

The 36th IEEE International Conference on Tools with Artificial Intelligence

Linear Algebraic Partial Evaluation of Logic Programs

Tuan Nguyen¹ $_{\rm (speaker)}$, Katsumi Inoue¹ and Chiaki Sakama²

¹National Institute of Informatics, Tokyo, Japan

²Wakayama University, Wakayama, Japan

 $\{tuannq, inoue\}$ @nii.ac.jp sakama@wakayama-u.ac.jp

October 29th, 2024

イロト イポト イヨト イヨト

Outline

Motivation

- 2 Matrix Representation of Logic Programs
- 3 Linear Algebraic Partial Evaluation
 - Cycle resolving
 - Partial Evaluation with Iteration Method
 - Partial Evaluation using Matrix Decomposition

4 Experiments

Outline

Motivation

- 2) Matrix Representation of Logic Programs
- 3 Linear Algebraic Partial Evaluation
 - Cycle resolving
 - Partial Evaluation with Iteration Method
 - Partial Evaluation using Matrix Decomposition
- 4 Experiments

A (10) N (10)

- We focus on linear algebraic charateristics of logic programs [1].
- A logic program is a set of logical rules that can be represented in matrices and vectors.

Why do we need matrix representation of logic program?

- Linear algebra is at the core of many applications of scientific computation.
- Taking advantages of a long history of development in hardware/software(s) for linear algebraic computation to further *simplify the core method* and *reach higher scalability*.

• Forward reasoning (one of the most common)

Starting with an interpretation: $\{h1, h2, h3, h4\}$:

Finish with a fixpoint: $\{h1, h2, h3, h4, p, q, r\}$:

• Forward reasoning (one of the most common)

Starting with an interpretation: $\{h1, h2, h3, h4\}$:

Finish with a fixpoint: $\{h1, h2, h3, h4, p, q, r\}$:

It takes 2 steps to reach the fixpoint.

• Forward reasoning (one of the most common)

It takes 2 steps to reach the fixpoint.

• Backward reasoning (similarly with a transposed program matrix)

• **Partial evaluation** [2] is a technique to *simplify a logic program* by *pre-evaluating some of its parts.*

 [2] Lloyd and Shepherdson, "Partial evaluation in logic programming", 1991.

 Tuan Nguyen, Katsumi Inoue and Chiaki Sakama
 Linear Algebraic Partial Evaluation of Logic Programs
 October 29, 2024
 7 / 45

• **Partial evaluation** [2] is a technique to simplify a logic program by pre-evaluating some of its parts.

Starting from the same interpretation: $\{h1, h2, h3, h4\}$

• **Partial evaluation** [2] is a technique to *simplify a logic program* by *pre-evaluating some of its parts.*

With this program matrix, it takes only 1 steps to reach the fixpoint.

• **Partial evaluation** [2] is a technique to simplify a logic program by pre-evaluating some of its parts.

How do we transform the program matrix of P_0 into the program matrix of P'_0 ?

[2] Lloyd and Shepherdson, "Partial evaluation in logic programming", 1991.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

Linear Algebraic Partial Evaluation of Logic Programs

- Linear algebraic partial evaluation has been introduced for fixpoint computation [3] and extended to abduction [4]. The main idea is to *compute the power of a program matrix until it reaches a fixpoint*.
- Limitations:
 - only works with And-rules (conjunctions), and Or-rules (disjunctions) are not supported.
 - handling cycles in the program is **not** considered.
 - matrix decomposition is not considered in computing the power of a program matrix.

[4] T. Q. Nguyen, Inoue, and Sakama, "Linear Algebraic Abduction with Partial Evaluation" 2023 - a solution and Sakama and Sakama

^[3] H. D. Nguyen et al., "An efficient reasoning method on logic programming using partial evaluation in vector spaces", 2021.

Outline

Motivation

2 Matrix Representation of Logic Programs

- Linear Algebraic Partial Evaluation
 - Cycle resolving
 - Partial Evaluation with Iteration Method
 - Partial Evaluation using Matrix Decomposition
- 4 Experiments

(4) (2) (4) (4) (4)

• We consider logic programs in the form of normal logic program

$$b \leftarrow b_1 \wedge b_2 \wedge \dots \wedge b_l \wedge \neg b_{l+1} \wedge \dots \wedge \neg b_{l+k}$$

$$(1)$$

$$(1 + k \ge l \ge 0)$$

• We treat a *negation* $\neg p$ as a special symbol equally to p.

• We consider logic programs in the form of normal logic program

$$b \leftarrow b_1 \wedge b_2 \wedge \dots \wedge b_l \wedge \neg b_{l+1} \wedge \dots \wedge \neg b_{l+k}$$

$$(1$$

$$(l+k \ge l \ge 0)$$

• We treat a *negation* $\neg p$ as a special symbol equally to p.

• Given a logic program:
$$P_1 = \{a \leftarrow b \land c, a \leftarrow \neg h, a \leftarrow f, b \leftarrow c \land d, c \leftarrow \neg g, c \leftarrow \neg d, d \leftarrow e, e \leftarrow d, f \leftarrow a, f \leftarrow g, g \leftarrow a, g \leftarrow \neg c, h \leftarrow \neg a\}$$

• We consider logic programs in the form of normal logic program

$$b \leftarrow b_1 \wedge b_2 \wedge \dots \wedge b_l \wedge \neg b_{l+1} \wedge \dots \wedge \neg b_{l+k}$$

$$(1)$$

$$(1+k \ge l \ge 0)$$

• We treat a *negation* $\neg p$ as a special symbol equally to p.

• Given a logic program:
$$P_1 = \{a \leftarrow b \land c, a \leftarrow \neg h, a \leftarrow f, b \leftarrow c \land d, c \leftarrow a, c \leftarrow \neg g, c \leftarrow \neg d, d \leftarrow e, e \leftarrow d, f \leftarrow a, f \leftarrow g, g \leftarrow a, g \leftarrow \neg c, h \leftarrow \neg a\}$$

• Standardized program $\Pi_1 = \langle \Pi_1^{\land}, \Pi_1^{\lor}, \Pi_1^F \rangle$:
 $\Pi_1^{\land} = \Pi_1^{\lor} = \Pi_1^{\lor} = \{f \in a \lor a, f \leftarrow g, f \leftarrow a \lor g, f \leftarrow a \lor g, f \leftarrow a \lor g, g \leftarrow a \lor \neg c, \}$

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Partial Evaluation of Logic Programs

• Standardized program
$$\Pi_1 = \langle \Pi_1^{\wedge}, \Pi_1^{\vee}, \Pi_1^F \rangle$$
:
 $\Pi_1^{\wedge} = \qquad \Pi_1^{\vee} = \qquad \Pi_1^F = \{\}$
 $\{x_1 \leftarrow b \land c, \\ b \leftarrow c \land d, \\ h \leftarrow \neg a, \\ d \leftarrow e, \\ e \leftarrow d, \}$
 $\{a \leftarrow \neg h \lor f \lor x_1, \\ c \leftarrow a \lor \neg d \lor \neg g, \\ f \leftarrow a \lor g, \\ g \leftarrow a \lor \neg c, \}$

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

э

イロト イヨト イヨト イヨ

Represent Π_1 in vector spaces:

Figure: The program matrix can be constructed as: $\mathbf{M}_{\Pi_1} = \mathbf{M}_{\Pi_1^{\wedge}} + \theta^{\uparrow} (\mathbf{M}_{\Pi_1^{\vee}}) + \operatorname{diag}(\mathbf{v}_{\Pi_1^{\mathcal{F}}}^{\top} \oplus_{\theta^{\downarrow}} \mathbf{v}_{\operatorname{neg}(\Pi_1)}).$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Outline

Motivation

- Matrix Representation of Logic Programs
- 3 Linear Algebraic Partial Evaluation
 - Cycle resolving
 - Partial Evaluation with Iteration Method
 - Partial Evaluation using Matrix Decomposition

4 Experiments

4 E

- Linear algebraic Partial Evaluation (PE) has been proposed and evaluated [5], [6], [7].
- The method is based on the iteration of *computing the matrix power*.
- It is reported to be *efficient* and *scalable* for large programs, in case we need to perform deductive/abductive reasoning for several times.

[7] T. Q. Nguyen, Inoue, and Sakama, "Linear Algebraic Abduction with Partial Evaluation", 2023 . 🛓 🕤 🖉

^[5] Sakama, H. D. Nguyen, et al., "Partial Evaluation of Logic Programs in Vector Spaces", 2018.

^[6] H. D. Nguyen et al., "An efficient reasoning method on logic programming using partial evaluation in vector spaces", 2021.

- Linear algebraic PE has been proposed and evaluated [5], [6], [7].
- The method is based on the iteration of *computing the matrix power*.
- It is reported to be *efficient* and *scalable* for large programs, in case we need to perform deductive/abductive reasoning for several times.
- Current limitations: does not consider *Or-rules*, being stuck with *cyclic programs*.

[7] T. Q. Nguyen, Inoue, and Sakama, "Linear Algebraic Abduction with Partial Evaluation", 2023: 🛌 🚊 🕠 🤉

^[5] Sakama, H. D. Nguyen, et al., "Partial Evaluation of Logic Programs in Vector Spaces", 2018.

^[6] H. D. Nguyen et al., "An efficient reasoning method on logic programming using partial evaluation in vector spaces", 2021.

- Linear algebraic PE has been proposed and evaluated [5], [6], [7].
- The method is based on the iteration of *computing the matrix power*.
- It is reported to be *efficient* and *scalable* for large programs, in case we need to perform deductive/abductive reasoning for several times.
- Current limitations: does not consider Or-rules, being stuck with cyclic programs.
- Our proposal:
 - Extend the method to handle Or-rules.
 - *Resolve local cycles* in the program.
 - S *Employing matrix decomposition* for computing the matrix power.

[7] T. Q. Nguyen, Inoue, and Sakama, "Linear Algebraic Abduction with Partial Evaluation" 2023 - 🤤 🧠

^[5] Sakama, H. D. Nguyen, et al., "Partial Evaluation of Logic Programs in Vector Spaces", 2018.

^[6] H. D. Nguyen et al., "An efficient reasoning method on logic programming using partial evaluation in vector spaces", 2021.

Ourproposal: Separating matrix representations of And-rules and Or-rules

• Summary of the process:

Constructing the matrix of And/Or - 2 steps:

- Resolve local cycles
- Append the diagonal (to preserve information)

Computing the power of the matrix - 2 ways:

- Iteration method
- Decomposition method

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama

Linear Algebraic Partial Evaluation of Logic Programs

- 34

- 本語 ト イヨト イヨト

Definition (Partial evaluation of And-rules)

Given a normal logic program P, its standardized program is Π . The partial evaluated matrix of Π w.r.t. And-rules, denoted as peval (Π^{\wedge}) , is defined as follows:

$$\begin{split} \widehat{\mathbf{M}}_{\Pi^{\wedge}} &= \mathbf{M}_{\Pi^{\wedge}} + \operatorname{diag}(\mathbf{v}_{\Pi^{F}} \oplus_{\theta^{\Downarrow}} \mathbf{v}_{\operatorname{neg}(\Pi)} \oplus_{\theta^{\Downarrow}} \mathbf{v}_{\operatorname{head}(\Pi^{\vee})}) \\ \mathbf{M}_{0} &= \widehat{\mathbf{M}}_{\Pi^{\wedge}} \\ \mathbf{M}_{i} &= \mathbf{M}_{i-1} \cdot \mathbf{M}_{i-1} \quad (i \geq 1) \end{split}$$
(2)

where $\mathbf{v}_{\text{head}(\Pi^{\vee})}$ is a column vector such that $\mathbf{v}_{\text{head}(\Pi^{\vee})}[i] = 1$ if the corresponding atom at index *i* is a head of an *Or*-rule.

(本語) (本語) (本語) (本語) (本語)

Definition (Partial evaluation of Or-rules)

Given a normal logic program P, its standardized program is Π . The partial evaluated matrix of Π w.r.t. Or-rules, denoted as peval (Π^{\vee}) , is defined as follows:

$$\begin{split} \widehat{\mathbf{M}}_{\Pi^{\vee}} &= \mathbf{M}_{\Pi^{\vee}} + \operatorname{diag}(\mathbf{v}_{\Pi^{F}} \oplus_{\theta^{\Downarrow}} \mathbf{v}_{\operatorname{neg}(\Pi)} \oplus_{\theta^{\Downarrow}} \mathbf{v}_{\operatorname{head}(\Pi^{\wedge})}) \\ \mathbf{M}_{0} &= \widehat{\mathbf{M}}_{\Pi^{\vee}} \\ \mathbf{M}_{i} &= \mathbf{M}_{i-1} \cdot \mathbf{M}_{i-1} \quad (i \geq 1) \end{split}$$
(3)

where $\mathbf{v}_{\text{head}(\Pi^{\wedge})}$ is a column vector such that $\mathbf{v}_{\text{head}(\Pi^{\wedge})}[i] = 1$ if the corresponding atom at index *i* is a head of an *And*-rule.

< 回 > < 三 > < 三 >

Repeating to compute the power (2) and
(3) until a fixed point is reached.

$$\mathbf{M}, \mathbf{M}^2, \mathbf{M}^4, \dots \mathbf{M}^{2^k},$$

Proposition

For any program P with $\mathbf{M}_{\Pi^{\wedge}}$ (and $\mathbf{M}_{\Pi^{\vee}}$) of the size $n \times n$ such that the corresponding dependency graph $\mathbf{G}_{\Pi^{\wedge}}$ (and $\mathbf{G}_{\Pi^{\wedge}}$) is acyclic, the sufficient number of PE steps to reach a fixed point is $k = \lceil log_2(n) \rceil$.

4 2 5 4 2

Linear Algebraic Partial Evaluation - Cycle resolving

Cycle resolving: to avoid infinite loops (when a fixed point cannot be reached)

Types of cycles:

- Local cycles: cycles within a group of rules (only solid or only dash edges). Example: $\{d, e\}, \{a, f\}, \{a, f, g\}$.
- Global cycles: cycles between groups of rules (mixing both solid and dash edges). Example: $\{a, c, x_1\}, \{a, c, b, x_1\}.$

We focus on resolving local cycles.

Linear Algebraic Partial Evaluation - Cycle resolving

Cycle resolving: to avoid infinite loops (when a fixed point cannot be reached)

Algorithm Cycle-resolving for And-rules

- 1: Identify all Strongly Connected Component (SCC)s in $\boldsymbol{G}_{\Pi^{\wedge}}.$
- 2: for each SCC L in $\mathbf{G}_{\Pi^{\wedge}}$ do
- 3: for each rule $r \in \Pi^{\wedge}$ such that $head(r) \in L$ do
- 4: Remove r (by setting the corresponding entries of r in $M_{\Pi^{\wedge}}$ to 0).

Algorithm Cycle-resolving for Or-rules

- 1: Identify all SCCs in $\mathbf{G}_{\Pi^{\vee}}$.
- 2: for each SCC L in $\mathbf{G}_{\Pi^{\vee}}$ do

3: Let
$$E = \emptyset$$

4: **for each** rule $r \in \Pi^{\vee}$ such that *head*(r) ∈ L **do**

5:
$$E = E \cup (body(r) \setminus L)$$

6: **for each** rule $r \in \Pi^{\vee}$ such that *head*(r) ∈ L **do**

7: Replace
$$r$$
 by $head(r) \leftarrow \bigvee_{q \in E} q$.

メロマ メヨマ メヨマ メヨ

200

Iteration Method for And-rules:

Figure: Visualization of the linear algebraic PE of Π_1^{\wedge} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

Iteration Method for *And*-rules:

Figure: Visualization of the linear algebraic PE of Π_1^{\wedge} , before and after PE.

Iteration Method for *Or*-rules:

Figure: Visualization of the linear algebraic PE of Π_1^{\vee} .

・ロット (雪) (日) (日) (日) (日)

Iteration Method for Or-rules:

Figure: Visualization of the linear algebraic PE of Π_{1}^{\vee} before and after PE.* (Ξ) Ξ \mathcal{O} Tuan Nguyen, Katsumi Inque and Chiaki Sakama Linear Algebraic Partial Evaluation of Logic Programs October 29, 2024 26 / 45

Linear Algebraic Partial Evaluation of Logic Programs

Linear Algebraic Partial Evaluation - with Iteration Method

(a) Dependency graph of \mathbf{M}_{Π_1} .

(b) Dependency graph of $peval(M_{\Pi_1})$.

Figure: Visualization of partial evaluated dependency graphs of Π_1 and peval (M_{Π_1}) .

Eigendecomposition:

- It is known that powers of a matrix **M** can be computed efficiently using its decomposition $\mathbf{M} = \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{-1}$, where **A** is a diagonal matrix of eigenvalues and **Q** is a matrix of eigenvectors [8].
- Then we can compute Mⁿ = Q · Aⁿ · Q⁻¹ that is computationally more efficient than computing Mⁿ directly, because A is a diagonal matrix.

 [8] Strang, Introduction to linear algebra 4th edition, 2009.

 Introduction to linear algebraic Partial Evaluation of Logic Programs

 Tuan Nguyen, Katsumi Inoue and Chiaki Sakama
 Linear Algebraic Partial Evaluation of Logic Programs

Eigendecomposition:

- It is known that powers of a matrix **M** can be computed efficiently using its decomposition $\mathbf{M} = \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{-1}$, where **A** is a diagonal matrix of eigenvalues and **Q** is a matrix of eigenvectors [8].
- Then we can compute Mⁿ = Q · Aⁿ · Q⁻¹ that is computationally more efficient than computing Mⁿ directly, because A is a diagonal matrix.
- Condition: the program matrix must be diagonalizable.

[8] Strang, Introduction to linear algebra 4th edition, 2009.

Jordan normal form:

Definition (Jordan normal form)

Let
$$J_i$$
 be a square $k \times k$ matrix $\begin{pmatrix} \lambda_i & 1 & \dots & \dots & \dots & \dots \\ & \ddots & \ddots & \ddots & \dots & \dots & \dots \\ & & \ddots & \ddots & \ddots & \dots & \dots \\ & & & \ddots & \ddots & \dots & \dots \end{pmatrix}$ such that λ_i is identical on the diagonal and there are 1s just above the diagonal. We call each such matrix a Jordan λ_i -block. A matrix **M** is in Jordan Normal Form (JNF) if $\mathbf{J} = \begin{pmatrix} J_1 & \dots & \dots & \dots & \dots \\ & \ddots & & \dots & \dots & \dots & \dots \\ & & \ddots & & & \dots & \dots & \dots \end{pmatrix}$.

- It is proved that every square matrix in ℝ^{n×n} can be decomposed into a matrix in JNF according to Jordan's theorem [9].
- $\mathbf{M} = \mathbf{P} \cdot \mathbf{J} \cdot \mathbf{P}^{-1}$

Jordan normal form:

• An example of Jordan normal form:

Jordan normal form:

• Computing powers of a Jordan matrix **J** is straightforward:

 $\mathbf{J}^{n} = \begin{pmatrix} J_{1} & & \\ & J_{2} & \\ & & \ddots & \\ & & & \ddots & \\ & & & & J_{n} \end{pmatrix}^{n} = \begin{pmatrix} (J_{1})^{n} & & \\ & (J_{2})^{n} & & \\ & & \ddots & \\ & & & (J_{n})^{n} \end{pmatrix}$ that can be simplified to computing powers of each

coefficient describing the algebraic expansion of powers of a binomial.

Algorithm Partial evaluation using matrix decomposition

- 1: Find the standardized program and its matrix representation M_{Π^\wedge} and $M_{\Pi^\vee}.$
- 2: Resolve cycles in these matrices.
- 3: For each matrix $\widehat{\mathbf{M}}_{\Pi^{\wedge}}$ and $\widehat{\mathbf{M}}_{\Pi^{\vee}}$, compute the eigenvalues and eigenvectors.
- 4: if the matrix is diagonalizable then
- 5: find the eigendecomposition of the matrix.

6: **else**

- 7: find the Jordan normal form of the matrix.
- 8: Compute the power using the decomposition.
- 9: Translate resulting matrices back to a logic program.

э

・ロット (四) ・ (田) ・ (田)

Outline

Motivation

- Matrix Representation of Logic Programs
- 3 Linear Algebraic Partial Evaluation
 - Cycle resolving
 - Partial Evaluation with Iteration Method
 - Partial Evaluation using Matrix Decomposition

4 Experiments

(4) (2) (4) (4) (4)

Experiments - (previous work) Propositional Horn clause abduction

Artificial samples II

FMEA samples

- Goal:
 - evaluate linear algebraic PE with iteration method (I) and the matrix decomposition method (II) using logic programs in Failure Modes and Effects Analysis (FMEA) benchmarks [11].
 - evaluate performance of the methods in the presence of cycles in the program matrix.
- The dataset consists of three problem sets: Artificial samples I (166 instances), Artificial samples II (118 instances), and FMEA samples (213 instances). All programs in the dataset are *acyclic*. We *augment* the FMEA benchmarks by *adding randomly 1-5 cycles of the length 2-5 to each* G_{Π^} *and* G_Π[∨] of a program *P*.

^[11] Koitz-Hristov and Wotawa, "Faster horn diagnosis-a performance comparison of abductive reasoning algorithms", 2020.

- Our code is implemented in Python 3.7 using numpy, scipy, and sympy. We set a timeout of 20s for PE computation, the timeout penalty is set to 60s for comparison.
- System environment: Intel(R) Xeon(R) Bronze 3106 @1.70GHz; 64GB DDR3 @1333MHz; Ubuntu 22.04 LTS 64bit.

• All the source code and benchmark datasets in our paper will be available on GitHub:

https:

//github.com/nqtuan0192/LinearAlgebraicComputationofAbduction.

Table: Statistical data of the datasets and detailed comparison of execution time (in *ms*) of the linear algebraic PE methods on the datasets. (green - best, red - worst)

	Artificial samples I (166 instances)		Artificial samples II (118 instances)		FMEA samples (213 instances)	
Parameters	mean / std	[min, max]	mean / std	[min, max]	mean / std	[min, max]
Matrix size	2,088.32 / 1,584.48	[11, 6,601]	321.86 / 252.64	[18, 1,110]	27.58 / 19.32	[6,84]
No. And-rules	1,188.63 / 1,349.59	[8, 6,375]	201.86 / 186.64	[9, 1,007]	16.10 / 9.23	[1,43]
No. Or-rules	899.69 / 839.58	[3, 3,345]	119.99 / 107.40	[4,437]	11.48 / 11.01	[1,41]
Sparsity (of M _Π)	0.99 / 0.02	[0.90, 1.00]	0.99 / 0.01	[0.90, 1.00]	0.95 / 0.04	[0.73, 0.99]
Longest path	4.63 / 5.36	[2,65]	6.56 / 8.56	[2,58]	1.94 / 0.24	[1,2]
peval steps	3.78 / 0.95	[2,5]	3.71 / 0.81	[2,6]	2.00 / 0.00	[2,2]
Algorithms	mean / std	Timeout?	mean / std	Timeout?	mean / std	Timeout?
(I) Iteration $+$ dense	799,965 / 58,500	0 / 166	4,483 / 688	0 / 118	103 / 10	0 / 213
(II) Decomposition $+$ dense	9,292,159 / 34,274	152 / 166	6,041,323 / 28,710	96 / 118	1,607,397 / 19,170	18 / 213
(I) Iteration $+$ sparse	545 / 15	0 / 166	138 / 4	0 / 118	157 / 5	0 / 213

3

イロト 不得下 イヨト イヨト

Table: Detailed comparison of execution time (in *ms*) of the linear algebraic PE methods on the *augmented* datasets **with cycles**. (green - best, red - worst)

	Artificial samples I (166 instances)		Artificial samples II (118 instances)		FMEA samples (213 instances)	
Parameters	mean / std	[min, max]	mean / std	[min, max]	mean / std	[min, max]
No. cycles And-rules	3.72 / 0.25	[1,5]	3.68 / 0.30	[1,5]	1.00 / 0.00	[1,1]
No. cycles Or-rules	3.89 / 0.37	[1,5]	3.75 / 0.42	[1,5]	1.00 / 0.00	[1,1]
Algorithms	peval (mean / std)	resolve (mean / std)	peval (mean / std)	resolve (mean / std)	peval (mean / std)	resolve (mean / std)
(I) Iteration + dense	821,780 / 62,340	573 / 27	4,501 / 793	407 / 19	90 / 7	52 / 6
(II) Decomposition + dense	9,251,534 / 33,491	554 / 24	5,970,126 / 27,104	398 / 18	1,271,842 / 18,510	56 / 6
(I) Iteration $+$ sparse	579 / 17	76 / 14	151 / 4	68 / 12	112 / 4	17 / 3

- 34

イロト 不得下 イヨト イヨト

Outline

1 Motivation

- Matrix Representation of Logic Programs
- 3 Linear Algebraic Partial Evaluation
 - Cycle resolving
 - Partial Evaluation with Iteration Method
 - Partial Evaluation using Matrix Decomposition

4 Experiments

5 Conclusion and future works

(4) (2) (4) (4) (4)

Conclusion and future works

- We have proposed and investigated linear algebraic PE of logic programs:
 - extend the method to handle Or-rules
 - propose cycle resolving method to handle *local cycles*
 - propose decomposition method to compute the power of a program matrix

K A E K A E K

Conclusion and future works

- We have proposed and investigated linear algebraic PE of logic programs:
 - extend the method to handle Or-rules
 - propose cycle resolving method to handle *local cycles*
 - propose decomposition method to compute the power of a program matrix
- Future works:
 - handle *global cycles* in the program matrix.
 - investigate the effect of different rule structures on the *diagonalizability* of the program matrix.
 - explore the possibility of using *other decomposition methods*.

References I

- Koitz-Hristov, Roxane and Franz Wotawa. "Faster horn diagnosis-a performance comparison of abductive reasoning algorithms". In: *Applied Intelligence* 50.5 (2020), pp. 1558–1572.
- Lloyd, John W. and John C Shepherdson. "Partial evaluation in logic programming". In: *The Journal of Logic Programming* 11.3-4 (1991), pp. 217–242.
- Nguyen, Hien D et al. "An efficient reasoning method on logic programming using partial evaluation in vector spaces". In: *Journal of Logic and Computation* 31.5 (2021), pp. 1298–1316.
- Nguyen, Tuan Quoc, Katsumi Inoue, and Chiaki Sakama. "Linear Algebraic Abduction with Partial Evaluation". In: Practical Aspects of Declarative Languages: 25th International Symposium, PADL 2023, Boston, MA, USA, January 16–17, 2023, Proceedings. Springer. 2023, pp. 197–215.
- Sakama, Chiaki, Katsumi Inoue, and Taisuke Sato. "Logic programming in tensor spaces". In: Annals of Mathematics and Artificial Intelligence 89.12 (2021), pp. 1133–1153.
- Sakama, Chiaki, Hien D Nguyen, et al. "Partial Evaluation of Logic Programs in Vector Spaces". In: International Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2018), Oxford UK. 2018.

・ロット 通マ マロマ キロマー 田

References II

Strang, Gilbert. Introduction to linear algebra 4th edition. SIAM, 2009.
 Weintraub, Steven H. Jordan canonical form: theory and practice. Springer Nature, 2009.

э

イロト 不得下 イヨト イヨト

Thank you for your attention

Tuan Nguyen
Email: nqtuan0192@gmail.com / tuannq@nii.ac.jp

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama Linear Algebraic Partial Evaluation of Logic Programs

A I > A I = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A