A New Algorithm for Computing Least Generalization

Hien D. Nguyen VNU-HCM, Vietnam Chiaki Sakama Wakayama University, Japan

ILP 2019, Plovdiv, Bulgaria, September 2019

BACKGROUND: UNIFICATION VS. ANTI-UNIFICATION

- Robinson's Unification Algorithm (1965): compute the greatest common instance of any finite set of unifiable atomic formulas.
- Plotkin/Reynolds's Anti-unification Algorithm (1970): compute the least common generalization of any finite set of compatible atomic formulas.

GREATEST COMMON INSTANCE

P(c, f(b))

Composition of mgu: $\sigma_1 \sigma_2 = \{ b\sigma_2/y, x\sigma_2/z, c/x, f(b)/w \} = \{ b/y, c/z, c/x, f(b)/w \}$

GREATEST COMMON INSTANCE

P(c, f(b))

Composition of mgu: $\lambda_1 \lambda_2 = \{ c\lambda_2 / z, f(b)\lambda_2 / w, c/x, b/y \}$ = { c/z, f(b)/w, c/x, b/y } = $\sigma_1 \sigma_2$

GREATEST COMMON INSTANCE

Combination $\sigma_1 + \lambda_1$ is computed as the mgu of Q(b, x, c, f(b)) and Q(y, z, z, w) where $\sigma_1 = \{ b/y, x/z \}$ and $\lambda_1 = \{ c/z, f(b)/w \}$

COMPOSITION VS. COMBINATION

	Composition	Combination
associative	$(\sigma_1 \sigma_2) \sigma_3 = \sigma_1 (\sigma_2 \sigma_3)$	$(\sigma_1 + \sigma_2) + \sigma_3 = \sigma_1 + (\sigma_2 + \sigma_3)$
commutative	$\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1$	$\sigma_1 + \sigma_2 = \sigma_2 + \sigma_1$
idempotent	$\sigma\sigma \neq \sigma$	$\sigma + \sigma = \sigma$
identity	$\sigma \varepsilon = \varepsilon \sigma = \sigma$	$\sigma + \varepsilon = \varepsilon + \sigma = \sigma$

 \mathcal{E} : empty substitution

! Composition is neither commutative nor idempotent.

BACKGROUND: COMBINATION OF SUBSTITUTIONS

- Originally introduced in (Plawitz, 1969) and redefined in (Chang & Lee, 1973).
- Combination is obtained as the greatest lower bound of mgus (Eder, 1985).
- Semantics of Horn logic programs is reformulated using combination of mgus (Yamasaki et al., 1986; Palamidessi, 1990).

MOTIVATION & GOAL

- Combination of substitutions enables to compute greatest common instance in parallel.
- Unification and (most general) unifier are used for computing greatest common instance by combination.
- Greatest common instance and least common generalization are dual notions.
- We use anti-unification and (most specific) anti-unifier for computing least common generalization by the inverse operation of combination.

CONTRIBUTIONS

- We compute least (common) generalization of a set of atoms by an **inverse substitution** of combination, which we call **anti-combination**.
- We develop a **parallel algorithm** for computing least generalization based on anti-combination.
- We perform experimental evaluation and show that anti-combination outperforms sequential computation of anti-unification.

LEAST GENERALIZATION

- Given two atoms A and B, define $A \leq B$ if $A=B\theta$ for some substation θ . B is a generalization of A.
- Given a set of atoms $\Sigma = \{A_1, ..., A_k\}$, an atom *B* is a **(common) generalization** of Σ if $A_i \leq B$ (i=1,...,k).
- An atom *B* is a **least (common) generalization** of Σ (written $Ig(\Sigma)$) if *B* is a generalization of Σ and $B \leq C$ for any generalization *C* of Σ .

ANTI-UNIFIER

- Given a set of atoms $\Sigma = \{A_1, ..., A_k\}$, a tuple of substitutions $\tau = (\sigma_1, ..., \sigma_k)$ is an **anti-unifier** of Σ if $A_i = lg(\Sigma)\sigma_i$ for i = 1, ..., k.
- An anti-unifier τ of Σ is a **most specific anti-unifier** (msau) if for each anti-unifier ($\theta_1, ..., \theta_k$) there is a substitution λ_i s.t. $\sigma_i = \lambda_i \theta_i$ ($1 \le i \le k$).

ANTI-UNIFICATION

- Given two atoms A and B, an **anti-unification algorithm** outputs $Ig(\{A,B\})$ and an msau $\tau = (\sigma_1, \sigma_2)$. (Plotkin 1970; Reynolds 1970)
- For a set of atoms $\Sigma = \{A_1, ..., A_k\}, Ig(\Sigma)$ is sequentially computed as $Ig(A_1, Ig(A_2, ..., Ig(A_{k-1}, A_k) ...))$.
- The method is inefficient when the number of atoms increases.

INVERSE SUBSTITUTION

- Var : set of variables, Term: set of terms
- A substitution is a mapping $\sigma: Var \rightarrow Term$. When $\sigma(x_i) = t_i$ (i=1,...,n), written $\sigma = \{ t_1/x_1, ..., t_n/x_n \}$. The set $D(\sigma) = \{ x_1, ..., x_n \}$ is the **domain** of σ .
- Given an injective substitution σ , an **inverse substitution** σ^{-1} : **Term** \rightarrow **Var** is defined as
 - $t\sigma^{-1} = x$ if $(t/x) \in \sigma$ - $f(t_1, ..., t_n)\sigma^{-1} = f(t_1\sigma^{-1}, ..., t_n\sigma^{-1})$ if $(f(t_1, ..., t_n)/x) \notin \sigma$ for any $x \in Var$
 - $y\sigma^{-1} = y$ if $(y/x) \notin \sigma$ for any $x \in Var$

where *t* and $D(\sigma)$ have no common variable.

REMARK

- If t and $D(\sigma)$ have common variables, variables in t are renamed to make them different from those in $D(\sigma)$.
- If σ is not injective, a technique of (N-Cheng&deWolf, 1997) is applied to compute σ^{-1} . For instance, given $\sigma = \{ a/x, a/y \}$, it becomes $\sigma^{-1} = \{ (x/a, \langle 1 \rangle), (y/a, \langle 2 \rangle) \}$ meaning that a at position $\langle 1 \rangle$ is mapped to x and a at position $\langle 2 \rangle$ is mapped to y.

REMARK

- Combining injective substitutions may produce a noninjective substitution. To compute its inverse substitution, incorporate information of substitutions from which each binding comes from.
- For instance, $\sigma_1 = \{a/x\}$ and $\sigma_2 = \{a/y\}$ produce $\sigma_1 + \sigma_2 = \{a/x, a/y\}$. Then, define $(\sigma_1 + \sigma_2)^{-1} = \{(x/a, \langle \sigma_1 \rangle), (y/a, \langle \sigma_2 \rangle)\}$ which means *a* from σ_1 is mapped to *x* and *a* from σ_2 is mapped to *y*.

ANTI-COMBINATION

- Let $\sigma = \theta_1 + \dots + \theta_n$ be a combination of $\theta_1, \dots, \theta_n$. Then the inverse substitution σ^{-1} is called an **anti-combination** of $\theta_1, \dots, \theta_n$.
- Let $\Sigma = \{A_1, ..., A_n\}$ be a set of atoms, $\tau_{1k} = (\sigma_{1k}, \lambda_{1k})$ (2 $\leq k \leq n$) an msau of $\{A_1, A_k\}$ s.t. $D(\tau_{1i}) \cap D(\tau_{1j}) = \emptyset$ (1 $\leq i, j \leq n; i \neq j$). Then $\lg(\Sigma) = A_1 \theta^{-1}$ where $\theta = \sigma_{12} + \cdots + \sigma_{1n}$ (modulo variable renaming).

EXAMPLE: ANTI-UNIFICATION

 $\Sigma = \{ P(x,f(y)), P(z,f(b)), P(c,w) \}$

- 1. $lg(\{P(x,f(y)), P(z,f(b))\}) = P(u,f(v)) and msau (\sigma, \theta)$ where $\sigma = \{x/u, y/v\}$ and $\theta = \{z/u, b/v\}$.
- 2. $lg(\{P(u,f(v)), P(c,w)\}) = P(x',y')$ and msau (λ, δ) where $\lambda = \{ u/x', f(v)/y' \}$ and $\delta = \{ c/x', w/y' \}$.
- 3. $lg(\Sigma)=P(x',y')$ and msau $(\lambda\sigma, \lambda\theta, \delta)$ where $\lambda\sigma = \{ x/x', f(y)/y' \}$ and $\lambda\theta = \{ z/x', f(b)/y' \}$.

EXAMPLE: ANTI-COMBINATION

- 1. $lg(\{P(x,f(y)), P(z,f(b))\}) = P(u,f(v)) \text{ and } \theta = \{z/u, b/v\}.$ $lg(\{P(z,f(b)), P(c,w)\}) = P(u',v') \text{ and } \mu = \{z/u', f(b)/v'\}.$
- 2. $\theta + \mu = \{ z/u, b/v \ z/u', f(b)/v' \}$ and $(\theta + \mu)^{-1} = \{ (u/z, \langle \theta \rangle), (v/b, \langle \theta \rangle) \ (u'/z, \langle \mu \rangle), (v'/f(b), \langle \mu \rangle) \}.$
- 3. Applying $(\theta + \mu)^{-1}$ to P(z,f(b)), Ig(Σ)=P(u,v') is obtained.

ALGORITHM: AntiUnif

•Input: a set $\Sigma = \{A_1, ..., A_n\}$ (n ≥ 2) of compatible atoms

• **Output**: least generalization of Σ

- 1. Put G:= $\Sigma[1]$ where $\Sigma[i]$ means the i-th element of Σ .
- 2. Put i:=2; while $i \leq n do$;

Compute G:=lg({G, $\Sigma[i]$ }) by the anti-unification algorithm.⁺ Put i:= i+1.

- 3. Return G.
 - ⁺ This is the algorithm by Plotkin/Reynolds (1970), which is reformulated by N-Cheng & de Wolf (1997).

ALGORITHM: AntiComb

- Input: a set $\Sigma = \{A_1, ..., A_n\}$ (n ≥ 2) of compatible atoms
- **Output**: least generalization of Σ
- 1. Put $\theta := \varepsilon$ (empty substitution)
- 2. Put i:=2; while i \leq n do; Compute G_i := lg({ A_1, A_i }) by the anti-unification algorithm. Get a substitution θ_i s.t. $A_1 = G_i \theta_i$ and $D(\theta_i) \cap D(\theta) = \emptyset$. Put $\theta \coloneqq \theta + \theta_i$ and i:= i+1.
- 3. Compute the inverse substitution θ^{-1} .
- 4. Compute $G = A_1 \theta^{-1}$ and return G.
- ! When $k (\geq 2)$ processors are available, Step 2 is split into k procedures, and combination is computed in parallel.

COMPLEXITY

- Complexity of the anti-unification algorithm is O(N log N) (Kostylev & Zakharov, 2008) where N is the size of the lub of θ_1 and θ_2 .
- Using the result, the complexity of **AntiUnif** is $O(n \times N \log N)$ where *n* is the number of atoms in Σ .
- Step 2 of AntiComb is also done in $O(n \times N \log N)$. If k processors are available, the lower bound of computation is given as $O(\frac{n \times N \log N}{k})$.

EXPERIMENTAL EVALUATION GENERATING TEST DATA

- A set **Prog** of atoms is randomly created.
- Each atom in Prog has the same ternary predicate P and is of the form P(t₁,t₂,t₃) where t_i (i=1,2,3) are terms.
- The depth of each atom in **Prog** is \leq 5.
- For any $P(t_1,t_2,t_3)$ in **Prog**, if a function *f* appears in the outermost of the term t_i , then the outermost function appearing in the corresponding term s_i of another atom $P(s_1,s_2,s_3)$ in **Prog** is set to the same function *f*.

EXPERIMENTAL EVALUATION ENVIRONMENT AND SETTING

- Compare runtime of **AntiUnif** and **AntiComb**.
- Implementation language: Maple 2018, 64bit
- Environment: Intel[®] CPU 2GHz, RAM 8GB, Win10/64bit
- Parameters: the number of atoms in **Prog** is set to: n=500, 1000, 3000, 5000, 10000; the number of functions in **Prog** is set to m = n/2, n, and 2n.
- In AntiComb, the number of processors is set to k = 10, 30, and 50.

EXPERIMENTAL EVALUATION RESULTS (500 ATOMS)

EXPERIMENTAL EVALUATION RESULTS (1000 ATOMS)

EXPERIMENTAL EVALUATION RESULTS (5000 ATOMS)

EXPERIMENTAL EVALUATION RESULTS (10000 ATOMS)

DISCUSSION

- In **AntiComb**, combination is computed in parallel, while inverse substitution and lg is computed in serial.
- We compute runtime for k-parallel processing by max{t₁,...,t_k} where t_i is time for computing combination by each processor.
- These factors make the speedup of **AntiComb** seemingly smaller than the number of processors used.

DISCUSSION

- Kuper et al. (1992) represent terms in trees and show that
 - anti-unification of 2 terms of size n is computed in time
 O(log²n) using n processors.
 - anti-unification of *m* terms, each having at most O(n) symbols, is computed in time $O(\log mn \times \log^2 n)$ using *mn* processors.
- If we use their anti-unification algorithm of two atoms in **AntiComb**, anti-unification of *m* atoms takes $O(m \times \log^2 n)$ using *n* processors. Using *mn* processors, it is done in $O(\log^2 n)$.
- Hence, **AntiComb** will be faster than anti-unification of *m* atoms by Kuper's method.

CONCLUSION

- We introduced a new algorithm for computing least generalization of a set of atoms based on anticombination.
- Experimental results show that the proposed algorithm has potential to compute **induction from big data** in the form of **relational facts** in parallel.
- Future study includes exploiting further opportunities for parallelization in practical ILP applications.