

## Feature Learning by Least Genralization

#### Hien D. Nguyen, Chiaki Sakama

University of Information Technology, VNU-HCM, Vietnam Wakayama University, Japan



#### Contents

- Provide an empirical study for feature learning based on induction.
- Encode image data into first-order expressions and compute their least generalization. An interesting question is whether the least generalization can extract a common pattern of input data.
- There are three different methods for feature extraction based on symbolic manipulation were proposed.
- We perform experiments using the MNIST datasets and show that the proposed methods successfully capture features from training data and classify test data in around 90% accuracy.

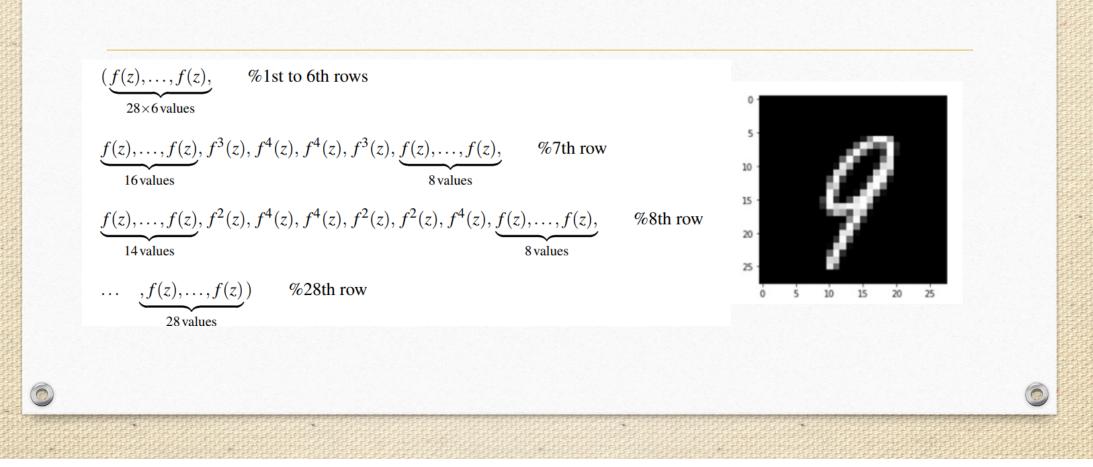
#### Methodology

• An image (in black, white or grayscale) is presented by  $28 \times 28 =$  784 pixels where each pixel is an integer value from 0 to 255.

- An image is then represented as a vector  $v \in \mathbb{R}^{784}$  that contains pixel values as elements.
- Each pixel x ( $0 \le x \le 255$ ) is transformed to the term  $f^k(z)$  with a variable z where

 $k = \left\lfloor \frac{x}{64} \right\rfloor + 1,$  $f^{1}(z) = f(z) \text{ and } f^{k+1}(z) = f(f^{k}(z)) \quad (1 \le k \le 3).$ 

The function symbol f is used to represent "closeness" of pixels.



### Extracting Features

- Suppose a set of training data  $C_l = \{A_1, \ldots, A_n\}$  (called a *class*) where l is a label and  $A_i$   $(1 \le i \le n)$  is a first-order atom (or a tuple) representing an image.
- Compute the least generalization of C<sub>l</sub> using an algorithm in the literature (e.g. [Nguyen& Sakama, ILP 2019]).
  The obtained vector u ∈ ℝ<sup>784</sup> is viewed as features extracted by least generalization. We call u a *feature vector* by GEN.

Suppose a set of training data  $D_l = \{v_1, \dots, v_n\}$  where *l* is a label and  $v_k \in \mathbb{R}^{784}$   $(1 \le k \le n)$  is a vector representing an image. Put

 $\boldsymbol{v}_k = (x_{1.1}^k, \dots, x_{1.28}^k, x_{2.1}^k, \dots, x_{2.28}^k, \dots, x_{28.1}^k, \dots, x_{28.28}^k) \quad (1 \le k \le n)$ 

where  $x_{ij}^k$  is a pixel value. Then, define

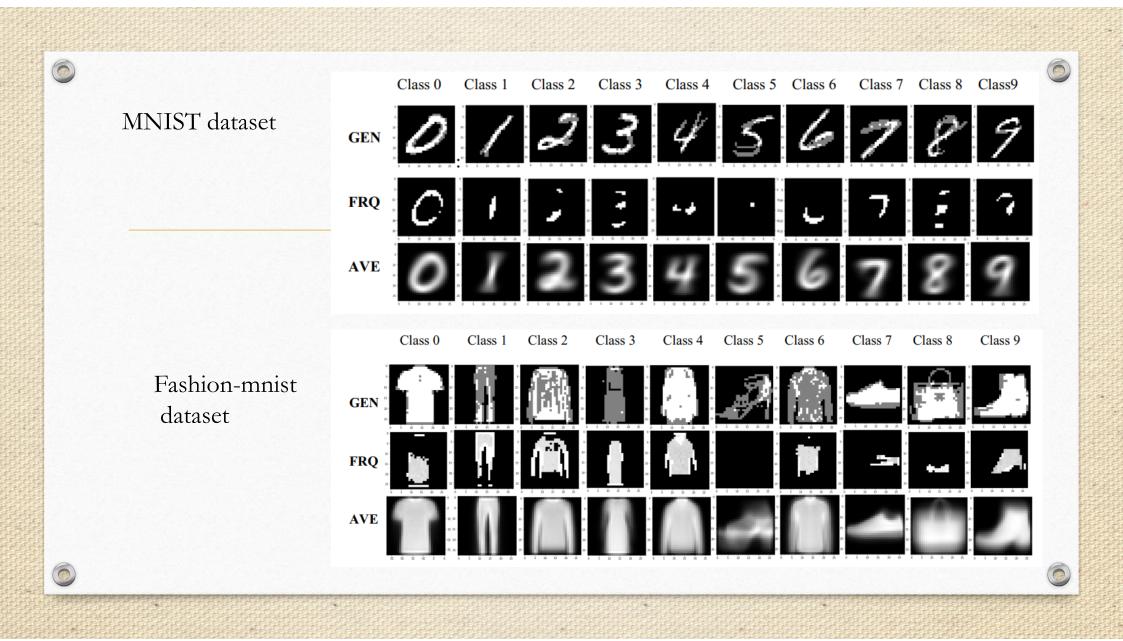
 $\bigcirc$ 

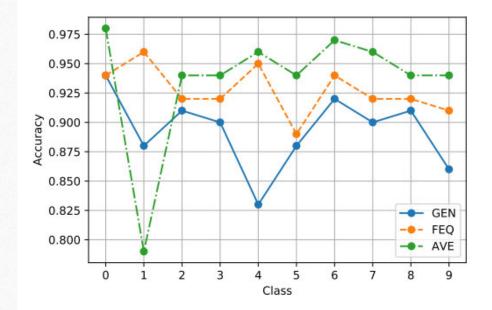
 $S_{ij} = \{ x_{ij}^k \mid 1 \le k \le n \} \ (1 \le i, j \le 28).$ 

 $S_{ij}$  is a collection of pixel values at the location (i, j) from training data. Then, **FRQ** and **AVE** are defined as follows.

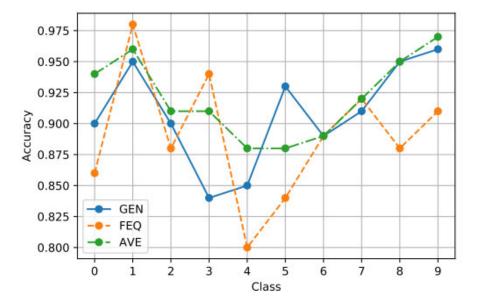
**FRQ:** Select the integer value  $u_{ij}$  that appears most frequently in  $S_{ij}$ . **AVE:** Compute  $w_{ij} = \lfloor v_{ij} \rfloor$  where  $v_{ij}$  is the average value of elements in  $S_{ij}$ .

We call  $\boldsymbol{u} = (u_{ij})$  (resp.  $\boldsymbol{w} = (w_{ij})$ ) a feature vector by **FRQ** (resp. **AVE**).





Feld





Fashion-mnist dataset

#### Conclusions

- This paper introduced new methods that learn features of labelled images by symbolic reasoning.
- This approach is purely symbolic and does not use NN for learning from image data.
- This is the first attempt that realizes feature learning using symbolic reasoning without relying on neural network.
- We continue experiments to verify the effect of noise in images.



# Thank vou

0

Contact: Hien D. Nguyen

Contact: Chiaki Sakama Sakama@wakayama-u.ac.jp

enter enter enter