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Background 

 Typical ILP tasks construct hypotheses to explain 
observations using background knowledge.   

 Given the background knowledge B and an 
observation O, a hypothesis H covers O under B if  
 B ∧ H |= O
 B ∧ H is consistent.

 The condition is often too strong for building 
possible hypotheses. 



Motivating Example

 There are 30 students in a class, of which 20 are 
European, 7 are Asian, and 3 are American. 
B: student(1)∧・・・∧student(30),
O: euro(1)∧・・・∧euro(20)∧asia(21)∧・・・∧asia(27)

∧usa(28)∧・・・∧usa(30)
 In this situation, the clause 

H: euro(x)∨asia(x)∨usa(x) ← student(x)
appears a good candidate of hypothesis.

 However, H does not satisfy the relation B ∧ H |= O. 
In fact, B∧H has many models in which O is not true, 
e.g., {student(1),…,student(30),euro(1),…,euro(30)}.
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What is the Problem? 

When B and H are Horn theories, the relation     
B ∧ H |= O (*) represents that O is true in the 
unique minimal model of B∧H. 

When B∧H contains indefinite information,   
B∧H becomes a non-Horn theory which has 
multiple minimal models in general. 

 In this case, the relation (*) excludes a possible 
hypothesis H due to the existence of a single 
minimal model of B ∧ H in which O is not true. 
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Contribution

 To cope with the problem, we introduce a new 
form of induction called brave induction.  

We investigate formal properties and develop 
an algorithm of brave induction.  

 The framework is extended to induction in 
answer set programming.
(This part is not included in this talk.) 
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Brave Reasoning 
vs. Cautious Reasoning 

 Brave (or credulous) reasoning and cautious (or 
skeptical) reasoning are used in nonmonotonic 
logics and disjunctive logic programs. 

 A formula F is a consequence of brave/cautious  
inference in a theory T (under the minimal model 
semantics) if F is true in some/every minimal 
model of T. 

 Brave/cautious reasoning is used in hypothetical 
reasoning in AI such as abduction.  



Brave/Cautious Abduction
 B:  light_off ← power_failure,

light_off ← broken_bulb,
broken_bulb v melted_fuse ← high_current,

Abducible:   power_failure,  high_current. 
 O:  light_off
 E1=power_failure is the unique (minimal) 

explanation in cautious abduction, since O is true 
in every minimal model of B ∧ E1. 

 In addition to E1, E2=high_current is also a  
(minimal) explanation in brave abduction, since 
O is true in some minimal model of B ∧ E2. 
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Brave Induction in Clausal Logic 

 B, O, and H are all consistent clausal theories.  
 A hypothesis H covers O under B in brave 

induction if a consistent theory B∧H has a 
minimal model satisfying O. In this case, 
H is called a solution of brave induction. 

 In this sense, explanatory induction in ILP is 
considered cautious induction. 
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Properties (1) 

 Existence of solutions: Brave induction has a 
solution iff B∧O is consistent. 

 Relation to cautious induction: If H covers O 
under B in cautious induction, H is a solution 
of brave induction. The converse holds when 
B is a Horn theory. 

 Necessary condition of solutions: If H is a 
solution of brave induction, B∧H∧O is 
consistent. 
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Properties (2) 

 Generalization of solutions: For any theory 
H’|= H such that B∧H’ is consistent, if H is    
a solution of brave induction, so does H’. 

 Nonmonotonicity: The fact that H1 and H2 are 
solutions of brave induction does not imply 
that H1∧H2 is a solution. 

 Disjunctive combination of solutions: 
If H1 and H2 are solutions of brave induction, 
so is H1∨H2.  
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Properties (3)

 Conjunctive combination of observations: 
The fact that H covers both O1 and O2 under 
B does not imply H covers O1∧O2 under B. 

 Ex) Let B={ p(x) v q(x) ← r(x),  s(a)←}, 
O1={p(a)}, and O2={q(a)}. 
Then, H={ r(x) ← s(x) } covers both O1 and 
O2 under B in brave induction, but H does 
not cover O1∧O2 under B.  
Note that B∧H has two minimal models 
{p(a),r(a),s(a)} and {q(a),r(a),s(a)}. 
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Comparison of Properties 
Brave ind. Cautious ind.  

Generalization of 
solutions

● ●

Nonmonotonicity ● ●

Disjunctive 
combination of 
solutions

● ●

Conjunctive 
combination of 
observations × ●
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Computation
 Proposition: 

B: background knowledge, 
H: a hypothesis, 
O: an observation. 
B∧H has a minimal model satisfying O 
iff there is a disjunction F of ground atoms s.t. 

B∧H |= O∨F  and  B∧H |≠ F. 
 Assumption:
 O is a conjunction of ground atoms.
 H is a finite clausal theory s.t. the head of each 

clause has the predicate appearing in O. 
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Terms and Notions

 A ground clause C is prime wrt T if T|=C but 
T|≠C’ for any C’⊂C. 

 A DNF formula F=C1∨・・・∨Ck is irredundant if 
F≡F’ for any F=C1∨・・・∨Ci-1∨Ci+1∨・・・∨Ck. 

 Given an atom A, 
pred(A) is the predicate of A, 
term(A) is the set of terms in A, 
const(A) is the set of constants in A. 

 Given a clause C, head(C) is the head of C, 
and body(C) is the body of C. 



Step 1: Computing ground 
hypotheses

 B∧H |= O∨F implies B∧￢O |= ￢H∨F.  
 H is a clausal theory and F is a disjunction of 

ground atoms, then ￢H∨F is a DNF formula. 
 To get ￢H∨F, first compute prime CNF 

formulas from B∧￢O. Then, construct an 
irredundant DNF formula from it. 

 From ￢H∨F, extract ￢H.
 By ￢H, we can obtain H. 



Step 2: Generalization
 O is partitioned into disjoint subsets 

O = O1 ∧・・・∧On
where Oi is a conjunction of ground atoms 
having the same predicate. 

 Correspondingly, H is partitioned as 
H = H1 ∧・・・∧Hn 

where Hi is a conjunction of clauses whose 
heads contain the predicate in Oi. 

 Compute the least generalization under 
subsumption (LGS) of each Hi and collect it as 

lgs(H) = lgs(H1) ∧・・・∧ lgs(Hn).  



Step 3: Construct a weak form of 
hypotheses

 Given a set S of atoms, suppose two atoms A1 
and A2 in S s.t. pred(A1)≠pred(A2). Then, 
pred(A1) and pred(A2) are synchronous in S if 
const(A1)∩const(A2)≠φ.
Otherwise, they are asynchronous in S. 

 A set S is asynchronous if any pair of different 
predicates is asynchronous in S. 

When an observation O is an asynchronous set, 
take the greatest specialization under implication 
(GSI) of lgs(H1),…,lgs(Hn) as 
gsi(lgs(H1),…,lgs(Hn)) = lgs(H1)∨・・・∨ lgs(Hn).  



Step 4: Optimization
 Two atoms A1 and A2 are linked if 

term(A1)∩term(A2)≠φ. 
 Given a clause C, an atom A∈body(C) is isolated

in C if there is no atom A’(≠A) in C s.t. A’ and A 
are linked. 

 For any clause C in lgs(Hi), 
1. remove any atom A from head(C) s.t. 

pred(A) is not included in O, 
2. remove any atom A from body(C) s.t.   

A is isolated in C.  
The result of such reduction is denoted by lgs*(Hi).  



An Algorithm for Brave 
Induction 

Procedure: BRAIN
Input: B and O; 
Output: hypotheses H∧ and H∨. 

Step 1: Compute ground and irredundant DNF formulas 
￢H v F from B∧￢O, and extract ￢H from ￢H v F. 

Step 2: Compute lgs(H). 
Step 3: If O is asynchronous and is partitioned into 

O = O1 ∧・・・∧On, compute gsi(lgs(H1),…,lgs(Hn)). 
Step 4: If B∧lgs*(Hi) is consistent, put 

H∧ = lgs*(H1) ∧・・・∧ lgs*(Hn) and
H∨= lgs*(H1) ∨・・・∨ lgs*(Hn). 



Main Theorem

 Any hypothesis computed by BRAIN becomes 
a solution of brave induction. 



Example

B: teacher(0) ∧ student(1)∧・・・∧student(30),
O: euro(1)∧・・・∧euro(20)∧asia(21)∧・・・∧asia(27)

∧usa(28)∧・・・∧usa(30)
First, the ground and irredundant DNF formula 

￢H1∨￢H2∨￢H3 is derived from B∧￢O where
H1= (￢B∨euro(1))∧・・・∧ (￢B∨euro(20))
H2= (￢B∨asia(21))∧・・・∧ (￢B∨asia(27))
H3= (￢B∨usa(28))∧・・・∧ (￢B∨usa(30)). 



Example
Next, O is partitioned into O = O1∧O2 ∧O3 where 
O1={euro(1),…,euro(20)}, O2={asia(21),…,asia(27)},
O3={usa(28),…,usa(30)}.

Then, lgs(H) = lgs(H1)∧lgs(H2)∧lgs(H3) where
lgs(H1) = ￢teacher(0)∨￢student(x)∨euro(x), 
lgs(H2) = ￢teacher(0)∨￢student(x)∨asia(x), 
lgs(H3) = ￢teacher(0)∨￢student(x)∨usa(x). 
As O is asynchronous, gsi(lgs(H1),…,lgs(Hn)) becomes

lgs(H1) ∨ lgs(H2)∨ lgs(H3). 
Finally, teacher(0) is isolated in each lgs(Hi), 

so removing it from each lgs(Hi), and get lgs*(Hi). 



Example

As a result, H∧ = lgs*(H1) ∧・・・∧ lgs*(Hn) becomes   
euro(x) ← student(x) 
∧ asia(x) ← student(x)
∧ usa(x) ← student(x), 

and  H∨ = lgs*(H1) ∨・・・∨ lgs*(Hn) becomes
euro(x)∨asia(x)∨usa(x) ← student(x).   

Thus, H∧ and H∨ becomes two solutions of brave 
induction. 



Discussion
Relation to Learning from Satisfiability (LFS)

 A hypothesis H covers O under B in LFS if B∧H has a 
model satisfying O (De Raedt and Dehaspe, 1997). 

 If H covers O under B in brave induction, H covers O 
under B in LFS. The converse implication does not 
hold in general. 

 LFS does not require the minimality of models, and 
any H which is consistent with B∧O becomes a 
solution. (e.g., B={p(a)}, O={q(a)}, H={r(b)}.)

 LFS generally produces many useless hypotheses, 
and brave induction reduces hypotheses space. 



Discussion
Relation to Confirmatory Induction 

 A hypothesis H covers O under B in confirmatory 
induction (or descriptive induction) if 
Comp(B∧O)|=H where Comp is predicate 
completion.  

 There is no stronger/weaker relation between 
confirmatory induction and brave induction. 

 Confirmatory induction does not explain why 
particular individuals are observed under B, and 
the aim is to learn relations between concepts. 



Discussion
Relation to CF-Induction 

 CF-induction (Inoue, 2004) applies 
Muggleton’s inverse entailment to full clausal 
theories.  

 CF-induction is cautious induction and is 
stronger than brave induction. 



Discussion
Handling Negative Observations 

 Given a negative observation N, it is requested 
that B∧H |≠ N. 

 Given a positive observation P and a negative one 
N, H is a solution of brave induction if B∧H has a 
minimal model M such that M|=P and M|≠N. 

 By putting O=P∧￢N, negative observations are 
handled within the framework of this paper. 



Discussion
Computational Complexity 

 Given a ground theory B and a ground 
observation O, deciding the existence of solutions 
in brave induction is NP-complete. 
(This is also the case for cautious induction.)

 Identifying whether a propositional theory H is 
a solution of brave induction is ∑2

P-complete. 
In cautious induction, the task is coNP-complete. 

 Brave induction appears more expensive than 
cautious induction for identifying solutions. 



Conclusion

 Brave induction is weaker than explanatory (or 
cautious) induction, and stronger than learning 
from satisfiability. It is useful for learning 
indefinite or incomplete theories. 

 Brave induction is used for automated 
negotiation in multiagent systems for building 
proposals [Sakama, DALT-08]. 

 A candidate of practical application is system 
biology which would have indefinite or 
incomplete information in the background 
knowledge and observations. 
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