
The PLP System

Toshiko Wakaki
Shibaura Institute of Technology

Katsumi Inoue
National Institute of Informatics

Chiaki Sakama
Wakayama University

Katsumi Nitta
Tokyo Institute of Technology

JELIA 2004. 09. 27JELIA 2004. 09. 27

Preferential ASP

Brewka & Eiter
PLP

1998 prop.
2003 impl.

Delgrande, Schaub
& Tompits

OLP

1998 prop.
2003 impl.

Sakama & Inoue
PLP

1996 prop.

Brewka, Niemela
& Syrjanen

LPOD

2002 prop./impl.

etc.

2003 impl.

Prioritized Logic Programs

PLP (P,Φ)
Sakama and Inoue [JICSLP-96，AIJ 2000]

Explicit representation of priorities in ASP
Realize various forms of nonmonotonic reasoning
Semantics: preferred answer sets

Implementation of PLP
Sakama and Inoue’s naïve procedure [AIJ 2000]

Applicable to a limited classes of LP
Wakaki, Inoue, Sakama & Inoue [LPAR’03]

Meta-programming in ASP

Wakaki et al.’s Approach
Construct a logic program T[P,Φ,S]
from a PLP (P,Φ) and an answer set S of P.

The answer sets of T[P,Φ,S] are those answer
sets of P which are strictly preferable to S.

The emptiness of the answer sets of T[P,Φ,S]
implies that S is a preferred answer set of (P,Φ).

A similar technique can also be applied to
computing prioritized circumscription in ASP
[Wakaki & Inoue, ICLP 2004].

Prioritized Logic ProgramsPrioritized Logic Programs

Prioritized logic program
＜P, Φ＞

P ： General extended disjunctive program
Φ： Set of priorities on literals

Priority relation y : reflexive and transitive

e1 y e2 : “e2 has a priority over e1”

e1 p e2 : (e1 y e2) and ¬(e2 y e1)

Preferred Answer Set SemanticsPreferred Answer Set Semantics

Priority relation ⊑ : reflexive and transitive
S1 ⊑ S2 : ∃ e2 ∈ (S2＼ S1),

 (i) ∃ e1 ∈ (S1＼ S2) s.t. e1 y e2

 (ii) ¬∃ e3 ∈ (S1＼ S2) s.t. e2 p e3

S∈AS(P) is a preferred answer set of P if

 ∀ S’∈ AS(P). S ⊑ S’ → S’ ⊑ S.

e1

e3

e2S1

S2

Meta-programming for Preference
Translation

The prioritiesΦ and a GEDP P are represented in
the program T[P,Φ,S] s.t. c ≺ d ∈Φ iff ≺(ct , dt)
where ct , dt are terms representing literals c, d.

L∈S is renamed by a newly introduced atom L*
to compare the given answer set S with another
answer set S’ in an answer set of T[P,Φ,S].

For a term ct representing a literal c and its
renamed term c*, m1(ct) and m2(ct) represents
c∈S and c∈S’, respectively.

2. (at , bt) ←, for any a b ∈Φ

3. m1(Lt) ← L*,
m2(Lt) ← L ,

for any L∈ LitP

≺

L* ←, for any L∈S

T[P,Φ,S] ＝ P ∪Γ∪ Π
def

Γ
:

1.

≺

x

z

S

y
x ≺ y

y ≺ z

4. (x, x) ←

5. (x , z) ← (x , y) , (y , z) .

6. (x , y) ← (x , y) , not (y , x) .

7. gr1(x,y) ← m1(x), ≺(x,y), m2(y),
not m2(x), not m1(y).

8. gr2(y,z) ← m2(y), ≺(y,z), m1(z),
not m1(y), not m2(z).

9. attacked(y) ← gr2(y,z)

10. defeated(x) ← gr1(x,y),
not attacked(y).

11. better ← defeated(x).

12. ← not better.

≺≺

≺
Π:

≺

≺≺

S’

≺

Theorem: (Soundness/Completeness)

T[P,Φ,S] has an answer set E if and only if
there is another answer set S’ of P such that
S ⊑ S’ and S’ = E ∩LitP .

Corollary:
T[P,Φ,S] is inconsistent if and only if S is a
strictly preferred answer set of (P,Φ).

Let T[P,Φ,S] be the GEDP constructed from
a PLP (P,Φ) and an answer set S of P.

CompPAS (P,Φ,Δ)
Input: a PLP (P,Φ)
Output: the set Δof all preferred answer sets of (P,Φ)

Step1: Compute the set AS of all answer sets of P.

Step2: IfΦ = {}, then Δ:=AS, return Δ;
Else, let Ω := {si | 1≦i≦|AS| } in which each answer set
S∈AS is assigned a unique ID si ∈Ω.

Step3: Let Σ := {}; For each answer set S∈AS,
if T [P,Φ,S] is consistent, then for each its answer set E,
put Σ := Σ∪{ ⊑(s, s’)← }, where S’ =E ∩Litp and
s,s’ ∈Ω are the answer set IDs for S and S’, respectively.

Procedure to Compute the Preferred Answer Sets

Step4:
Step4: Compute an answer set U of the logic program:

Σ ∪ { as(s)←｜s∈Ω } ∪Ψ

Ψ : ⊑ (x, x) ← as(x).
⊑ (x, z) ← ⊑ (x, y), ⊑ (y, z).
⊏ (x, y) ← ⊑ (x, y), not ⊑ (y, x).
worse(x) ← ⊏ (x, y).
p-as(x) ← as(x), not worse(x).

Step5: Return

Δ := { S ∈AS | The answer set ID s of S satisfies
p-as (s) ∈U }

Example

p*←, r*←, (pt, qt) ← , (qt, rt) ←,
m1(pt)← p*, m1(qt)← q*, m1(rt)← r*,
m1(npt)← ￢p*, m1(nqt)←￢q*, m1(nrt)← ￢r*,
m2(pt)←p, m2(qt)← q, m2(rt)← r,
m2(npt)←￢p, m2(nqt)←￢ q, m2(nrt)← ￢r．

P : p | q ←
q | r ←

Φ: { p q , q r }

Answer sets of P:
S1={ p , r }, S2={ q }

Step
3: T[P,Φ, S1]= P ∪Γ1∪Π ⇒ inconsistent

Γ1：

PLP (P,Φ)

≺ ≺

≺

T[P,Φ, S2] ⇒ S2 ⊑ S1 S1 : a preferred AS

Step
1:

≺

P: posses← , ship← , ￢filstate← ,
perfected ← posses, not ab1, (UCC)
￢perfected ← ship, ￢filstate, not ab2, (SMA)
ab1 | not ab1, ab2 | not ab2, ← ab1,ab2,
ucc ← not ab1, sma ← not ab2.

Legal Problem (Gorden, 1993)

Answer sets of P:
S1={ perfected, posses, ship,￢filstate, ab2, ucc }
S2={ ￢perfected, posses, ship,￢filstate, ab1, sma }

Conflict between UCC and SMA

The principle of Lex Posterior gives precedence to newer
laws, while the principle of Lex Superior gives precedence
to laws supported by the higher authority.

UCC is newer than SMA.
SMA has higher authority than UCC.

Φ1 : moreRecent(ucct , smat)← ,
fed (smat)← , state (ucct)← ,
lp(Y,X) ← moreRecent(X,Y),
ls(Y,X) ← fed(X), state(Y),
≺(Y,X)← lp(Y,X), not conf1(X,Y), (LP)
≺(Y,X)← ls(Y,X), not conf1(X,Y), (LS)

T [P,Φ1 ,S1] ⇒ S1 ⊑ S2
T [P,Φ1 ,S2] ⇒ S2 ⊑ S1

Conflict between LP and LS

S1, S2 : preferred ASs

Meta-priority:
LexPosterior(X,Y) ≺ LexSuperior(U,V)

Φ2 = Φ1 ∪
{conf1(Y, X) ← lp(X, Y), ls(Y, X), not conf2 (X, Y) }

PLP (P, Φ2):

T [P,Φ1 ,S2] ⇒ inconsistent
Only S2 is a preferred answer set of (P, Φ2).

S1 = { perfected, posses, ship,￢filstate, ab2, ucc }
S2 = { ￢perfected, posses, ship,￢filstate, ab1, sma }

	The PLP System
	Preferential ASP
	Prioritized Logic Programs
	Wakaki et al.’s Approach
	Prioritized Logic Programs
	Preferred Answer Set Semantics
	Meta-programming for Preference Translation
	Example
	Answer Set Programming
	 (General Extended Disjunctive) Programs
	Answer Sets (1)
	Answer Sets (2)
	Answer Sets (3)
	 Computing Preferred Answer Sets
	Example
	Example
	Example (Strictly Preferred Answer Sets)

