
A New Algorithm for Computing
Least Generalization

Hien D. Nguyen
VNU-HCM, Vietnam
Chiaki Sakama

Wakayama University, Japan

ILP 2019, Plovdiv, Bulgaria, September 2019

• Robinson’s Unification Algorithm (1965):
compute the greatest common instance of any finite
set of unifiable atomic formulas.

• Plotkin/Reynolds’s Anti-unification Algorithm (1970):
compute the least common generalization of any
finite set of compatible atomic formulas.

BACKGROUND:
UNIFICATION VS. ANTI-UNIFICATION

GREATEST COMMON INSTANCE

P(x, f(y)) P(z, f(b)) P(c,w)

mgu: 𝜎𝜎1 = { b/y, x/z }

P(x, f(b))

P(c, f(b))

mgu: 𝜎𝜎2 = { c/x, f(b)/w }

Composition of mgu: 𝜎𝜎1𝜎𝜎2 = { b𝜎𝜎2 /y, x𝜎𝜎2 /z, c/x, f(b)/w }
= { b/y, c/z, c/x, f(b)/w }

P(x, f(y)) P(z, f(b)) P(c,w)

λ1 = { c/z, f(b)/w }

P(c, f(b))

P(c, f(b))

λ2 = { c/x, b/y }

Composition of mgu: λ1λ2 = { cλ2 /z, f(b)λ2 /w, c/x, b/y }
= { c/z, f(b)/w, c/x, b/y } = 𝜎𝜎1𝜎𝜎2

GREATEST COMMON INSTANCE

P(x, f(y)) P(z, f(b)) P(c,w)

P(c, f(b))
𝜎𝜎1 + λ1 = { c/x, b/y, c/z, f(b)/w }

Combination 𝜎𝜎1 + λ1 is computed as the mgu of
Q(b, x, c, f(b)) and Q(y, z, z, w)
where and

mgu: 𝜎𝜎1 = { b/y, x/z }

P(x, f(b))

mgu: λ1 = { c/z, f(b)/w }

P(c, f(b))

𝜎𝜎1 = { b/y, x/z } λ1 = { c/z, f(b)/w }

GREATEST COMMON INSTANCE

COMPOSITION VS. COMBINATION

Composition Combination
associative (𝜎𝜎1𝜎𝜎2)𝜎𝜎3 = 𝜎𝜎1(𝜎𝜎2𝜎𝜎3) (𝜎𝜎1+𝜎𝜎2)+𝜎𝜎3 = 𝜎𝜎1+ (𝜎𝜎2+𝜎𝜎3)

commutative 𝜎𝜎1𝜎𝜎2 ≠ 𝜎𝜎2𝜎𝜎1 𝜎𝜎1+ 𝜎𝜎2 = 𝜎𝜎2+𝜎𝜎1

idempotent 𝜎𝜎𝜎𝜎 ≠ 𝜎𝜎 𝜎𝜎 + 𝜎𝜎 = 𝜎𝜎
identity 𝜎𝜎𝜀𝜀 = 𝜀𝜀𝜎𝜎 = 𝜎𝜎 𝜎𝜎 + 𝜀𝜀 = 𝜀𝜀 + 𝜎𝜎 = 𝜎𝜎

𝜀𝜀 : empty substitution

! Composition is neither commutative nor idempotent.

• Originally introduced in (Plawitz, 1969) and
redefined in (Chang & Lee, 1973).

• Combination is obtained as the greatest lower
bound of mgus (Eder, 1985).

• Semantics of Horn logic programs is reformulated
using combination of mgus (Yamasaki et al., 1986;
Palamidessi, 1990).

BACKGROUND:
COMBINATION OF SUBSTITUTIONS

• Combination of substitutions enables to compute
greatest common instance in parallel.

• Unification and (most general) unifier are used for
computing greatest common instance by combination.

• Greatest common instance and least common
generalization are dual notions.

• We use anti-unification and (most specific) anti-unifier
for computing least common generalization by the
inverse operation of combination.

MOTIVATION & GOAL

• We compute least (common) generalization of a set
of atoms by an inverse substitution of combination,
which we call anti-combination.

• We develop a parallel algorithm for computing
least generalization based on anti-combination.

• We perform experimental evaluation and show that
anti-combination outperforms sequential
computation of anti-unification.

CONTRIBUTIONS

• Given two atoms A and B, define A ≤ B if A=B𝜃𝜃 for
some substation 𝜃𝜃. B is a generalization of A.

• Given a set of atoms Σ={ A1,…, Ak }, an atom B is a
(common) generalization of Σ if Ai ≤ B (i=1,…,k).

• An atom B is a least (common) generalization of Σ
(written lg(Σ)) if B is a generalization of Σ and B≤C
for any generalization C of Σ.

LEAST GENERALIZATION

• Given a set of atoms Σ={ A1,…, Ak }, a tuple of
substitutions τ = (𝜎𝜎1,…,𝜎𝜎k) is an anti-unifier of Σ if
Ai=lg(Σ)𝜎𝜎i for i=1,…,k.

• An anti-unifier τ of Σ is a most specific anti-unifier
(msau) if for each anti-unifier (𝜃𝜃1,…,𝜃𝜃k) there is a
substitution λi s.t. 𝜎𝜎i = λi𝜃𝜃i (1≤ i ≤k).

ANTI-UNIFIER

• Given two atoms A and B, an anti-unification
algorithm outputs lg({A,B}) and an msau τ =(𝜎𝜎1,𝜎𝜎2).

(Plotkin 1970; Reynolds 1970)

• For a set of atoms Σ ={ A1,…, Ak }, lg(Σ) is sequentially
computed as lg(A1, lg(A2,…, lg(Ak-1, Ak) …)).

• The method is inefficient when the number of atoms
increases.

ANTI-UNIFICATION

• Var : set of variables, Term: set of terms
• A substitution is a mapping 𝜎𝜎: Var → Term.

When 𝜎𝜎(xi)=ti (i=1,…,n), written 𝜎𝜎 = { t1/x1 ,…, tn/xn }.
The set D(𝜎𝜎)={ x1 ,…, xn } is the domain of 𝜎𝜎.

• Given an injective substitution 𝜎𝜎, an inverse substitution
𝜎𝜎-1 : Term→Var is defined as

- t𝜎𝜎-1 = x if (t/x)∈ 𝜎𝜎
- f(t1,…,tn)𝜎𝜎-1 = f(t1𝜎𝜎-1 ,…, tn𝜎𝜎-1) if (f(t1,…,tn)/x) ∉ 𝜎𝜎

for any x∈ Var
- y𝜎𝜎-1 = y if (y/x)∉ 𝜎𝜎 for any x∈ Var

where t and D(𝜎𝜎) have no common variable.

INVERSE SUBSTITUTION

• If t and D(𝜎𝜎) have common variables, variables in t are
renamed to make them different from those in D(𝜎𝜎).

• If 𝜎𝜎 is not injective, a technique of (N-Cheng&deWolf,
1997) is applied to compute 𝜎𝜎-1. For instance, given
𝜎𝜎 = { a/x, a/y }, it becomes 𝜎𝜎-1= { (x/a,⟨1⟩), (y/a,⟨2⟩) }
meaning that a at position ⟨1⟩ is mapped to x and a at
position ⟨2⟩ is mapped to y.

REMARK

• Combining injective substitutions may produce a non-
injective substitution. To compute its inverse
substitution, incorporate information of substitutions
from which each binding comes from.

• For instance, 𝜎𝜎1 = { a/x } and 𝜎𝜎2 = { a/y } produce
𝜎𝜎1 + 𝜎𝜎2 = { a/x, a/y }. Then, define
(𝜎𝜎1 + 𝜎𝜎2)-1 = { (x/a,⟨𝜎𝜎1⟩), (y/a,⟨𝜎𝜎2⟩) } which means a
from 𝜎𝜎1 is mapped to x and a from 𝜎𝜎2 is mapped to y.

REMARK

• Let 𝜎𝜎＝𝜃𝜃1+ ⋯ + 𝜃𝜃n be a combination of 𝜃𝜃1,…,𝜃𝜃n .
Then the inverse substitution 𝜎𝜎 -1 is called an
anti-combination of 𝜃𝜃1,…,𝜃𝜃n .

• Let Σ={ A1,…, An } be a set of atoms,
τ1k=(𝜎𝜎1k , λ1k) (2≤ k ≤n) an msau of { A1, Ak }
s.t. D(τ1i) ∩ D(τ1j)=∅ (1 ≤ i, j ≤ n; i≠j).
Then lg(Σ)=A1𝜃𝜃-1 where 𝜃𝜃 = 𝜎𝜎12 + ⋯ + 𝜎𝜎1n (modulo
variable renaming).

ANTI-COMBINATION

1. lg({P(x,f(y)), P(z,f(b))}) = P(u,f(v)) and msau (𝜎𝜎 , 𝜃𝜃)
where 𝜎𝜎 = { x/u, y/v } and 𝜃𝜃 = { z/u, b/v }.

2. lg({P(u,f(v)), P(c,w)}) = P(x’,y’) and msau (λ, 𝛿𝛿)
where λ= { u/x’, f(v)/y’ } and 𝛿𝛿 = { c/x’, w/y’ }.

3. lg(Σ)=P(x’,y’) and msau (λ𝜎𝜎, λ𝜃𝜃, 𝛿𝛿) where
λ𝜎𝜎 = { x/x’, f(y)/y’ } and λ𝜃𝜃 = { z/x’, f(b)/y’ }.

EXAMPLE: ANTI-UNIFICATION

Σ={ P(x,f(y)), P(z,f(b)), P(c,w) }

P(x’, y’)

P(u, f(v))

P(x, f(y))
𝜎𝜎 𝜃𝜃

λ
𝛿𝛿

P(z, f(b)) P(c, w)

1. lg({P(x,f(y)), P(z,f(b))}) = P(u,f(v)) and 𝜃𝜃 = { z/u, b/v }.
lg({P(z,f(b)), P(c,w)}) = P(u’,v’) and 𝜇𝜇 = { z/u’, f(b)/v’ }.

2. 𝜃𝜃 + 𝜇𝜇 = { z/u, b/v , z/u’, f(b)/v’ } and
(𝜃𝜃 + 𝜇𝜇)−1 = { (u/z, ⟨𝜃𝜃⟩), (v/b, ⟨𝜃𝜃⟩) , (u’/z, ⟨𝜇𝜇⟩), (v’/f(b), ⟨𝜇𝜇⟩) }.

3. Applying (𝜃𝜃 + 𝜇𝜇)−1 to P(z,f(b)), lg(Σ)=P(u,v’) is obtained.

EXAMPLE: ANTI-COMBINATION
P(u, v’)

P(x, f(y)) P(z, f(b)) P(c, w)
𝜇𝜇𝜃𝜃

𝜃𝜃 + 𝜇𝜇P(u, f(v)) P(u’, v’)

• Input: a set Σ={ A1,…, An } (n≥2) of compatible atoms

• Output: least generalization of Σ

1. Put G:= Σ[1] where Σ[i] means the i-th element of Σ.

2. Put i:=2; while i ≤ n do;

Compute G:=lg({G, Σ[i]}) by the anti-unification algorithm.†

Put i:= i+1.
3. Return G.

ALGORITHM: AntiUnif

† This is the algorithm by Plotkin/Reynolds (1970), which is
reformulated by N-Cheng & de Wolf (1997).

• Input: a set Σ={ A1,…, An } (n≥2) of compatible atoms

• Output: least generalization of Σ

1. Put 𝜃𝜃:= 𝜀𝜀 (empty substitution)
2. Put i:=2; while i ≤ n do;

Compute Gi := lg({ A1 , Ai }) by the anti-unification algorithm.
Get a substitution 𝜃𝜃i s.t. A1= Gi𝜃𝜃i and D(𝜃𝜃i) ∩ D(𝜃𝜃) = ∅.
Put 𝜃𝜃≔ 𝜃𝜃 + 𝜃𝜃i and i:= i+1.

3. Compute the inverse substitution 𝜃𝜃-1 .
4. Compute G= A1𝜃𝜃-1 and return G.

ALGORITHM: AntiComb

! When k (≥2) processors are available, Step 2 is split into
k procedures, and combination is computed in parallel.

• Complexity of the anti-unification algorithm is
O(N log N) (Kostylev & Zakharov, 2008) where
N is the size of the lub of 𝜃𝜃1 and 𝜃𝜃2 .

• Using the result, the complexity of AntiUnif is
O(n × N log N) where n is the number of atoms in Σ.

• Step 2 of AntiComb is also done in O(n × N log N).
If k processors are available, the lower bound of
computation is given as O(𝑛𝑛 × 𝑁𝑁 log 𝑁𝑁

𝑘𝑘).

COMPLEXITY

• A set Prog of atoms is randomly created.

• Each atom in Prog has the same ternary predicate P
and is of the form P(t1,t2,t3) where ti (i=1,2,3) are terms.

• The depth of each atom in Prog is ≤ 5.

• For any P(t1,t2,t3) in Prog, if a function f appears in the
outermost of the term ti, then the outermost function
appearing in the corresponding term si of another atom
P(s1,s2,s3) in Prog is set to the same function f.

EXPERIMENTAL EVALUATION
GENERATING TEST DATA

• Compare runtime of AntiUnif and AntiComb.

• Implementation language: Maple 2018, 64bit

• Environment: Intel® CPU 2GHz, RAM 8GB, Win10/64bit

• Parameters: the number of atoms in Prog is set to:
n= 500, 1000, 3000, 5000, 10000; the number of
functions in Prog is set to m = n/2, n, and 2n.

• In AntiComb, the number of processors is set to
k = 10, 30, and 50.

EXPERIMENTAL EVALUATION
ENVIRONMENT AND SETTING

EXPERIMENTAL EVALUATION
RESULTS (500 ATOMS)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m = 250 m = 500 m = 1000

AntiUnif

k = 10

k = 30

k = 50
AntiComb

AntiUnif

n=500

(sec)

EXPERIMENTAL EVALUATION
RESULTS (1000 ATOMS)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m = 500 m = 1000 m = 2000

AntiUnif
k = 10
k = 30
k = 50

n=1000

(sec)

EXPERIMENTAL EVALUATION
RESULTS (5000 ATOMS)

0

0.5

1

1.5

2

2.5

3

3.5

m = 2500 m = 5000 m = 10,000

AntiUnif
k = 10
k = 30
k = 50

n=5000

(sec)

EXPERIMENTAL EVALUATION
RESULTS (10000 ATOMS)

0

0.5

1

1.5

2

2.5

3

3.5

m = 5,000 m = 10,000 m = 20,000

AntiUnif
k = 10
k = 30
k = 50

n=10000

(sec)

• In AntiComb, combination is computed in parallel,
while inverse substitution and lg is computed in serial.

• We compute runtime for k-parallel processing by
max{t1,…,tk} where ti is time for computing
combination by each processor.

• These factors make the speedup of AntiComb
seemingly smaller than the number of processors used.

DISCUSSION

• Kuper et al. (1992) represent terms in trees and show that
- anti-unification of 2 terms of size n is computed in time

O(log2n) using n processors.
- anti-unification of m terms, each having at most O(n) symbols,

is computed in time O(log mn × log2n) using mn processors.

• If we use their anti-unification algorithm of two atoms in
AntiComb, anti-unification of m atoms takes O(m × log2n)
using n processors. Using mn processors, it is done in
O(log2n).

• Hence, AntiComb will be faster than anti-unification of m
atoms by Kuper’s method.

DISCUSSION

• We introduced a new algorithm for computing least
generalization of a set of atoms based on anti-
combination.

• Experimental results show that the proposed
algorithm has potential to compute induction from
big data in the form of relational facts in parallel.

• Future study includes exploiting further opportunities
for parallelization in practical ILP applications.

CONCLUSION

	A New Algorithm for Computing �Least Generalization �
	Background: �unification vs. anti-unification
	スライド番号 3
	スライド番号 4
	スライド番号 5
	Composition vs. combination
	Background: �Combination of Substitutions
	Motivation & Goal
	Contributions
	Least generalization
	Anti-unifier
	Anti-unification
	Inverse substitution
	remark
	remark
	Anti-combination
	Example: Anti-UNIFIcation
	Example: Anti-combination
	 Algorithm:
	 Algorithm:
	complexity
	Experimental evaluation�generating test data
	Experimental evaluation�environment and setting
	Experimental evaluation�results (500 atoms)
	Experimental evaluation�results (1000 atoms)
	Experimental evaluation�results (5000 atoms)
	Experimental evaluation�results (10000 atoms)
	discussion
	discussion
	conclusion

