \leq \mathrm{n})$ in $\boldsymbol{M}_{\mathrm{p}}$,

$$
\begin{aligned}
& -a_{i j}=1 \text { if } p_{i}=\mathrm{T} \text { or } p_{j}=\perp \\
& -a_{i j_{k}}=1 / \mathrm{m}\left(1 \leq k \leq \mathrm{m} ; 1 \leq i, j_{k} \leq \mathrm{n}\right)
\end{aligned}
$$

$$
\text { if } p_{\mathrm{i}} \leftarrow p_{\mathrm{j} 1} \wedge \cdots \wedge p_{\mathrm{jm}} \text { is in } P
$$

- otherwise $a_{i j}=0$
- We write $\operatorname{row}_{i}\left(\boldsymbol{M}_{\mathrm{P}}\right)=p_{i}$ and $\operatorname{col}_{j}\left(\boldsymbol{M}_{\mathrm{P}}\right)=p_{j}$

Example

- $P=\{p \leftarrow q, \quad p \leftarrow r, \quad q \leftarrow r \wedge s, \quad r \leftarrow T, \quad \perp \leftarrow q\}$ with $B_{p}=\{p, q, r, s, T, \perp\}$ is represented by $\boldsymbol{M}_{\mathrm{p}} \in \mathbf{R}^{6 \times 6}$:
body

- $\operatorname{row}_{1}\left(\boldsymbol{M}_{\mathrm{p}}\right)=p$ and $\operatorname{col}_{2}\left(\boldsymbol{M}_{\mathrm{p}}\right)=q$

Need of MD-condition

- The matrix representation does not distinguish P_{1}, $P_{2}=\{p \leftarrow q \wedge s, \quad p \leftarrow r \wedge t\}$ and $P_{3}=\{p \leftarrow q \wedge t, \quad p \leftarrow r \wedge s\}$.
- Then P_{1} is transformed to
pp1p2qret
$P_{1}^{\prime}=\{p 1 \leftarrow q \wedge r, \quad p 2 \leftarrow s \wedge t$, $p \leftarrow p 1, p \leftarrow p 2\}$ which is represented by

	(011) $\begin{array}{lllll}0 & 0\end{array}$
p1	$000 \frac{1}{2} \frac{1}{2} 0$
$p 2$	00000
	0

Product

- Given a matrix $\boldsymbol{M}_{\mathrm{p}} \in \mathbf{R}^{\mathrm{n} \times n}$ representing a program and a vector $\boldsymbol{v} \in \mathbf{R}^{\mathrm{n}}$ representing an interpretation $I \subseteq B_{\mathrm{P}}$, the product $\boldsymbol{M}_{\mathrm{p}} \bullet \boldsymbol{v}=\left(a_{1}, \ldots, a_{\mathrm{n}}\right)^{\top}$ is computed.
- Transform $\boldsymbol{M}_{\mathrm{p}} \bullet \boldsymbol{v}$ to a vector $\boldsymbol{w}=\left(a_{1}^{\prime}, \ldots, a_{\mathrm{n}}^{\prime}\right)^{\top}$ where $a_{i}^{\prime}=1(1 \leq i \leq n)$ if $a_{i j} \geq 1$; otherwise, $a_{i}^{\prime}=0$
- We write $\boldsymbol{w}=\boldsymbol{M}_{\mathrm{P}} \stackrel{v}{ }$

Example (cont.)

- $P=\{p \leftarrow q, p \leftarrow r, q \leftarrow r \wedge s, \quad r \leftarrow, \leftarrow q\}$
- Given $\boldsymbol{v}=(0,1,1,0,1,0)^{\top}$ representing $l=\{q, r, T\}$,

$$
\boldsymbol{M}_{\mathrm{P}} \bullet \boldsymbol{v}=\left(\begin{array}{cccccc}
p & \boldsymbol{q} & r & s & \top \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \frac{1}{2} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right)\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{1} \\
\mathbf{1} \\
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{2} \\
\mathbf{1} \\
\mathbf{2} \\
\mathbf{1} \\
\mathbf{0} \\
\mathbf{3} \\
\mathbf{1}
\end{array}\right) \begin{aligned}
& p \\
& q \\
& r \\
& \perp \\
& \perp
\end{aligned}
$$

- Then $\boldsymbol{w}=\boldsymbol{M}_{\mathrm{P}} \bullet \boldsymbol{v}=(1,0,1,0,1,1)^{\top}$ represents $J=\{p, r, \top, \perp\}$

Deduction by Matrix Product

- Proposition Let P be a Horn program and $\boldsymbol{M}_{\mathrm{P}} \in \mathbf{R}^{\mathrm{n} \times n}$ its matrix representation. Let $\boldsymbol{v} \in \mathbf{R}^{n}$ be a vector representing $I \subseteq B_{\mathrm{p}}$. Then $\boldsymbol{w} \in \mathbf{R}^{\mathrm{n}}$ is a vector representing $J=T_{\mathrm{p}}(I)$ iff $\boldsymbol{w}=\boldsymbol{M}_{\mathrm{p}} \bullet \boldsymbol{v}$

Fixpoint Computation

- Given a matrix $\boldsymbol{M}_{\mathrm{p}} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ and a vector $\boldsymbol{v} \in \mathbf{R}^{\mathrm{n}}$, define

$$
\boldsymbol{M}_{\mathrm{P}} \underline{\bullet}^{\mathrm{k}+1} \boldsymbol{v}=\boldsymbol{M}_{\mathrm{P}} \bullet\left(\boldsymbol{M}_{\mathrm{P}} \underline{\bullet}^{\mathrm{k}} \boldsymbol{v}\right) \text { and } \boldsymbol{M}_{\mathrm{P}} \underline{\bullet}^{1} \boldsymbol{v}=\boldsymbol{M}_{\mathrm{P}} \bullet \boldsymbol{v}(\mathrm{k} \geq 1)
$$

- When $\boldsymbol{M}_{\mathrm{P}} \underline{\bullet}^{\mathrm{k}+1} \boldsymbol{v}=\boldsymbol{M}_{\mathrm{P}} \underline{\bullet}^{\mathrm{k}} \boldsymbol{v}$ for some $\mathrm{k} \geq 1$, write $\operatorname{FP}\left(\boldsymbol{M}_{\mathrm{P}} \bullet \boldsymbol{v}\right)=\boldsymbol{M}_{\mathrm{P}} \underline{\bullet}^{\mathrm{k}} \boldsymbol{v}$

Computing Least Model by Matrix Product

- Theorem Let P be a Horn program and $\boldsymbol{M}_{\mathrm{P}} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ its matrix representation. Then $\boldsymbol{m} \in \mathbf{R}^{\mathrm{n}}$ is a vector representing the least model of P iff $\boldsymbol{m}=\operatorname{FP}\left(\boldsymbol{M}_{\mathrm{P}} \bullet \boldsymbol{v}_{0}\right)$ and $a_{i}=1$ implies $\operatorname{row}_{i}(\boldsymbol{m}) \neq \perp$ for any element a_{i} in \boldsymbol{m}
- Corollary P is inconsistent iff a vector $\boldsymbol{w}=\boldsymbol{M}_{\mathrm{P}}{ }^{k} \bullet \boldsymbol{v}_{\boldsymbol{0}}$ ($k \geq 1$) has an element $a_{i}=1(1 \leq i \leq \mathrm{n})$ such that $\operatorname{row}_{i}(w)=\perp$

Example (cont.)

- $P=\{p \leftarrow q, \quad p \leftarrow r, \quad q \leftarrow r \wedge s, \quad r \leftarrow, \leftarrow q\}$
$\boldsymbol{M}_{\mathrm{P}} \bullet\left(\boldsymbol{M}_{\mathrm{P}} \bullet^{1} \boldsymbol{v}_{0}\right)=\left(\begin{array}{cccccc}0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}\mathbf{1} \\ \frac{1}{2} \\ 1 \\ 0 \\ 2 \\ 0\end{array}\right) \quad M_{\mathrm{P}} \bullet^{-2} \boldsymbol{V}_{0}=\left(\begin{array}{c}1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right)$
- $\operatorname{FP}\left(\boldsymbol{M}_{\mathrm{p}}\right.$ • $\left.\boldsymbol{v}_{0}\right)=(1,0,1,0,1,0)^{\top}$ represents the least model $\{p, r, T\}$ of P.

Computing Disjunctive Logic Programs by $3^{\text {rd }}$-Order Tensor

1. Split a disjunctive program into Horn programs. ex. $P=\{p \vee r \leftarrow s, q \vee r \leftarrow\}$ is split into

$$
\begin{array}{lll}
S P_{1}=\{p \leftarrow s, & q \leftarrow\}, & S P_{2}=\{p \leftarrow s, \\
S \leftarrow\}, & r \leftarrow\},
\end{array}
$$

2. Represent split programs by a $3^{\text {rd }}$-order tensor.

3. Compute least models of split programs by tensor product and select minimal models among them.

Computing Normal Logic Programs by $3^{\text {rd }}$-Order Tensor

- Transform a normal program to a semantically equivalent disjunctive program (Fernandez, et al., 1993).

$$
\begin{aligned}
& h \leftarrow b_{1} \wedge \cdots \wedge b_{\mathrm{m}} \wedge \neg b_{\mathrm{m}+1} \wedge \cdots \wedge \neg b_{\mathrm{n}} \\
& h \vee \varepsilon b_{\mathrm{m}+1} \vee \cdots \vee \varepsilon b_{\mathrm{n}} \leftarrow b_{1} \wedge \cdots \wedge b_{\mathrm{m}} \\
& \text { and } \varepsilon p \text { for } p \in B_{\mathrm{p}} \backslash\{\mathrm{~T}, \perp\} \\
& \text { + integrity constraints } \varepsilon p \Rightarrow p \text { for } p \in B_{\mathrm{p}} \backslash\{T, \perp\}
\end{aligned}
$$

where εp is a new atom associated with p.

- Compute stable models via minimal models of the transformed disjunctive program.

Complexity

- The least model of a Horn program is computed in $\mathrm{O}(N)$ time and space where N is the size of the program (Dowling\& Gallier, 1984).
- The proposed method requires $O\left(n^{2}\right)$ space and $O\left(n^{4}\right)$ time in the worst case where n is the number of propositional variables in B_{p}
- Since the size of a matrix is independent of the size of a program, LA computation would be advantageous in a large knowledge base on a fixed language.

Conclusion

- Linear algebraic characterization of logic programs bridges symbolic and linear algebraic approaches, which would contribute to a step for realizing logical inference in huge scale of knowledge bases.
- We are now implementing/evaluating the algorithm and also plan to use parallel computing on GPU.

