The 33rd IEEE International Conference on Tools with Artificial Intelligence

Linear Algebraic Computation of Propositional Horn Abduction

Tuan Nguyen^{1,2}, Katsumi Inoue^{2,1} and Chiaki Sakama^{3,2}

¹ The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

²National Institute of Informatics, Tokyo, Japan

³Wakayama University, Wakayama, Japan

November 1st, 2021

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

2 Abduction using Matrix Representation

3 Experimental Results



Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

- 32

4 E N

2 Abduction using Matrix Representation

3 Experimental Results

- 32

イロト イポト イヨト イヨト

Overview

Abductive reasoning (explanation):

inference to the best explanation starting from a set of observations.

э

Overview

Overview

• In this paper, we focus on Propositional Horn Clause Abduction Problem (PHCAP) with *acyclic program*¹.

Example 1:
$$\mathcal{L} = \{p, q, r, s, h_1, h_2, h_3\}, \mathbb{H} = \{h_1, h_2, h_3\}, \mathbb{O} = \{p\}, P = \{p \leftarrow q \land r, q \leftarrow h_1 \lor s, r \leftarrow s \lor h_2, s \leftarrow h_3\}.$$

Definition

Explanation of PHCAP: A set $E \subseteq \mathbb{H}$ is an *explanation* of a PHCAP $\langle \mathcal{L}, \mathbb{H}, \mathbb{O}, P \rangle$ if $P \cup E \models \mathbb{O}$ and $P \cup E$ is consistent. *E* is also called an *explanation* of \mathbb{O} . An explanation *E* of \mathbb{O} is *minimal* if there is no explanation *E'* of \mathbb{O} such that $E' \subset E$.

< 回 > < 回 > < 回 >

November 1st, 2021

5/24

- Deciding if there is a solution of a PHCAP is NP-complete^{2,3}.
- ¹Apt and Bezem, "Acyclic Programs", 1991.

²Selman and Levesque, "Abductive and Default Reasoning: A Computational Core", 1990.

³Eiter and Gottlob, "The complexity of logic-based abduction", 1995.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

2 Abduction using Matrix Representation

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

3

< ロ > < 同 > < 回 > < 回 >

Definition (**Program matrix**⁴ of **PHCAP**)

Let *P* be a standardized program and $B_P = \{p_1, \ldots, p_n\}$. Then *P* is represented by a matrix $M_P \in \mathbb{R}^{n \times n}$ such that for each element a_{ij} $(1 \le i, j \le n)$ in M_P ,

•
$$a_{ij_k} = \frac{1}{m} (1 \le k \le m; 1 \le i, j_k \le n)$$
 if
 $p_i \leftarrow p_{j_1} \land \cdots \land p_{j_m} (And-rule)$ is in P ;

$$a_{ij_k} = 1 \quad (1 \le k \le l; 1 \le l, j_k \le n) \text{ If } p_i \leftarrow p_{j_1} \lor \cdots \lor p_{j_l} (Or\text{-rule}) \text{ is in } P;$$

•
$$a_{ii} = 1$$
 if $p_i \leftarrow (fact)$ is in P or $p_i \in \mathbb{H}$;

• $a_{ij} = 0$, otherwise.

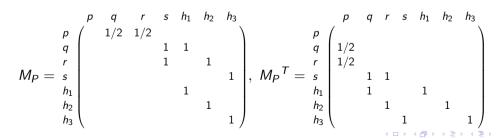
Example 2: The PHCAP in *Example 1* $\mathcal{L} = \{p, q, r, s, h_1, h_2, h_3\},\$ $\mathbb{H} = \{h_1, h_2, h_3\}, \mathbb{O} = \{p\},\$ $P = \{ p \leftarrow q \land r, q \leftarrow h_1 \lor s, r \leftarrow$ $s \vee h_2, s \leftarrow h_3$. h_2 ha

⁴Sakama, Inoue, and Sato, "Linear Algebraic Characterization of Logic Programs", 2017 - 201

Definition (Abductive matrix of PHCAP)

Suppose a PHCAP has P with its program matrix M_P . The abductive matrix of P is the transpose of M_P represented as M_P^T .

Example 3:
$$\mathcal{L} = \{p, q, r, s, h_1, h_2, h_3\}, \mathbb{H} = \{h_1, h_2, h_3\}, \mathbb{O} = \{p\}, P = \{p \leftarrow q \land r, q \leftarrow h_1 \lor s, r \leftarrow s \lor h_2, s \leftarrow h_3\}.$$



Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

• Interpretation vector v is a vector which represents the truth value of propositions.

$$v = \begin{pmatrix} p & q & r & s & h_1 & h_2 & h_3 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ or we say: } v = \{p\}$$

- Initial condition: $\sum_{i=1}^{n} v[i] = 1$
- θ -thresholding: limiting the value of every element by 1.
- An interpretation vector is called insufficient to be an explanation if $\sum_{i=1}^{n} v[i] < 1$.
- These above definitions and conditions can also be applied to multiple vectors that form a interpretation matrix.

Definition (Or-computable and And-computable)

- **(**) A vector v is *Or*-computable iff $v \cap head(\mathbb{T}_{Or}) \neq \emptyset$.
- **2** A matrix *M* is *Or*-computable iff $\exists v \in M$, *v* is *Or*-computable.
- 3 A vector v is And-computable iff v is not Or-computable.
- **(**) A matrix *M* is *And*-computable iff $\forall v \in M$, *v* is not *Or*-computable.
 - For *And*-computable vector/matrix, we can compute the explanation by performing matrix multiplication.
- For Or-computable vector/matrix, we can find the explanation by enumerating Minimal Hitting Sets (MHS) ⁵.

November 1st, 2021

10/24

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

-

Abduction using Matrix Representation

Example 4:

$$\mathcal{L} = \{p, q, r, s, h_1, h_2, h_3\},$$

 $\mathbb{H} = \{h_1, h_2, h_3\}, \mathbb{O} = \{p\},$
 $P = \{p \leftarrow q \land r, q \leftarrow h_1 \lor s, r \leftarrow s \lor h_2, s \leftarrow h_3\}.$

$$\frac{M^{(0)} = \mathbb{O} = \begin{pmatrix} p & q & r & s & h_1 & h_2 & h_3 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}}{p & q & r & s & h_1 & h_2 & h_3} \\
\frac{M^{(1)} = M_P^T \cdot M^{(0)} = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 & 0 \end{pmatrix}}{M^{(1)} = \{\{q, r\}\}} \\
\frac{M^{(1)} = \{\{q, r\}\}}{\mathbb{S}_{(M_0^{(1)}, P_{Or})} = \{\{h_1, s\}, \{s, h_2\}\}} (= M^{(2)}) \\
\mathbf{MHS}(\mathbb{S}_{(M_0^{(1)}, P_{Or})}) = \{\{s\}, \{h_1, h_2\}\} (= M^{(2)}) \\
\frac{M^{(2)} = \begin{pmatrix} p & q & r & s & h_1 & h_2 & h_3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}}{p & q & r & s & h_1 & h_2 & h_3} \\
\frac{M^{(3)} = M_P^T \cdot M^{(2)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 \end{pmatrix}}{\mathbb{E} = \{\{h_3\}, \{h_1, h_2\}\}}$$

Definition

1-step abduction for P_{And} :

$$M^{(t+1)} = M_P(P_{And})^T \cdot M^{(t)}$$

Definition

1-step abduction for P_{Or} :

$$M^{(t+1)} = \bigcup_{\forall v \in M^{(t)}} \bigcup_{\forall s \in \mathsf{MHS}(\mathbb{S}_{(v, P_{Or})})} \left(\left(v \setminus \mathsf{head}(P_{Or}) \right) \cup s \right)$$
(2)

where:
$$\mathbb{S}_{(v, P_{Or})} = \{body(r_1), body(r_2), \dots, body(r_k)\}$$
 such that $v \cap head(P_{Or}) = \{head(r_1), head(r_2), \dots, head(r_k)\}.$

Algorithm 1 Explanations finding in a vector space **Input**: PHCAP consists of a tuple $\langle \mathcal{L}, \mathbb{H}, \mathbb{O}, P \rangle$ **Output**: Set of explanations \mathbb{E} 1: Create an abductive matrix M_P^T from P 2: Initialize the observation matrix M from \mathbb{O} $3 \cdot \mathbb{E} = \emptyset$ 4 while True do $M' = M_P^T \cdot M$ M' = consistent(M')6 v sum = sum_{col}(M') < 1 - ϵ 7: $M' = M'[v_sum = False]$ 8: if M' = M or $M' = \emptyset$ then Q٠ $v_{ans} = \theta(M + \mathbb{H}) \le \theta(\mathbb{H})$ 10 $\mathbb{E} = \mathbb{E} \cup M[v \text{ ans} = \mathbf{True}]$ 11: return minimal(\mathbb{E}) 12 13: do $v ans = \theta(M' + \mathbb{H}) < \theta(\mathbb{H})$ 14. $\mathbb{E} = \mathbb{E} \cup M'[v \text{ ans} = \mathbf{True}]$ 15 $M' = M'[v_ans = False]$ 16: $M = M \cup M'$ [**not** *Or*-computable] 17: M' = M'[Or-computable]18: $M' = \lfloor \rfloor \qquad \lfloor \rfloor$ $(v \setminus head(P_{Or})) \cup s$ 10 $\forall v \in M' \quad \forall s \in \mathsf{MHS}(\mathbb{S}_{(v, P_{O_{r}})})$ M' = consistent(M')20. while $M' \neq \emptyset$ \blacksquare \flat \blacksquare \flat \bullet \blacksquare \flat 21:

(1)

2 Abduction using Matrix Representation

3 Experimental Results

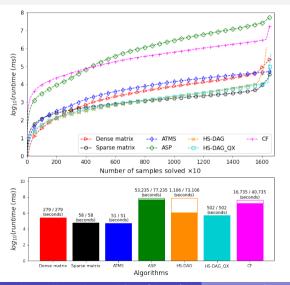
Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

- 32

- We experiment on the benchmark dataset by Koitz-Hristov and Wotawa ^{6, 7}.
 - Artificial samples I: artificial, deeper graph structure.
 - Artificial samples II: artificial, deeper graph structure, some problem involves solving a large number of medium-size MHS problems.
 - FMEA samples: real-world data, shallow but wider graph structure, usually involing a few (but) large-size MHS problems.
- We implement our method as two versions: Dense matrix and Sparse matrix in Python 3.7 programming language (using Numpy and Scipy for matrices representation and computation). For large-size MHS problems, which have more than 50,000 posible combinations, we use MHS enumerator provided by PySAT ⁸.
- Other competitors are ATMS, ASP, CF, HS-DAG and HS-DAG_{QX}

⁶Koitz-Hristov and Wotawa, "Applying algorithm selection to abductive diagnostic reasoning", 2018 ⁷Koitz-Hristov and Wotawa, "Faster horn diagnosis-a performance comparison of abductive reasoning algorithms", 2020

⁸Ignatiev, Morgado, and Marques-Silva, "PySAT: A Python Toolkit for Prototyping with SAT Oracles", 2018 🔿



Artificial samples I benchmark dataset (166 files)

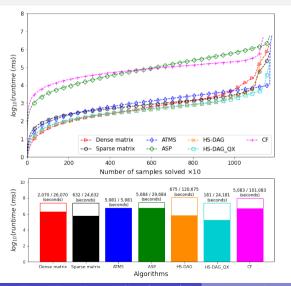
	mean	std	min	max
H	275.07	167.12	10.00	504.00
$ \mathcal{L}' \setminus \mathbb{H} $	1903.23	1504.90	6.00	6466.00
$ \mathbb{T}' $	2951.10	2131.57	11.00	7187.00
0	2.86	1.38	1.00	5.00
<i>P</i>	2088.32	1584.48	11.00	6601.00
PAnd	1188.63	1349.59	8.00	6375.00
$ P_{Or} $	899.69	839.58	3.00	3345.00
$ \mathbb{P} $	2372.36	1730.91	24.00	7148.00
$\eta_z (M_P^T)$	6354.90	4902.87	50.00	22307.00
sparsity (M_P^T)	0.99	0.02	0.90	1.00
max(M)	250.34	1729.52	1.00	16866.00
$max(\eta_z(M))$	5138.28	37776.87	1.00	428754.00
min(sparsity(M))	0.98	0.05	0.68	1.00
max_iter	4.63	5.36	2.00	65.00
E	2.77	5.06	1.00	50.00

(*) Actual solving time vs Penalized time (40 minutes for each unresolved run)

イロト 不通 ト イヨト イヨ

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

э



Artificial samples II benchmark dataset (118 files)

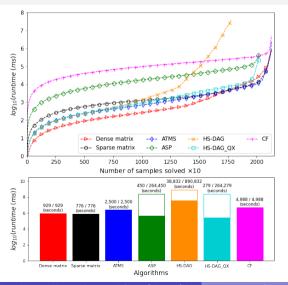
, 	mean	std	min	max
IH	120.42	74.35	12.00	235.00
$ \mathcal{L}' \setminus \mathbb{H} $	252.74	220.50	13.00	1055.00
$ \mathbb{T}' $	417.70	320.56	21.00	1147.00
O	2.72	1.71	1.00	13.00
P	321.86	252.64	18.00	1110.00
P _{And}	201.86	186.64	9.00	1007.00
P _{Or}	119.99	107.40	4.00	437.00
$ \mathbb{P} $	450.89	318.33	38.00	1397.00
$\eta_z (M_P^T)$	1180.36	861.83	83.00	4117.00
sparsity (M_P^T)	0.99	0.01	0.90	1.00
max(M)	16494.04	149787.13	1.00	1618050.00
$max(\eta_z(M))$	390900.36	3240888.43	1.00	34882765.00
min(sparsity(M))	0.94	0.08	0.59	1.00
max_iter	6.56	8.56	2.00	58.00
$ \mathbb{E} $	499.60	5386.87	1.00	58520.00

(*) Actual solving time vs Penalized time (40 minutes for each unresolved run)

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

э

• • • • • • • •



FMEA benchmark dataset (213 files)

				/
	mean	std	min	max
IHI	26.16	20.81	3.00	90.00
$ \mathcal{L}' \setminus \mathbb{H} $	27.58	19.32	6.00	84.00
$ \mathbb{T}' $	71.59	75.88	13.00	299.00
0	10.79	6.94	1.00	29.00
P	27.58	19.32	6.00	84.00
PAnd	16.10	9.23	1.00	43.00
P _{Or}	11.48	11.01	1.00	41.00
$ \mathbb{P} $	53.74	39.59	9.00	174.00
$\eta_z (M_P^T)$	107.54	98.57	18.00	413.00
sparsity (M_P^T)	0.95	0.04	0.73	0.99
max(M)	2126.49	15512.54	1.00	154440.00
$max(\eta_z(M))$	43738.87	334393.40	1.00	3459456.00
min(sparsity(M))	0.79	0.13	0.46	0.99
max_iter	1.94	0.24	1.00	2.00
E	68.89	272.54	1.00	2288.00

(*) Actual solving time vs Penalized time (40 minutes for each unresolved run)

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

• • • • • • • •

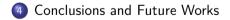
Discussions about the experimental results:

- The linear algebraic approaches take advantages on problems that have wider and not too deep graph structure.
- *Sparse matrix* is the most stable algorithm in terms of **std** among those having the highest **#solved**.
- The sparsity level of interpretation matrix also has significant impact on performance.

- 34

2 Abduction using Matrix Representation

3 Experimental Results



- 32

イロト イポト イヨト イヨト

Conclusions and Future Works

We have proposed a linear algebraic approach for solving PHCAP.

- Defining the abductive matrix to realize abductive reasoning.
- The proposed method is competitive with other existing methods.
- There are many rooms for further improvement using a more powerful BLAS.

Some related works

- Aspis, Broda, and Russo, "Tensor-Based Abduction in Horn Propositional Programs", 2018
- Sato, Inoue, and Sakama, "Abducing Relations in Continuous Spaces.", 2018

Conclusions and Future Works

Future works

- Working on a parallel implementation of the algorithm.
- Taking the MHS problem into account in vector space.
- We can consider a more compiled method for handling consistency.
- Further extend to deal with probabilistic logic.

References I

- Apt, Krzysztof R. and Marc Bezem. "Acyclic Programs". In: *New Generation Computing* 9 (1991), pp. 335–364.
- Aspis, Yaniv, Krysia Broda, and Alessandra Russo. "Tensor-Based Abduction in Horn Propositional Programs". In: *ILP 2018*. Vol. 2206. CEUR Workshop Proceedings. 2018, pp. 68– 75.
- Eiter, Thomas and Georg Gottlob. "The complexity of logic-based abduction". In: *Journal of the ACM (JACM)* 42.1 (1995), pp. 3–42.
- Gainer-Dewar, Andrew and Paola Vera-Licona. "The minimal hitting set generation problem: algorithms and computation". In: *SIAM Journal on Discrete Mathematics* 31.1 (2017), pp. 63–100.
- Ignatiev, Alexey, Antonio Morgado, and Joao Marques-Silva. "PySAT: A Python Toolkit for Prototyping with SAT Oracles". In: *SAT*. 2018, pp. 428–437.

References II

- Koitz-Hristov, Roxane and Franz Wotawa. "Applying algorithm selection to abductive diagnostic reasoning". In: *Applied Intelligence* 48.11 (2018), pp. 3976–3994.
- "Faster horn diagnosis-a performance comparison of abductive reasoning algorithms". In: *Applied Intelligence* 50.5 (2020), pp. 1558–1572.
- Sakama, Chiaki, Katsumi Inoue, and Taisuke Sato. "Linear Algebraic Characterization of Logic Programs". In: International Conference on Knowledge Science, Engineering and Management. Springer. 2017, pp. 520–533.
- Sato, Taisuke, Katsumi Inoue, and Chiaki Sakama. "Abducing Relations in Continuous Spaces.". In: *IJCAI*. 2018, pp. 1956–1962.
- Selman, Bart and Hector J Levesque. "Abductive and Default Reasoning: A Computational Core". In: AAAI. 1990, pp. 343–348.

Thank you for your attention

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (NatioLinear Algebraic Computation of Propositional Horn Abd

- 32

(4) E > (4) E >