
Linear Algebraic Characterization of
Logic Programs

Chiaki Sakama (Wakayama Univ., Japan)
Katsumi Inoue (NII, Japan)
Taisuke Sato (AIST, Japan)

KSEM 2017, Melbourne

Why LP in LA?

• Linear algebra is at the core of many applications of
scientific computation, and integrating linear algebraic
and symbolic computation is a challenging topic in AI.

• Linear algebraic computation has potential to cope
with Web scale symbolic data, and several studies
develop scalable techniques to process huge relational
knowledge bases.

• The next challenge is applying LA to relational facts
with rules, which would enable us to use efficient
(parallel) algorithms of numerical linear algebra for
computing LP.

Logical Reasoning in LA

• Grefenstette (2013) introduces tensor-based predicate
calculus.

• Yang, et al. (2015) mine Horn clauses from relational facts
in a vector space.

• Serafini, et al. (2016) integrate deductive reasoning and
relational learning in logic tensor networks.

• Sato (2017) formalizes FOL in vector spaces and realizes
efficient computation of Datalog.

! These studies do not target at computing LP semantics.

Contribution
1. A propositional Herbrand base is represented in a

vector space and if-then rules in a logic program are
encoded in a matrix.

2. The least model of a (propositional) Horn logic
program is computed using matrix products.

3. Disjunctive logic programs are represented in 3rd-
order tensors and their minimal models are
computed by algebraic manipulation of tensors.

4. Normal logic programs are represented by 3rd-
order tensors in terms of disjunctive LPs, and stable
models are computed using tensor products.

Tensor Logic Programming
• A Horn program is a finite set of rules of the form
 h ← b1 ∧…∧ bm (m≥0)

 where h and bi are propositional variables.
• Given a rule r of the above form, head(r)=h and

body(r)={ b1 ,..., bm }.
• A rule h ← ⊤ is a fact where ⊤ represents true.
• A rule ⊥ ← b1∧…∧ bm is a constraint where ⊥

represents false.
• The set of all propositional variables appearing in a

program P is the Herbrand base of P (written BP).

TP Operator

• Given an interpretation I s.t. {⊤}⊆I⊆BP , a mapping
TP : 2Bp → 2Bp is defined as
 TP (I) = { h | h ← b1∧…∧ bm ∈ P and {b1,...,bm} ⊆I }
 if ⊥∈ I ; otherwise, TP (I) = BP

• The powers of TP are defined as
 TP

k+1(I) = TP(TP
k(I)) (k≥0) and TP

0(I) = I
• Given {⊤}⊆I⊆BP there is a fixpoint TP

n+1(I) = TP
n(I)

(n≥0).
• For a definite program, the fixpoint TP

n({⊤}) coincides
with the least model of P.

Multiple Definitions (MD) Condition

• We assume a Horn program satisfying the condition:

 for any two rules r1 and r2 in P, head(r1)=head(r2)
 implies |body(r1)|≤1 and |body(r2)|≤1

 i.e., if two different rules have the same head,
 those rules contain at most one atom in their bodies.

• Every Horn program P is transformed to a semantically
equivalent program P’ that satisfies the MD condition.

Example

• P ={ p←q∧r, p←r∧s, p←t, r←t, s←, t← }
is transformed to
P’ ={ p1←q∧r, p2←r∧s, p←t, r←t, s←, t←,
 p←p1, p←p2 }
where p1 and p2 are new propositional variables.

• P’ has the least model M’={ p, p2, r, s, t } and
M’∩BP ={ p, r, s, t } is the least model of P.

• We consider programs satisfying the MD condition
without loss of generality.

Vector Representation of
Interpretations

• Let BP = { p1 ,…, pn} be the Herbrand base.
An interpretation I ({⊤}⊆I⊆BP) of a program P is
represented by a column vector v=(a1 ,…,an)T ∈ Rn
where each ai represents the truth value of the
proposition pi such that
– ai = 1 if pi ∈ I (1≤i≤n)
– ai = 0 otherwise

• The vector representing I={⊤} is written by v0

• We write rowi (v)= pi

Matrix Representation of
Horn Programs

• Let P be a Horn program and BP = { p1 ,…, pn }.
P is represented by a matrix MP ∈ Rn×n s.t.
for each element aij (1≤i, j≤n) in MP ,
– aij =1 if pi =⊤ or pj =⊥

– aijk
 =1/m (1≤k≤m; 1≤ i, jk≤n)

 if pi ← pj1 ∧…∧ pjm is in P
– otherwise aij =0

• We write rowi(MP)= pi and colj(MP)= pj

Example

• P ={ p←q, p←r, q←r∧s, r←⊤, ⊥←q } with
BP = { p, q, r, s, ⊤, ⊥ } is represented by MP ∈ R6×6 :

• row1(MP)= p and col2(MP)= q

𝟎 𝟏 𝟏 𝟎 𝟎 𝟏
𝟎 𝟎 𝟏

𝟐
 𝟏

𝟐
 𝟎 𝟏

𝟎 𝟎 𝟎 𝟎 𝟏 𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟏
𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
𝟎 𝟏 𝟎 𝟎 𝟎 𝟏

p q r s ⊤ ⊥
p
q
r
s
⊤
⊥

 p←q, p←r, p←⊥(≡⊤)
 q←r∧s, q←⊥(≡⊤)
 r ←⊤(≡ r←), r←⊥(≡⊤)
 s←⊥(≡⊤)

 ⊤←p(≡⊤), ⊤←q, … , ⊤←⊥
 ⊥←q(≡ ←q), ⊥←⊥(≡⊤)

body

h
e
a
d

Need of MD-condition

• P1 ={ p←q∧r, p←s∧t } is represented by

• The matrix representation does not distinguish P1 ,

P2 ={ p←q∧s, p←r∧t } and P3 ={ p←q∧t, p←r∧s }.
• Then P1 is transformed to

P1’={ p1←q∧r, p2←s∧t,
p←p1, p←p2 } which is
represented by

p p1 p2 q r s t

p
q
r
s
t

𝟎 𝟏

𝟐
 𝟏
𝟐

 𝟏
𝟐

 𝟏
𝟐

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟏 𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟏

𝟐
 𝟏

𝟐
 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟏
𝟐

 𝟏
𝟐

p q r s t

p
p1
p2
q
r
s
t 0

Product

• Given a matrix MP ∈ Rn×n representing a program
and a vector v ∈ Rn representing an interpretation
I⊆BP , the product MP•v =(a1 ,…,an)T is computed.

• Transform MP•v to a vector w =(a’1 ,…,a’n) T where
a’i =1 (1≤i≤n) if aij ≥1; otherwise, a’i =0

• We write w = MP •v

Example (cont.)

• P ={ p←q, p←r, q←r∧s, r←, ←q }
• Given v =(0,1,1,0,1,0)T representing I={q, r, ⊤},

• Then w = MP •v =(1,0,1,0,1,1)T represents J={p, r,⊤,⊥}

 MP •v =

𝟎 𝟏 𝟏 𝟎 𝟎 𝟏
𝟎 𝟎 𝟏

𝟐
 𝟏

𝟐
 𝟎 𝟏

𝟎 𝟎 𝟎 𝟎 𝟏 𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟏
𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
𝟎 𝟏 𝟎 𝟎 𝟎 𝟏

𝟎
𝟏
𝟏
𝟎
𝟏
𝟎

=

𝟐
𝟏
𝟐
𝟏
𝟎
𝟑
𝟏

p q r s ⊤ ⊥
p
q
r
s
⊤
⊥

Deduction by Matrix Product

• Proposition Let P be a Horn program and MP ∈ Rn×n

its matrix representation. Let v ∈ Rn be a vector
representing I⊆BP . Then w ∈ Rn is a vector
representing J=TP(I) iff w = MP •v

Fixpoint Computation

• Given a matrix MP ∈ Rn×n and a vector v ∈ Rn, define

 MP •k+1 v = MP •(MP •k v) and MP •1 v = MP • v (k≥1)

• When MP •k+1 v = MP •k v for some k≥1, write
FP(MP • v)= MP •k v

Computing Least Model by Matrix
Product

• Theorem Let P be a Horn program and MP ∈ Rn×n

its matrix representation. Then m ∈ Rn is a vector
representing the least model of P iff m= FP(MP • v0)
and ai =1 implies rowi (m)≠⊥ for any element ai in m

• Corollary P is inconsistent iff a vector w = MP
k • v0

(k≥1) has an element ai =1 (1≤i≤n) such that
rowi (w)=⊥

Example (cont.)
• P ={ p←q, p←r, q←r∧s, r←, ←q }

• FP(MP • v0)=(1,0,1,0,1,0)T represents
the least model {p, r,⊤} of P.

 MP•v0 =

𝟎 𝟏 𝟏 𝟎 𝟎 𝟏
𝟎 𝟎 𝟏

𝟐
 𝟏

𝟐
 𝟎 𝟏

𝟎 𝟎 𝟎 𝟎 𝟏 𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟏
𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
𝟎 𝟏 𝟎 𝟎 𝟎 𝟏

𝟎
𝟎
𝟎
𝟎
𝟏
𝟎

=

𝟎
𝟎
𝟏
𝟎
𝟏
𝟎

 = MP •1 v0

p q r s ⊤ ⊥
p
q
r
s
⊤
⊥

 MP•(MP •1 v0)=

𝟎 𝟏 𝟏 𝟎 𝟎 𝟏
𝟎 𝟎 𝟏

𝟐
 𝟏

𝟐
 𝟎 𝟏

𝟎 𝟎 𝟎 𝟎 𝟏 𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟏
𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
𝟎 𝟏 𝟎 𝟎 𝟎 𝟏

𝟎
𝟎
𝟏
𝟎
𝟏
𝟎

=

𝟏
𝟏
𝟐
𝟏
𝟎
𝟐
𝟎

 MP •2 v0 =

𝟏
𝟎
𝟏
𝟎
𝟏
𝟎

= FP(MP • v0)

Computing Disjunctive Logic
Programs by 3rd-Order Tensor

1. Split a disjunctive program into Horn programs.
 ex. P = { p ⋁ r ← s, q ⋁ r ← } is split into
 SP1={ p ←s, q ←}, SP2={ p ←s, r ←},
 SP3={ r← s, q ←}, SP4={ r← s, r ←}.
2. Represent split programs by a 3rd-order tensor.

3. Compute least models of split programs by tensor
 product and select minimal models among them.

⋱

𝒂𝟏𝟏𝟏 … 𝒂𝟏𝒏𝒏

⋮ ⋱ ⋮
𝒂𝒏𝒏𝒏 … 𝒂𝒏𝒏𝒏

𝒂𝟏𝟏𝟏 … 𝒂𝟏𝒏𝒏

⋮ ⋱ ⋮
𝒂𝒏𝒏𝒏 … 𝒂𝒏𝒏𝒏

v
𝒂𝟏𝟏𝟏 … 𝒂𝟏𝒏𝒏

⋮ ⋱ ⋮
𝒂𝒏𝒏𝒏 … 𝒂𝒏𝒏𝒏

SP1

SP2

SPk

Computing Normal Logic Programs by
3rd-Order Tensor

• Transform a normal program to a semantically equivalent
disjunctive program (Fernandez, et al., 1993).

 h ← b1∧…∧ bm ∧￢bm+1∧…∧￢bn

 h ∨ εbm+1 ∨ … ∨ εbn ← b1∧…∧ bm
 and εp ← p for p∈ BP⧵{⊤,⊥}
 + integrity constraints εp ⇒ p for p∈ BP⧵{⊤,⊥}

 where εp is a new atom associated with p.
• Compute stable models via minimal models of the

transformed disjunctive program.

Complexity

• The least model of a Horn program is computed in
O(N) time and space where N is the size of the
program (Dowling& Gallier, 1984).

• The proposed method requires O(n2) space and O(n4)
time in the worst case where n is the number of
propositional variables in BP

• Since the size of a matrix is independent of the size of
a program, LA computation would be advantageous in
a large knowledge base on a fixed language.

Conclusion

• Linear algebraic characterization of logic programs
bridges symbolic and linear algebraic approaches,
which would contribute to a step for realizing logical
inference in huge scale of knowledge bases.

• We are now implementing/evaluating the algorithm
and also plan to use parallel computing on GPU.

	Linear Algebraic Characterization of Logic Programs
	Why LP in LA?
	Logical Reasoning in LA
	Contribution
	Tensor Logic Programming
	TP Operator
	Multiple Definitions (MD) Condition
	Example
	Vector Representation of Interpretations
	Matrix Representation of �Horn Programs
	Example
	Need of MD-condition
	Product
	Example (cont.)
	Deduction by Matrix Product
	Fixpoint Computation
	Computing Least Model by Matrix Product
	Example (cont.)
	Computing Disjunctive Logic Programs by 3rd-Order Tensor
	Computing Normal Logic Programs by 3rd-Order Tensor
	Complexity
	Conclusion

