BRAVE INDUCTION

CHIAKI SAKAMA

Wakayama University

KATSUMI INOUE

National Institute of Informatics

ILP 2008, Prague

Background

- Typical ILP tasks construct hypotheses to explain observations using background knowledge.
- Given the background knowledge B and an observation O, a hypothesis H covers O under B if
 - **□** B ∧ H |= O
 - □ B ∧ H is consistent.
- The condition is often too strong for building possible hypotheses.

Motivating Example

 There are 30 students in a class, of which 20 are European, 7 are Asian, and 3 are American.

```
B: student(1) ∧ · · · · ∧ student(30),
O: euro(1) ∧ · · · · ∧ euro(20) ∧ asia(21) ∧ · · · · ∧ asia(27) ∧ usa(28) ∧ · · · · ∧ usa(30)
```

- In this situation, the clause
 H: euro(x) ∨ asia(x) ∨ usa(x) ← student(x)
 appears a good candidate of hypothesis.
- However, H does not satisfy the relation B ∧ H |= 0.
 In fact, B ∧ H has many models in which O is not true, e.g., {student(1),...,student(30),euro(1),...,euro(30)}.

What is the Problem?

- When B and H are Horn theories, the relation B \wedge H |= O (*) represents that O is true in the unique minimal model of B \wedge H.
- When BAH contains indefinite information, BAH becomes a non-Horn theory which has multiple minimal models in general.
- In this case, the relation (*) excludes a possible hypothesis H due to the existence of a single minimal model of B ∧ H in which O is not true.

Contribution

- To cope with the problem, we introduce a new form of induction called brave induction.
- We investigate formal properties and develop an algorithm of brave induction.
- The framework is extended to induction in answer set programming. (This part is not included in this talk.)

Brave Reasoning vs. Cautious Reasoning

- Brave (or credulous) reasoning and cautious (or skeptical) reasoning are used in nonmonotonic logics and disjunctive logic programs.
- A formula F is a consequence of brave/cautious inference in a theory T (under the minimal model semantics) if F is true in some/every minimal model of T.
- Brave/cautious reasoning is used in hypothetical reasoning in AI such as abduction.

Brave/Cautious Abduction

- B: light_off ← power_failure, light_off ← broken_bulb, broken_bulb v melted_fuse ← high_current, Abducible: power_failure, high_current.
- O: light_off
- E1=power_failure is the unique (minimal) explanation in cautious abduction, since O is true in every minimal model of B ∧ E1.
- In addition to E1, E2=high_current is also a (minimal) explanation in brave abduction, since
 O is true in some minimal model of B ∧ E2.

Brave Induction in Clausal Logic

- B, O, and H are all consistent clausal theories.
- A hypothesis H covers O under B in brave induction if a consistent theory B ∧ H has a minimal model satisfying O. In this case, H is called a solution of brave induction.
- In this sense, explanatory induction in ILP is considered cautious induction.

Properties (1)

- Existence of solutions: Brave induction has a solution iff B∧O is consistent.
- Relation to cautious induction: If H covers O under B in cautious induction, H is a solution of brave induction. The converse holds when B is a Horn theory.
- Necessary condition of solutions: If H is a solution of brave induction, B∧H∧O is consistent.

Properties (2)

- Generalization of solutions: For any theory H'|= H such that $B \wedge H'$ is consistent, if H is a solution of brave induction, so does H'.
- Nonmonotonicity: The fact that H1 and H2 are solutions of brave induction does not imply that H1 ∧ H2 is a solution.
- Disjunctive combination of solutions:
 If H1 and H2 are solutions of brave induction,
 so is H1 V H2.

Properties (3)

- Conjunctive combination of observations:
 The fact that H covers both O1 and O2 under B does not imply H covers O1 ∧ O2 under B.
- Ex) Let B={ p(x) v q(x) ← r(x), s(a)←}, O1={p(a)}, and O2={q(a)}.
 Then, H={ r(x) ← s(x) } covers both O1 and O2 under B in brave induction, but H does not cover O1 ∧ O2 under B.
 Note that B ∧ H has two minimal models {p(a),r(a),s(a)} and {q(a),r(a),s(a)}.

Comparison of Properties

	Brave ind.	Cautious ind.
Generalization of solutions		
Nonmonotonicity		
Disjunctive combination of solutions		
Conjunctive combination of observations	×	

Computation

Proposition:

B: background knowledge,

H: a hypothesis,

O: an observation.

BAH has a minimal model satisfying O iff there is a disjunction F of ground atoms s.t.

 $B \wedge H = O \vee F$ and $B \wedge H \neq F$.

Assumption:

- O is a conjunction of ground atoms.
- □ H is a finite clausal theory s.t. the head of each clause has the predicate appearing in O.

Terms and Notions

- A ground clause C is prime wrt T if T|=C but T|≠C' for any C'⊂C.
- A DNF formula $F=C_1 \vee \cdots \vee C_k$ is irredundant if $F \not\equiv F'$ for any $F=C_1 \vee \cdots \vee C_{i-1} \vee C_{i+1} \vee \cdots \vee C_k$.
- Given an atom A, pred(A) is the predicate of A, term(A) is the set of terms in A, const(A) is the set of constants in A.
- Given a clause C, head(C) is the head of C, and body(C) is the body of C.

Step 1: Computing ground hypotheses

- B \wedge H |= O \vee F implies B \wedge ¬O |= ¬H \vee F.
- H is a clausal theory and F is a disjunction of ground atoms, then ¬H∨F is a DNF formula.
- To get ¬H∨F, first compute prime CNF formulas from B∧¬O. Then, construct an irredundant DNF formula from it.
- From ¬H∨F, extract ¬H.
- By ¬H, we can obtain H.

Step 2: Generalization

- Compute the least generalization under subsumption (LGS) of each Hi and collect it as lgs(H) = lgs(H1) ∧ · · · ∧ lgs(Hn).

Step 3: Construct a weak form of hypotheses

- Given a set S of atoms, suppose two atoms A1 and A2 in S s.t. pred(A1) ≠ pred(A2). Then, pred(A1) and pred(A2) are synchronous in S if const(A1) ∩ const(A2) ≠ φ.
 Otherwise, they are asynchronous in S.
- A set S is asynchronous if any pair of different predicates is asynchronous in S.
- When an observation O is an asynchronous set, take the greatest specialization under implication (GSI) of lgs(H1),...,lgs(Hn) as gsi(lgs(H1),...,lgs(Hn)) = lgs(H1) V · · · V lgs(Hn).

Step 4: Optimization

- Two atoms A1 and A2 are linked if term(A1) ∩ term(A2) ≠ φ.
- Given a clause C, an atom A∈body(C) is isolated in C if there is no atom A'(≠A) in C s.t. A' and A are linked.
- For any clause C in Igs(Hi),
 - remove any atom A from head(C) s.t. pred(A) is not included in O,
 - 2. remove any atom A from body(C) s.t. A is isolated in C.

The result of such reduction is denoted by Igs*(Hi).

An Algorithm for Brave Induction

```
Procedure: BRAIN
   Input: B and O;
   Output: hypotheses H^{\wedge} and H^{\vee}.
Step 1: Compute ground and irredundant DNF formulas
   \neg H \lor F from B \land \neg O, and extract \neg H from \neg H \lor F.
Step 2: Compute Igs(H).
Step 3: If O is asynchronous and is partitioned into
   O = O1 \land \cdots \land On, compute gsi(lgs(H1),...,lgs(Hn)).
Step 4: If B \land Igs^*(Hi) is consistent, put
   H^{\wedge} = Igs^{*}(H1) \wedge \cdots \wedge Igs^{*}(Hn) and
   H^{\vee} = Igs^*(H1) \vee \cdots \vee Igs^*(Hn).
```

Main Theorem

 Any hypothesis computed by BRAIN becomes a solution of brave induction.

Example

```
B: teacher(0) \( \) student(1) \( \) \( \) \( \) \( \) student(30), \( \)

O: euro(1) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \
```

Example

```
Next, O is partitioned into O = O1 \land O2 \land O3 where
 O1 = \{euro(1), ..., euro(20)\}, O2 = \{asia(21), ..., asia(27)\}, 
   O3 = \{usa(28), ..., usa(30)\}.
Then, lgs(H) = lgs(H1) \wedge lgs(H2) \wedge lgs(H3) where
Igs(H1) = \neg teacher(0) \lor \neg student(x) \lor euro(x),
Igs(H2) = \neg teacher(0) \lor \neg student(x) \lor asia(x),
lgs(H3) = \neg teacher(0) \lor \neg student(x) \lor usa(x).
As O is asynchronous, gsi(lgs(H1),...,lgs(Hn)) becomes
   lgs(H1) \lor lgs(H2) \lor lgs(H3).
Finally, teacher(0) is isolated in each Igs(Hi),
   so removing it from each lgs(Hi), and get lgs*(Hi).
```

Example

Thus, H[^] and H^V becomes two solutions of brave induction.

Discussion

Relation to Learning from Satisfiability (LFS)

- A hypothesis H covers O under B in LFS if B ∧ H has a model satisfying O (De Raedt and Dehaspe, 1997).
- If H covers O under B in brave induction, H covers O under B in LFS. The converse implication does not hold in general.
- LFS does not require the minimality of models, and any H which is consistent with B∧O becomes a solution. (e.g., B={p(a)}, O={q(a)}, H={r(b)}.)
- LFS generally produces many useless hypotheses, and brave induction reduces hypotheses space.

DiscussionRelation to Confirmatory Induction

- A hypothesis H covers O under B in confirmatory induction (or descriptive induction) if Comp(B∧O)|=H where Comp is predicate completion.
- There is no stronger/weaker relation between confirmatory induction and brave induction.
- Confirmatory induction does not explain why particular individuals are observed under B, and the aim is to learn relations between concepts.

DiscussionRelation to CF-Induction

- CF-induction (Inoue, 2004) applies
 Muggleton's inverse entailment to full clausal theories.
- CF-induction is cautious induction and is stronger than brave induction.

DiscussionHandling Negative Observations

- Given a negative observation N, it is requested that $B \land H \neq N$.
- Given a positive observation P and a negative one N, H is a solution of brave induction if B ∧ H has a minimal model M such that M|=P and M|≠N.
- By putting $O=P \land \neg N$, negative observations are handled within the framework of this paper.

DiscussionComputational Complexity

- Given a ground theory B and a ground observation O, deciding the existence of solutions in brave induction is NP-complete. (This is also the case for cautious induction.)
- Identifying whether a propositional theory H is a solution of brave induction is \sum_{2}^{P} -complete. In cautious induction, the task is coNP-complete.
- Brave induction appears more expensive than cautious induction for identifying solutions.

Conclusion

- Brave induction is weaker than explanatory (or cautious) induction, and stronger than learning from satisfiability. It is useful for learning indefinite or incomplete theories.
- Brave induction is used for automated negotiation in multiagent systems for building proposals [Sakama, DALT-08].
- A candidate of practical application is system biology which would have indefinite or incomplete information in the background knowledge and observations.