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Why LP in LA? 

• Linear algebra is at the core of many applications of 
scientific computation, and integrating linear algebraic 
and symbolic computation is a challenging topic in AI.  

• Linear algebraic computation has potential to cope 
with Web scale symbolic data, and several studies 
develop scalable techniques to process huge relational 
knowledge bases.  

• The next challenge is applying LA to relational facts 
with rules, which would enable us to use efficient 
(parallel) algorithms of numerical linear algebra for 
computing LP.  



Logical Reasoning in LA 

• Grefenstette (2013) introduces tensor-based predicate 
calculus.  

• Yang, et al. (2015) mine Horn clauses from relational facts 
in a vector space.  

• Serafini, et al. (2016) integrate deductive reasoning and 
relational learning in logic tensor networks.   

• Sato (2017) formalizes FOL in vector spaces and realizes 
efficient computation of Datalog.   

 

!  These studies do not target at computing LP semantics.  



Contribution 
1. A propositional Herbrand base is represented in a 

vector space and if-then rules in a logic program are 
encoded in a matrix.  

2. The least model of a (propositional) Horn logic 
program is computed using matrix products.  

3. Disjunctive logic programs are represented in 3rd-
order tensors and their minimal models are 
computed by algebraic manipulation of tensors.  

4. Normal logic programs are represented by 3rd-
order tensors in terms of disjunctive LPs, and stable 
models are computed using tensor products.  



Tensor Logic Programming 
• A Horn program is a finite set of rules of the form 
                       h ← b1 ∧…∧ bm       (m≥0) 

    where h and bi are propositional variables.   
• Given a rule r of the above form, head(r)=h and 

body(r)={ b1 ,..., bm }.  
• A rule h ← ⊤ is a fact where ⊤ represents true.  
• A rule ⊥ ← b1∧…∧ bm is a constraint where ⊥ 

represents false.  
• The set of all propositional variables appearing in a 

program P is the Herbrand base of P (written BP).   
 



TP  Operator 

• Given an interpretation I  s.t. {⊤}⊆I⊆BP , a mapping 
TP : 2Bp → 2Bp  is defined as  
 TP (I) = { h | h ← b1∧…∧ bm ∈ P  and {b1,...,bm} ⊆I }  
               if ⊥∈ I ; otherwise, TP (I) = BP  

• The powers of TP  are defined as 
    TP

k+1(I) =  TP(TP
k(I))   (k≥0)  and  TP

0(I) = I  
• Given {⊤}⊆I⊆BP there is a fixpoint TP

n+1(I) =  TP
n(I)   

(n≥0).   
• For a definite program, the fixpoint TP

n({⊤}) coincides 
with the least model of P.    



Multiple Definitions (MD) Condition 

• We assume a Horn program satisfying the condition:  

      for any two rules r1 and r2 in P, head(r1)=head(r2)    
      implies |body(r1)|≤1 and |body(r2)|≤1  

      i.e., if two different rules have the same head,  
      those rules contain at most one atom in their bodies.  

• Every Horn program P is transformed to a semantically 
equivalent program P’ that satisfies the MD condition.  



Example 

• P ={ p←q∧r,   p←r∧s,   p←t,   r←t,   s←,   t← }  
is transformed to  
P’ ={ p1←q∧r,   p2←r∧s,   p←t,   r←t,   s←,   t←,   
        p←p1,   p←p2 }  
where p1 and p2 are new propositional variables.  

• P’ has the least model M’={ p, p2, r, s, t } and  
M’∩BP ={ p, r, s, t } is the least model of P.  

• We consider programs satisfying the MD condition 
without loss of generality.   

 



Vector Representation of 
Interpretations 

• Let BP = { p1 ,…, pn} be the Herbrand base.   
An interpretation  I  ({⊤}⊆I⊆BP) of a program P is 
represented by a column vector v=(a1 ,…,an)T ∈ Rn 
where each ai represents the truth value of the 
proposition pi such that  
–  ai = 1  if  pi ∈ I  (1≤i≤n)   
–  ai = 0   otherwise 

• The vector representing I={⊤} is written by v0 

• We write rowi (v)= pi  



Matrix Representation of  
Horn Programs 

• Let P be a Horn program and BP = { p1 ,…, pn }.  
P is represented by a matrix MP ∈ Rn×n  s.t.  
for each element aij (1≤i, j≤n) in MP ,     
– aij =1  if  pi =⊤ or  pj =⊥ 

– aijk
 =1/m (1≤k≤m; 1≤ i, jk≤n)   

                      if pi ← pj1 ∧…∧ pjm is in P  
– otherwise aij =0  

• We write  rowi(MP)= pi   and  colj(MP)= pj  



Example 

• P ={ p←q,    p←r,    q←r∧s,    r←⊤,    ⊥←q } with  
BP = { p, q, r, s, ⊤, ⊥ } is represented by MP ∈ R6×6 :  
 
 
 
 
 
 
 

• row1(MP)= p   and  col2(MP)= q  
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Need of MD-condition 

• P1 ={ p←q∧r,   p←s∧t } is represented by 

 
 
• The matrix representation does not distinguish P1 ,   

P2 ={ p←q∧s,   p←r∧t } and P3 ={ p←q∧t,   p←r∧s }.  
• Then P1 is transformed to  

P1’={ p1←q∧r,   p2←s∧t,   
p←p1,  p←p2 }  which is  
represented by  
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Product 

• Given a matrix MP ∈ Rn×n  representing a program 
and a vector v ∈ Rn representing an interpretation 
I⊆BP , the product MP•v =(a1 ,…,an)T is computed.   

• Transform MP•v to a vector w =(a’1 ,…,a’n) T  where  
a’i =1 (1≤i≤n)  if  aij ≥1; otherwise, a’i =0 

• We write w = MP •v 

 



Example (cont.) 

• P ={ p←q,   p←r,   q←r∧s,   r←,   ←q }  
• Given v =(0,1,1,0,1,0)T representing I={q, r, ⊤},  

 
 
 
 
 

 
• Then w = MP •v =(1,0,1,0,1,1)T represents J={p, r,⊤,⊥} 
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Deduction by Matrix Product 

• Proposition  Let P be a Horn program and MP ∈ Rn×n 

its matrix representation. Let v ∈ Rn be a vector 
representing I⊆BP . Then w ∈ Rn is a vector 
representing J=TP(I) iff w = MP •v  



Fixpoint Computation 

• Given a matrix MP ∈ Rn×n and a vector v ∈ Rn, define 
 
  MP •k+1 v = MP •(MP •k v)  and  MP •1 v = MP • v (k≥1) 
  

• When MP •k+1 v = MP •k v  for some k≥1, write   
FP(MP • v)= MP •k v  

  
 



Computing Least Model by Matrix 
Product 

• Theorem  Let P be a Horn program and MP ∈ Rn×n 

its matrix representation. Then m ∈ Rn  is a vector 
representing the least model of P iff m= FP(MP • v0 ) 
and ai =1 implies rowi (m)≠⊥ for any element ai in m  

• Corollary  P is inconsistent iff a vector w = MP
k • v0  

(k≥1) has an element ai =1 (1≤i≤n) such that  
rowi (w)=⊥ 



Example (cont.) 
• P ={ p←q,   p←r,   q←r∧s,   r←,   ←q }  

 
 
 
 
 

 
 
 
 
 

• FP(MP • v0 )=(1,0,1,0,1,0)T represents  
the least model {p, r,⊤} of P.  
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Computing Disjunctive Logic 
Programs by 3rd-Order Tensor 

1. Split a disjunctive program into Horn programs.    
       ex.  P =  {  p ⋁ r ← s,   q ⋁ r ← } is split into  
                SP1={ p ←s,  q ←},     SP2={ p ←s,   r ←},  
                SP3={ r← s,   q ←},     SP4={ r← s,   r ←}.  
2. Represent split programs by a 3rd-order tensor.  

 
 
 
 

 
 
 
3. Compute least models of split programs by tensor   
    product and select minimal models among them.  
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Computing Normal Logic Programs by 
3rd-Order Tensor 

• Transform a normal program to a semantically equivalent 
disjunctive program (Fernandez, et al., 1993).  

  
    h ← b1∧…∧ bm ∧￢bm+1∧…∧￢bn 

 
     h ∨ εbm+1 ∨ … ∨ εbn ← b1∧…∧ bm     
         and  εp ← p  for  p∈ BP⧵{⊤,⊥} 
         + integrity constraints   εp ⇒ p   for  p∈ BP⧵{⊤,⊥} 
 
     where εp is a new atom associated with p.  
• Compute stable models via minimal models of the 

transformed disjunctive program.  



Complexity 

• The least model of a Horn program is computed in 
O(N) time and space where N is the size of the 
program (Dowling& Gallier, 1984). 

• The proposed method requires O(n2) space and O(n4) 
time in the worst case where n is the number of 
propositional variables in BP 

• Since the size of a matrix is independent of the size of 
a program, LA computation would be advantageous in 
a large knowledge base on a fixed language.  



Conclusion 

• Linear algebraic characterization of logic programs 
bridges symbolic and linear algebraic approaches, 
which would contribute to a step for realizing logical 
inference in huge scale of knowledge bases.  

• We are now implementing/evaluating the algorithm 
and also plan to use parallel computing on GPU.  
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