The PLP System

Toshiko Wakaki

Shibaura Institute of Technology

Katsumi Inoue

National Institute of Informatics

Chiaki Sakama

Wakayama University

Katsumi Nitta Tokyo Institute of Technology

<u>JELIA 2004. 09. 27</u>

Preferential ASP

Prioritized Logic Programs

→ PLP (*P*, Φ)

Implementation of PLP

- Sakama and Inoue's naïve procedure [AIJ 2000]
 Applicable to a limited classes of LP
- → Wakaki, Inoue, Sakama & Inoue [LPAR'03]

→ Meta-programming in ASP

Wakaki et al.'s Approach * Construct a logic program T[P, Φ, S] from a PLP (P, Φ) and an answer set S of P.

- ✤ The answer sets of T[P, Ø, S] are those answer sets of P which are strictly preferable to S.
- → The emptiness of the answer sets of T[P, Φ , S] implies that S is a preferred answer set of (P, Φ).
- A similar technique can also be applied to computing *prioritized circumscription* in ASP [Wakaki & Inoue, ICLP 2004].

Prioritized Logic Programs

• Prioritized logic program

- □ < P, Φ>
 - P : General extended disjunctive program
 - Φ : Set of priorities on *literals*

• Priority relation \leq : reflexive and transitive

 $\Box e_1 \leq e_2$: "e₂ has a priority over e_1 "

 $\square e_1 \prec e_2 : (e_1 \leq e_2) \text{ and } \neg (e_2 \leq e_1)$

Preferred Answer Set Semantics

- Priority relation \sqsubseteq : reflexive and transitive $\square S_1 \sqsubseteq S_2$: $\exists e_2 \in (S_2 \land S_1)$, (i) $\exists e_1 \in (S_1 \land S_2)$ s.t. $e_1 \le e_2$ (ii) $\neg \exists e_3 \in (S_1 \land S_2)$ s.t. $e_2 \prec e_3$
 - □ S∈AS(P) is a preferred answer set of P if \forall S'∈ AS(P). S \sqsubseteq S' \rightarrow S' \sqsubseteq S.

Meta-programming for Preference Translation

→ The priorities Φ and a GEDP P are represented in the program $T[P, \Phi, S]$ s.t. $c \leq d \in \Phi$ iff $\leq (c_t, d_t)$ where c_t , d_t are terms representing literals c, d.

→ $L \in S$ is <u>renamed</u> by a newly introduced atom L^* to compare the given answer set S with another answer set S' in an answer set of $T[P, \Phi, S]$.

For a term c_t representing a literal c and its renamed term c^{*}, m₁(c_t) and m₂(c_t) represents c∈S and c∈S', respectively.

$T[P, \Phi, S] \stackrel{\text{def}}{=} P \cup \Gamma \cup \Pi$

1. $L^* \leftarrow$

2. $\leq (a_t, b_t) \leftarrow$

for any $L \in S$

for any $a \leq b \in \boldsymbol{\Phi}$

3. $m_1(L_t) \leftarrow L^*$, $m_2(L_t) \leftarrow L$,

for any $L \in Lit_P$

 Π :

Let $T[P, \Phi, S]$ be the GEDP constructed from a PLP (P, Φ) and an answer set S of P.

Theorem: (Soundness/Completeness) $T[P, \Phi, S]$ has an answer set E if and only if there is another answer set S' of P such that $S \sqsubseteq S'$ and $S' = E \cap Lit_P$.

Corollary:

 $T[P, \Phi, S]$ is inconsistent <u>if and only if</u> S is a strictly preferred answer set of (P, Φ) .

Procedure to Compute the Preferred Answer Sets

<u>CompPAS (P, Φ, Δ)</u>

<u>Input:</u> a PLP (P, Φ)

<u>**Output:</u>** the set Δ of all preferred answer sets of (P, Φ) </u>

<u>Step1</u>: Compute the set *AS* of all answer sets of *P*.

<u>Step2</u>: If $\Phi = \{\}$, then $\Delta := AS$, return Δ ;

Else, let $\Omega := \{s_i \mid 1 \le i \le |AS|\}$ in which each answer set $S \in AS$ is assigned a unique ID $s_i \in \Omega$.

<u>Step3</u>: Let $\Sigma := \{\}$; For each answer set $S \in AS$,

if $T[P, \Phi, S]$ is consistent, then for each its answer set E, put $\Sigma := \Sigma \cup \{ \Box(s, s') \leftarrow \}$, where $S' = E \cap Lit_p$ and $s, s' \in \Omega$ are the answer set IDs for S and S', respectively. **<u>Step4</u>**: Compute an answer set U of the logic program: $\Sigma \cup \{ as(s) \leftarrow | s \in \Omega \} \cup \Psi$

$$\Psi: \quad \sqsubseteq (x, x) \leftarrow \operatorname{as}(x).$$

$$\sqsubseteq (x, z) \leftarrow \sqsubseteq (x, y), \quad \sqsubseteq (y, z).$$

$$\sqsubset (x, y) \leftarrow \sqsubseteq (x, y), \quad not \quad \sqsubseteq (y, x).$$

$$\operatorname{worse}(x) \leftarrow \sqsubset (x, y).$$

$$\operatorname{p-as}(x) \leftarrow \operatorname{as}(x), \quad not \quad \operatorname{worse}(x).$$

Step5: Return

 $\Delta := \{ S \in AS \mid \text{The answer set ID } s \text{ of } S \text{ satisfies} \\ p-as(s) \in U \}$

Example

PLP (P, Φ) $P: p \mid q \leftarrow$ $q \mid r \leftarrow$ $\Phi: \{ p \leq q, q \leq r \}$

Step
1 Answer sets of P:
 S₁={ p , r }, S₂={ q }

Step 3: $T[P, \Phi, S_1] = P \cup \Gamma_1 \cup \Pi \Rightarrow$ inconsistent

$$\Gamma_{1}: p^{*}\leftarrow, r^{*}\leftarrow, \leq (p_{t}, q_{t})\leftarrow, \leq (q_{t}, r_{t})\leftarrow, \\ m_{1}(p_{t})\leftarrow p^{*}, m_{1}(q_{t})\leftarrow q^{*}, m_{1}(r_{t})\leftarrow r^{*}, \\ m_{1}(np_{t})\leftarrow \neg p^{*}, m_{1}(nq_{t})\leftarrow \neg q^{*}, m_{1}(nr_{t})\leftarrow \neg r^{*}, \\ m_{2}(p_{t})\leftarrow p, m_{2}(q_{t})\leftarrow q, m_{2}(r_{t})\leftarrow r, \\ m_{2}(np_{t})\leftarrow \neg p, m_{2}(nq_{t})\leftarrow \neg q, m_{2}(nr_{t})\leftarrow \neg r. \\ \Rightarrow T[P, \Phi, S_{2}] \Rightarrow S_{2} \sqsubseteq S_{1} \qquad S_{1}: \text{ a preferred AS}$$

Legal Problem (Gorden, 1993)

P: $posses \leftarrow$, $ship \leftarrow$, $\neg filstate \leftarrow$, $perfected \leftarrow posses, not ab1$, (UCC) $\neg perfected \leftarrow ship$, $\neg filstate$, not ab2, (SMA) $ab1 \mid not ab1$, $ab2 \mid not ab2$, $\leftarrow ab1, ab2$, $ucc \leftarrow not ab1$, $sma \leftarrow not ab2$.

Answer sets of *P*:

 $S_1 = \{ perfected, posses, ship, \neg filstate, ab2, ucc \}$ $S_2 = \{ \neg perfected, posses, ship, \neg filstate, ab1, sma \}$

Conflict between UCC and SMA

The principle of *Lex Posterior* gives precedence to *newer* laws, while the principle of *Lex Superior* gives precedence to laws supported by the *higher authority*.

UCC is newer than **SMA**.

SIMA has higher authority than **UCC**.

$$\begin{split} \varPhi_{1} &: moreRecent(ucc_{t}, sma_{t}) \leftarrow, \\ fed(sma_{t}) \leftarrow, state(ucc_{t}) \leftarrow, \\ lp(Y,X) \leftarrow moreRecent(X,Y), \\ ls(Y,X) \leftarrow fed(X), state(Y), \\ \leq (Y,X) \leftarrow lp(Y,X), not conf_{1}(X,Y), (LP) \\ \leq (Y,X) \leftarrow ls(Y,X), not conf_{1}(X,Y), (LS) \end{split}$$

$$\begin{split} & \longleftarrow T[P, \varPhi_{1}, S_{1}] \Rightarrow S_{1} \sqsubseteq S_{2} \\ T[P, \varPhi_{1}, S_{2}] \Rightarrow S_{2} \sqsubseteq S_{1} \end{cases} S_{1}, S_{2} \colon preferred ASs \\ Conflict between LP and LS \end{split}$$

Meta-priority:

LexPosterior(X, Y) \leq LexSuperior(U, V)

PLP ($P_{1} \Phi_{2}$):

$$\begin{split} \varPhi_2 &= \varPhi_1 \cup \\ \{ conf_1(Y, X) \leftarrow lp(X, Y), \, ls(Y, X), \, not \, conf_2(X, Y) \, \} \end{split}$$

→ $T[P, \Phi_1, S_2]$ → inconsistent Only S_2 is a preferred answer set of (P, Φ_2) .

S₁ = { perfected, posses, ship, ¬filstate, ab2, ucc }
S₂ = { ¬perfected, posses, ship, ¬filstate, ab1, sma }