Linear Algebraic Characterization of Logic Programs

Chiaki Sakama (Wakayama Univ., Japan) Katsumi Inoue (NII, Japan) Taisuke Sato (AIST, Japan)

KSEM 2017, Melbourne

Why LP in LA?

- Linear algebra is at the core of many applications of scientific computation, and integrating linear algebraic and symbolic computation is a challenging topic in AI.
- Linear algebraic computation has potential to cope with Web scale symbolic data, and several studies develop scalable techniques to process huge relational knowledge bases.
- The next challenge is applying LA to relational facts with rules, which would enable us to use efficient (parallel) algorithms of numerical linear algebra for computing LP.

Logical Reasoning in LA

- Grefenstette (2013) introduces tensor-based predicate calculus.
- Yang, *et al*. (2015) mine Horn clauses from relational facts in a vector space.
- Serafini, *et al*. (2016) integrate deductive reasoning and relational learning in logic tensor networks.
- Sato (2017) formalizes FOL in vector spaces and realizes efficient computation of Datalog.

I These studies do not target at computing LP semantics.

Contribution

- 1. A propositional Herbrand base is represented in a **vector space** and if-then rules in a logic program are encoded in a **matrix**.
- 2. The least model of a (propositional) Horn logic program is computed using **matrix products**.
- 3. Disjunctive logic programs are represented in **3rdorder tensors** and their minimal models are computed by algebraic manipulation of tensors.
- 4. Normal logic programs are represented by **3rdorder tensors** in terms of disjunctive LPs, and stable models are computed using **tensor products**.

Tensor Logic Programming

• A Horn program is a finite set of rules of the form

 $h \leftarrow b_1 \wedge \cdots \wedge b_m \quad (m \ge 0)$

where h and b_i are propositional variables.

- Given a rule r of the above form, head(r)=h and body(r)={ b₁,..., b_m }.
- A rule $h \leftarrow \top$ is a **fact** where \top represents **true**.
- A rule $\bot \leftarrow b_1 \land \dots \land b_m$ is a **constraint** where \bot represents **false**.
- The set of all propositional variables appearing in a program *P* is the **Herbrand base** of *P* (written B_P).

T_P Operator

- Given an interpretation I s.t. $\{\top\} \subseteq I \subseteq B_P$, a **mapping** $T_P: 2^{BP} \rightarrow 2^{BP}$ is defined as $T_P(I) = \{h \mid h \leftarrow b_1 \land \dots \land b_m \in P \text{ and } \{b_1, \dots, b_m\} \subseteq I\}$ if $\bot \notin I$; otherwise, $T_P(I) = B_P$
- The **powers** of T_P are defined as $T_P^{k+1}(I) = T_P(T_P^k(I))$ (k ≥ 0) and $T_P^0(I) = I$
- Given $\{T\} \subseteq I \subseteq B_P$ there is a **fixpoint** $T_P^{n+1}(I) = T_P^n(I)$ (n ≥ 0).
- For a definite program, the fixpoint T_Pⁿ({⊤}) coincides with the **least model** of *P*.

Multiple Definitions (MD) Condition

• We assume a Horn program satisfying the condition:

for any two rules r_1 and r_2 in P, head (r_1) =head (r_2) implies $|body(r_1)| \le 1$ and $|body(r_2)| \le 1$

i.e., if two different rules have the same head, those rules contain at most one atom in their bodies.

• Every Horn program *P* is transformed to a semantically equivalent program *P'* that satisfies the MD condition.

Example

- P={p←q∧r, p←r∧s, p←t, r←t, s←, t← } is transformed to P'={p1←q∧r, p2←r∧s, p←t, r←t, s←, t←, p←p1, p←p2}
 where p1 and p2 are new propositional variables.
- P' has the least model $M' = \{ p, p2, r, s, t \}$ and $M' \cap B_P = \{ p, r, s, t \}$ is the least model of P.
- We consider programs satisfying the MD condition without loss of generality.

Vector Representation of Interpretations

- Let $B_p = \{p_1, ..., p_n\}$ be the Herbrand base. An interpretation I ($\{T\} \subseteq I \subseteq B_p$) of a program P is represented by a column vector $v = (a_1, ..., a_n)^T \in \mathbb{R}^n$ where each a_i represents the truth value of the proposition p_i such that
 - $-a_i = 1$ if $p_i \in I$ ($1 \le i \le n$)
 - $-a_i = 0$ otherwise
- The vector representing $I=\{T\}$ is written by v_0
- We write $row_i(v) = p_i$

Matrix Representation of Horn Programs

• Let *P* be a Horn program and $B_P = \{p_1, ..., p_n\}$. *P* is represented by a matrix $M_P \in \mathbb{R}^{n \times n}$ s.t. for each element a_{ij} ($1 \le i, j \le n$) in M_P ,

$$-a_{ij} = 1 \text{ if } p_i = \top \text{ or } p_j = \bot$$
$$-a_{ij_k} = 1/m (1 \le k \le m; 1 \le i, j_k \le n)$$
$$\text{ if } p_i \leftarrow p_{j1} \land \dots \land p_{jm} \text{ is in } P$$

- otherwise $a_{ii} = 0$

• We write $row_i(\mathbf{M}_P) = p_i$ and $col_i(\mathbf{M}_P) = p_j$

Example

• $P = \{ p \leftarrow q, p \leftarrow r, q \leftarrow r \land s, r \leftarrow \top, \bot \leftarrow q \}$ with $B_P = \{ p, q, r, s, \top, \bot \}$ is represented by $M_P \in \mathbb{R}^{6 \times 6}$:

• $row_1(\mathbf{M}_p) = p$ and $col_2(\mathbf{M}_p) = q$

Need of MD-condition

•
$$P_1 = \{ p \leftarrow q \land r, p \leftarrow s \land t \}$$
 is represented by $p_1 = \{ p \leftarrow q \land r, p \leftarrow s \land t \}$ is represented by $p_1 = \{ p \leftarrow q \land r, p \leftarrow s \land t \}$

- The matrix representation does not distinguish P_1 , $P_2 = \{ p \leftarrow q \land s, p \leftarrow r \land t \}$ and $P_3 = \{ p \leftarrow q \land t, p \leftarrow r \land s \}$.
- Then P_1 is transformed to $P_1' = \{ p1 \leftarrow q \land r, p2 \leftarrow s \land t, p \leftarrow p1, p \leftarrow p2 \}$ which is represented by

	p	p1	p 2	2 q	r	S	t	
р	/0	1	1	0	0	0	0 \	
p1	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	
p2	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	
q r								
s t				U			/	/

pqrst

Product

- Given a matrix $M_P \in \mathbb{R}^{n \times n}$ representing a program and a vector $v \in \mathbb{R}^n$ representing an interpretation $I \subseteq B_P$, the product $M_P \cdot v = (a_1, ..., a_n)^T$ is computed.
- Transform $M_{P} \cdot v$ to a vector $w = (a'_{1}, ..., a'_{n})^{T}$ where $a'_{i} = 1 \ (1 \le i \le n)$ if $a_{ij} \ge 1$; otherwise, $a'_{i} = 0$
- We write $w = M_{P} \bullet v$

Example (cont.)

- $P = \{ p \leftarrow q, p \leftarrow r, q \leftarrow r \land s, r \leftarrow, \leftarrow q \}$
- Given $v = (0, 1, 1, 0, 1, 0)^T$ representing $I = \{q, r, T\}$,

$$M_{\rm p} \bullet v = \begin{pmatrix} p & q & r & s + \bot \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \\ \frac{1}{2} \\ 1 \\ 0 \\ \frac{1}{2} \\ 1 \\ 0 \\ \frac{1}{2} \\ \frac{1}$$

• Then $w = M_{P} \bullet v = (1,0,1,0,1,1)^{T}$ represents $J = \{p, r, T, \bot\}$

Deduction by Matrix Product

• <u>**Proposition</u>** Let *P* be a Horn program and $M_P \in \mathbb{R}^{n \times n}$ its matrix representation. Let $v \in \mathbb{R}^n$ be a vector representing $I \subseteq B_P$. Then $w \in \mathbb{R}^n$ is a vector representing $J=T_P(I)$ iff $w = M_P \bullet v$ </u>

Fixpoint Computation

• Given a matrix $M_P \in \mathbb{R}^{n \times n}$ and a vector $v \in \mathbb{R}^n$, define

$$M_{P} \bullet^{k+1} v = M_{P} \bullet (M_{P} \bullet^{k} v)$$
 and $M_{P} \bullet^{1} v = M_{P} \bullet v$ (k≥1)

• When $M_{p} \bullet^{k+1} v = M_{p} \bullet^{k} v$ for some $k \ge 1$, write $FP(M_{p} \bullet v) = M_{p} \bullet^{k} v$

Computing Least Model by Matrix Product

- <u>Theorem</u> Let *P* be a Horn program and $M_P \in \mathbb{R}^{n \times n}$ its matrix representation. Then $m \in \mathbb{R}^n$ is a vector representing the least model of *P* iff $m = \mathbb{FP}(M_P \bullet v_0)$ and $a_i = 1$ implies $row_i(m) \neq \bot$ for any element a_i in m
- <u>Corollary</u> *P* is inconsistent iff a vector $w = M_P^k \bullet v_0$ ($k \ge 1$) has an element $a_i = 1$ ($1 \le i \le n$) such that $row_i(w) = \bot$

Example (cont.)

•
$$P = \{ p \leftarrow q, p \leftarrow r, q \leftarrow r \land s, r \leftarrow, \leftarrow q \}$$

 $M_{P} \bullet v_{\theta} = \prod_{\substack{q \\ r \\ s \\ T \\ \downarrow}}^{p} \binom{q}{0} \frac{r}{1} \frac{s}{1} \frac{\tau}{0} \frac{\tau}{0} \frac{r}{1} \frac{s}{1} \frac{\tau}{2} \frac{1}{0} \frac{1}{1} \frac{1}{0} \frac{\sigma}{0} \frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{\sigma}{0} \frac{1}{1} \frac{1}{1}$

• **FP**($M_{P} \bullet v_{0}$)=(1,0,1,0,1,0)^T represents the least model {p, r, T} of P.

Computing Disjunctive Logic Programs by 3rd-Order Tensor

1. Split a disjunctive program into Horn programs. ex. $P = \{ p \lor r \leftarrow s, q \lor r \leftarrow \}$ is split into $SP_1 = \{ p \leftarrow s, q \leftarrow \}, SP_2 = \{ p \leftarrow s, r \leftarrow \},$ $SP_3 = \{ r \leftarrow s, q \leftarrow \}, SP_4 = \{ r \leftarrow s, r \leftarrow \}.$

2. Represent split programs by a 3rd-order tensor.

3. Compute least models of split programs by tensor product and select minimal models among them.

Computing Normal Logic Programs by 3rd-Order Tensor

• Transform a normal program to a semantically equivalent disjunctive program (Fernandez, *et al.*, 1993).

where εp is a new atom associated with p.

• Compute stable models via minimal models of the transformed disjunctive program.

Complexity

- The least model of a Horn program is computed in O(N) time and space where N is the size of the program (Dowling& Gallier, 1984).
- The proposed method requires O(n²) space and O(n⁴) time in the worst case where n is the number of propositional variables in B_P
- Since the size of a matrix is independent of the size of a program, LA computation would be advantageous in a large knowledge base on a fixed language.

Conclusion

- Linear algebraic characterization of logic programs bridges symbolic and linear algebraic approaches, which would contribute to a step for realizing logical inference in huge scale of knowledge bases.
- We are now implementing/evaluating the algorithm and also plan to use parallel computing on GPU.