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Motivation

Motivation

We focus on linear algebraic charateristics of logic programs [1].
A logic program is a set of logical rules that can be represented in matrices and vectors.

A logic program P0:
q ← h1 ∧ h2 ,

r ← h3 ∧ h4 ,
p ← q ∧ r .



h1 h2 h3 h4 p q r
h1 1
h2 1
h3 1
h4 1
p 1/2 1/2
q 1/2 1/2
r 1.2 1/2



h1

q

p

h2 h3

r

h4

[1] Sakama, Inoue, and Sato, “Logic programming in tensor spaces”, 2021.
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Motivation

Motivation

Why do we need matrix representation of logic program?
Linear algebra is at the core of many applications of scientific computation.
Taking advantages of a long history of development in hardware/software(s) for linear
algebraic computation to further simplify the core method and reach higher scalability.

A logic program P0:
q ← h1 ∧ h2 ,

r ← h3 ∧ h4 ,
p ← q ∧ r .
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h1

q

p

h2 h3

r

h4
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Motivation

Motivation

Forward reasoning (one of the most common)

Starting with an interpretation: {h1, h2, h3, h4}:



h1 h2 h3 h4 p q r
h1 1
h2 1
h3 1
h4 1
p 1/2 1/2
q 1/2 1/2
r 1.2 1/2


·



h1 1
h2 1
h3 1
h4 1
p
q
r


=



h1 1
h2 1
h3 1
h4 1
p
q 1
r 1



Finish with a fixpoint: {h1, h2, h3, h4, p, q, r}:



h1 h2 h3 h4 p q r
h1 1
h2 1
h3 1
h4 1
p 1/2 1/2
q 1/2 1/2
r 1.2 1/2


·



h1 1
h2 1
h3 1
h4 1
p
q 1
r 1


=



h1 1
h2 1
h3 1
h4 1
p 1
q 1
r 1



It takes 2 steps to reach the fixpoint.
Backward reasoning (similarly with a transposed program matrix)
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Motivation

Motivation

Partial evaluation [2] is a technique to simplify a logic program by pre-evaluating some
of its parts.

A logic program P ′
0:

q ← h1 ∧ h2 ,

r ← h3 ∧ h4 ,

p ← h1 ∧ h2 ∧ h3 ∧ h4 .



h1 h2 h3 h4 p q r
h1 1
h2 1
h3 1
h4 1
p 1/4 1/4 1/4 1/4
q 1/2 1/2
r 1.2 1/2



h1

pq

h2 h3

r

h4

Starting from the same interpretation: {h1, h2, h3, h4}
With this program matrix, it takes only 1 steps to reach the fixpoint.
How do we transform the program matrix of P0 into the program matrix of P ′

0?

[2] Lloyd and Shepherdson, “Partial evaluation in logic programming”, 1991.
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Motivation

Motivation

Linear algebraic partial evaluation has been introduced for fixpoint computation [3]
and extended to abduction [4]. The main idea is to compute the power of a program
matrix until it reaches a fixpoint.
Limitations:

only works with And-rules (conjunctions), and Or -rules (disjunctions) are not supported.
handling cycles in the program is not considered.
matrix decomposition is not considered in computing the power of a program matrix.

[3] H. D. Nguyen et al., “An efficient reasoning method on logic programming using partial evaluation in
vector spaces”, 2021.

[4] T. Q. Nguyen, Inoue, and Sakama, “Linear Algebraic Abduction with Partial Evaluation”, 2023.
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Matrix Representation of Logic Programs

Matrix Representation of Logic Programs

We consider logic programs in the form of normal logic program

h← b1 ∧ b2 ∧ ... ∧ bl ∧ ¬bl+1 ∧ ... ∧ ¬bl+k (1)
(l + k ≥ l ≥ 0)

We treat a negation ¬p as a special symbol equally to p.

Given a logic program: P1 =
{a← b ∧ c, a← ¬h, a← f ,
b ← c ∧ d ,
c ← a, c ← ¬g , c ← ¬d ,
d ← e,
e ← d ,
f ← a, f ← g ,
g ← a, g ← ¬c,
h← ¬a}

Standardized program Π1 = ⟨Π∧
1 , Π∨

1 , ΠF
1 ⟩:

Π∧
1 = Π∨

1 = ΠF
1 = {}

{x1 ← b ∧ c,
b ← c ∧ d ,

h← ¬a ,

d ← e ,

e ← d , }

{ a← ¬h ∨ f ∨ x1 ,

c ← a ∨ ¬d ∨ ¬g ,

f ← a ∨ g ,

g ← a ∨ ¬c , }
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Matrix Representation of Logic Programs

Matrix Representation of Logic Programs
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Matrix Representation of Logic Programs

Matrix Representation of Logic Programs

a

b

x1

c d
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f g

h
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a

c

f

g

b d e hx1 ¬a

¬c¬d ¬g

¬h
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1 ⟩:
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d ← e ,
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Matrix Representation of Logic Programs

Matrix Representation of Logic Programs
Represent Π1 in vector spaces:

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/2 1/2

1
1

1
1/2 1/2

(a) MΠ∧
1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/3 1/3 1/3

1/3 1/3 1/3

1/2 1/2
1/2 1/2

(b) MΠ∨
1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

(c) v⊤
ΠF

1
a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

1 1 1 1 1

(d) v⊤
neg(Π1)

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h
1 1 1 1 1

(e) vhead(Π∧)
a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h
1 1 1 1

(f) vhead(Π∨)
Figure: Visualization of matrix/vector representations of Π1.
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Matrix Representation of Logic Programs

Matrix Representation of Logic Programs
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a
b
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h
x1
¬a
¬c
¬d
¬g
¬h

1/2 1/2

1
1

1
1/2 1/2

(a) MΠ∧
1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/3 1/3 1/3

1/3 1/3 1/3

1/2 1/2
1/2 1/2

(b) MΠ∨
1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1 1 1
1/21/2

1 1 1
1

1
1 1
1 1

1
1/21/2

1
1

1
1

1

(c) Program matrix MΠ1 .

Figure: The program matrix can be constructed as: MΠ1 = MΠ∧
1

+ θ⇑(
MΠ∨

1

)
+diag(v⊤

ΠF
1
⊕θ⇓ vneg(Π1)).
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Linear Algebraic Partial Evaluation

Linear Algebraic Partial Evaluation

Linear algebraic Partial Evaluation (PE) has been proposed and evaluated [5], [6], [7].
The method is based on the iteration of computing the matrix power.
It is reported to be efficient and scalable for large programs, in case we need to perform
deductive/abductive reasoning for several times.

Current limitations: does not consider Or-rules, being stuck with cyclic programs.
Our proposal:

1 Extend the method to handle Or-rules.
2 Resolve local cycles in the program.
3 Employing matrix decomposition for computing the matrix power.

[5] Sakama, H. D. Nguyen, et al., “Partial Evaluation of Logic Programs in Vector Spaces”, 2018.
[6] H. D. Nguyen et al., “An efficient reasoning method on logic programming using partial evaluation in

vector spaces”, 2021.
[7] T. Q. Nguyen, Inoue, and Sakama, “Linear Algebraic Abduction with Partial Evaluation”, 2023.
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Linear Algebraic Partial Evaluation
Ourproposal: Separating matrix representations of And-rules and Or -rules

Summary of the process:

Partially evaluated
program matrix

Program matrix of 
And-rules

Program matrix of 
Or-rules

Computing the power
of the matrix

Computing the power
of the matrix

Program matrix

Constructing the matrix of And/Or - 2 steps:
1 Resolve local cycles
2 Append the diagonal (to preserve

information)

Computing the power of the matrix - 2 ways:
Iteration method
Decomposition method
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Linear Algebraic Partial Evaluation

Definition (Partial evaluation of And-rules)

Given a normal logic program P, its standardized program is Π. The partial evaluated matrix
of Π w.r.t. And-rules, denoted as peval(Π∧), is defined as follows:

M̂Π∧ = MΠ∧ + diag(vΠF ⊕θ⇓ vneg(Π) ⊕θ⇓ vhead(Π∨))

M0 = M̂Π∧

Mi = Mi−1 ·Mi−1 (i ≥ 1) (2)

where vhead(Π∨) is a column vector such that vhead(Π∨)[i ] = 1 if the corresponding atom at
index i is a head of an Or -rule.
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Linear Algebraic Partial Evaluation

Definition (Partial evaluation of Or-rules)

Given a normal logic program P, its standardized program is Π. The partial evaluated matrix
of Π w.r.t. Or -rules, denoted as peval(Π∨), is defined as follows:

M̂Π∨ = MΠ∨ + diag(vΠF ⊕θ⇓ vneg(Π) ⊕θ⇓ vhead(Π∧))

M0 = M̂Π∨

Mi = Mi−1 ·Mi−1 (i ≥ 1) (3)

where vhead(Π∧) is a column vector such that vhead(Π∧)[i ] = 1 if the corresponding atom at
index i is a head of an And-rule.
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Linear Algebraic Partial Evaluation

Linear Algebraic Partial Evaluation

1. M′ = M2

Is M′ == M ?FINISH

2. M′ ←M

True

False

Repeating to compute the power (2) and
(3) until a fixed point is reached.

M, M2, M4, . . . M2k
,

Proposition

For any program P with MΠ∧ (and MΠ∨) of
the size n × n such that the corresponding
dependency graph GΠ∧ (and GΠ∧) is acyclic,
the sufficient number of PE steps to reach a
fixed point is k = ⌈log2(n)⌉.
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Linear Algebraic Partial Evaluation Cycle resolving

Linear Algebraic Partial Evaluation - Cycle resolving

Cycle resolving: to avoid infinite loops (when a fixed point cannot be reached)

a

c

f

g

b

x1

d

e

h

¬a

¬c¬d ¬g

¬h

Types of cycles:
Local cycles: cycles within a group of
rules (only solid or only dash edges).
Example: {d , e}, {a, f }, {a, f , g}.
Global cycles: cycles between groups of
rules (mixing both solid and dash edges).
Example: {a, c, x1}, {a, c, b, x1}.

We focus on resolving local cycles.
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Linear Algebraic Partial Evaluation - Cycle resolving

Cycle resolving: to avoid infinite loops (when a fixed point cannot be reached)

Algorithm Cycle-resolving for And-rules

1: Identify all Strongly Connected
Component (SCC)s in GΠ∧ .

2: for each SCC L in GΠ∧ do
3: for each rule r ∈ Π∧ such that

head(r) ∈ L do
4: Remove r (by setting the

corresponding entries of r in MΠ∧ to 0).

Algorithm Cycle-resolving for Or -rules

1: Identify all SCCs in GΠ∨ .
2: for each SCC L in GΠ∨ do
3: Let E = ∅
4: for each rule r ∈ Π∨ such that

head(r) ∈ L do
5: E = E ∪ (body(r) \ L)
6: for each rule r ∈ Π∨ such that

head(r) ∈ L do
7: Replace r by head(r)←

∨
q∈E

q.
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Linear Algebraic Partial Evaluation - with Iteration Method

Iteration Method for And-rules:

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/2 1/2

1
1/2 1/2

(a) resolve(MΠ∧
1

)

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h
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e
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h
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¬a
¬c
¬d
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1
1/2 1/2
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(b) resolve(M̂Π∧
1

).

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h
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e
f
g
h
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¬a
¬c
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(c) (resolve(M̂Π∧
1

))2k

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h
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b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1

(d) peval(MΠ∧
1

)

Figure: Visualization of the linear algebraic PE of Π∧
1 .
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Linear Algebraic Partial Evaluation - with Iteration Method

Iteration Method for And-rules:
a

b

x1

c d

e

f g

h

¬a ¬c ¬d ¬g ¬h

a b c d e f g

h

x1¬a ¬c ¬d ¬g ¬h

Figure: Visualization of the linear algebraic PE of Π∧
1 , before and after PE.
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Linear Algebraic Partial Evaluation - with Iteration Method

Iteration Method for Or -rules:
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Linear Algebraic Partial Evaluation - with Iteration Method
Iteration Method for Or -rules:

a
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b d e hx1 ¬a

¬c¬d ¬g

¬h

a

b

c

d e

f g
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Figure: Visualization of the linear algebraic PE of Π∨
1 , before and after PE.
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Linear Algebraic Partial Evaluation - with Iteration Method
a b c d e f g

h

x1¬a ¬c ¬d ¬g ¬h

(a) Dependency graph of peval(Π∧
1 ).
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d e

f g

hx1 ¬a¬c ¬d ¬g¬h

(b) Dependency graph of peval(Π∨
1 ).
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(c) And-Or -dependency graph of peval(Π1).
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Figure: Visualization of partial evaluated dependency graphs of Π1, the program matrix MΠ1 and the
partially evaluated program matrix peval(MΠ1).
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Linear Algebraic Partial Evaluation - with Iteration Method
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(a) Dependency graph of MΠ1 .
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f g h

x1 ¬a¬c ¬d ¬g¬h

(b) Dependency graph of peval(MΠ1 ).

Figure: Visualization of partial evaluated dependency graphs of Π1 and peval(MΠ1).
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Linear Algebraic Partial Evaluation - using Matrix Decomposition

Eigendecomposition:
It is known that powers of a matrix M can be computed efficiently using its
decomposition M = Q · A ·Q−1, where A is a diagonal matrix of eigenvalues and Q is a
matrix of eigenvectors [8].
Then we can compute Mn = Q · An ·Q−1 that is computationally more efficient than
computing Mn directly, because A is a diagonal matrix.

Condition: the program matrix must be diagonalizable.

[8] Strang, Introduction to linear algebra 4th edition, 2009.
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Linear Algebraic Partial Evaluation - using Matrix Decomposition

Jordan normal form:

Definition (Jordan normal form)

Let Ji be a square k × k matrix


λi 1

λi 1
. . . . . .

λi 1
λi

 such that λi is identical on the diagonal and

there are 1s just above the diagonal. We call each such matrix a Jordan λi -block. A matrix M

is in Jordan Normal Form (JNF) if J =


J1

J2
. . .

Jp

.

It is proved that every square matrix in Rn×n can be decomposed into a matrix in JNF
according to Jordan’s theorem [9].
M = P · J · P−1

[9] Weintraub, Jordan canonical form: theory and practice, 2009.
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Linear Algebraic Partial Evaluation - using Matrix Decomposition

Jordan normal form:
An example of Jordan normal form:
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Linear Algebraic Partial Evaluation - using Matrix Decomposition

Jordan normal form:
Computing powers of a Jordan matrix J is straightforward:

Jn =


J1

J2
. . .

Jp


n

=


(J1)n

(J2)n

. . .
(Jp)n

 that can be simplified to computing powers of each

Jordan block. The power of a Jordan block Ji (k × k) can be computed by:

(Ji)n =



λn
i

(n
1
)
λn−1

i
(n

2
)
λn−2

i . . . . . .
( n

k−1
)
λn−k+1

i
λn

i
(n

1
)
λn−1

i . . . . . .
( n

k−2
)
λn−k+2

i
. . . . . . . . .

...
. . . . . .

...
λn

i
(n

1
)
λn−1

i
λn

i


where

( n
b

)
is the binomial

coefficient describing the algebraic expansion of powers of a binomial.
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Linear Algebraic Partial Evaluation - using Matrix Decomposition

Algorithm Partial evaluation using matrix decomposition

1: Find the standardized program and its matrix representation MΠ∧ and MΠ∨ .
2: Resolve cycles in these matrices.
3: For each matrix M̂Π∧ and M̂Π∨ , compute the eigenvalues and eigenvectors.
4: if the matrix is diagonalizable then
5: find the eigendecomposition of the matrix.
6: else
7: find the Jordan normal form of the matrix.
8: Compute the power using the decomposition.
9: Translate resulting matrices back to a logic program.
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Linear Algebraic Partial Evaluation - using Matrix Decomposition

START with a logic program P 1. Find Π and its MΠ∧ and MΠ∨ 2. For each M ∈ {M̂Π∧ , M̂Π∨}

3. Compute eigenvalues and eigenvectors.

4. Is M diag-
onalizables?5.2 find the Jordan normal form of M.

5.1 find the eigendecomposition of M.

6. Compute the power using the decomposition and translate to a logic program. RETURN the partially evaluated program.

True

False
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Experiments

Experiments - (previous work) Propositional Horn clause abduction
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PE significantly improves the performance [10]
[10] T. Q. Nguyen, Inoue, and Sakama, “Linear Algebraic Abduction with Partial Evaluation”, 2023.
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Experiments

Experiments

Goal:
evaluate linear algebraic PE with iteration method (I) and the matrix decomposition
method (II) using logic programs in Failure Modes and Effects Analysis (FMEA)
benchmarks [11].
evaluate performance of the methods in the presence of cycles in the program matrix.

The dataset consists of three problem sets: Artificial samples I (166 instances),
Artificial samples II (118 instances), and FMEA samples (213 instances). All programs
in the dataset are acyclic. We augment the FMEA benchmarks by adding randomly 1-5
cycles of the length 2-5 to each GΠ∧ and GΠ∨ of a program P.

[11] Koitz-Hristov and Wotawa, “Faster horn diagnosis-a performance comparison of abductive reasoning
algorithms”, 2020.
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Experiments

Experiments

Our code is implemented in Python 3.7 using numpy, scipy, and sympy. We set a
timeout of 20s for PE computation, the timeout penalty is set to 60s for comparison.
System environment: Intel(R) Xeon(R) Bronze 3106 @1.70GHz; 64GB DDR3 @1333MHz;
Ubuntu 22.04 LTS 64bit.

All the source code and benchmark
datasets in our paper will be
available on GitHub:

https:
//github.com/nqtuan0192/LinearAlgebraicComputationofAbduction.
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Experiments

Experiments

Table: Statistical data of the datasets and detailed comparison of execution time (in ms) of the linear
algebraic PE methods on the datasets. ( green - best, red - worst)

Artificial samples I (166 instances) Artificial samples II (118 instances) FMEA samples (213 instances)
Parameters mean / std [ min, max ] mean / std [ min, max ] mean / std [ min, max ]
Matrix size 2,088.32 / 1,584.48 [ 11, 6,601 ] 321.86 / 252.64 [ 18, 1,110 ] 27.58 / 19.32 [ 6, 84 ]
No. And-rules 1,188.63 / 1,349.59 [ 8, 6,375 ] 201.86 / 186.64 [ 9, 1,007 ] 16.10 / 9.23 [ 1, 43 ]
No. Or -rules 899.69 / 839.58 [ 3, 3,345 ] 119.99 / 107.40 [ 4, 437 ] 11.48 / 11.01 [ 1, 41 ]
Sparsity (of MΠ) 0.99 / 0.02 [ 0.90, 1.00 ] 0.99 / 0.01 [ 0.90, 1.00 ] 0.95 / 0.04 [ 0.73, 0.99 ]
Longest path 4.63 / 5.36 [ 2, 65 ] 6.56 / 8.56 [ 2, 58 ] 1.94 / 0.24 [ 1, 2 ]
peval steps 3.78 / 0.95 [ 2, 5 ] 3.71 / 0.81 [ 2, 6 ] 2.00 / 0.00 [ 2, 2 ]

Algorithms mean / std Timeout? mean / std Timeout? mean / std Timeout?
(I) Iteration + dense 799,965 / 58,500 0 / 166 4,483 / 688 0 / 118 103 / 10 0 / 213
(II) Decomposition + dense 9,292,159 / 34,274 152 / 166 6,041,323 / 28,710 96 / 118 1,607,397 / 19,170 18 / 213
(I) Iteration + sparse 545 / 15 0 / 166 138 / 4 0 / 118 157 / 5 0 / 213
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Experiments

Table: Detailed comparison of execution time (in ms) of the linear algebraic PE methods on the
augmented datasets with cycles. ( green - best, red - worst)

Artificial samples I (166 instances) Artificial samples II (118 instances) FMEA samples (213 instances)
Parameters mean / std [ min, max ] mean / std [ min, max ] mean / std [ min, max ]
No. cycles And-rules 3.72 / 0.25 [ 1, 5 ] 3.68 / 0.30 [ 1, 5 ] 1.00 / 0.00 [ 1, 1 ]
No. cycles Or -rules 3.89 / 0.37 [ 1, 5 ] 3.75 / 0.42 [ 1, 5 ] 1.00 / 0.00 [ 1, 1 ]

Algorithms peval (mean / std) resolve (mean / std) peval (mean / std) resolve (mean / std) peval (mean / std) resolve (mean / std)
(I) Iteration + dense 821,780 / 62,340 573 / 27 4,501 / 793 407 / 19 90 / 7 52 / 6
(II) Decomposition + dense 9,251,534 / 33,491 554 / 24 5,970,126 / 27,104 398 / 18 1,271,842 / 18,510 56 / 6
(I) Iteration + sparse 579 / 17 76 / 14 151 / 4 68 / 12 112 / 4 17 / 3
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Conclusion and future works

We have proposed and investigated linear algebraic PE of logic programs:
extend the method to handle Or -rules
propose cycle resolving method to handle local cycles
propose decomposition method to compute the power of a program matrix

Future works:
handle global cycles in the program matrix.
investigate the effect of different rule structures on the diagonalizability of the program
matrix.
explore the possibility of using other decomposition methods.
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matrix.
explore the possibility of using other decomposition methods.
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Thank you for your attention
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