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Overview

Overview

Abductive reasoning (explanation):
inference to the best explanation starting from a set of observations.

P ⇒ Q
Q

P
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Overview

Overview

In this paper, we focus on Propositional Horn Clause Abduction Problem (PHCAP) with
acyclic program1.

Example 1: L = {p, q, r , s, h1, h2, h3}, H = {h1, h2, h3}, O = {p},
P = {p ← q ∧ r , q ← h1 ∨ s, r ← s ∨ h2, s ← h3}.

Definition

Explanation of PHCAP: A set E ⊆ H is an explanation of a PHCAP 〈L,H,O,P〉 if P ∪ E � O and
P ∪ E is consistent. E is also called an explanation of O.
An explanation E of O is minimal if there is no explanation E ′ of O such that E ′ ⊂ E .

Deciding if there is a solution of a PHCAP is NP-complete2,3.

1Apt and Bezem, “Acyclic Programs”, 1991.
2Selman and Levesque, “Abductive and Default Reasoning: A Computational Core”, 1990.
3Eiter and Gottlob, “The complexity of logic-based abduction”, 1995.
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Abduction using Matrix Representation

Definition (Program matrix 4 of PHCAP)

Let P be a standardized program and BP = {p1, . . .,
pn}. Then P is represented by a matrix MP ∈ Rn×n

such that for each element aij (1 ≤ i , j ≤ n) in MP ,
1 aijk = 1

m (1 ≤ k ≤ m; 1 ≤ i , jk ≤ n) if
pi ← pj1 ∧ · · · ∧ pjm (And-rule) is in P ;

2 aijk = 1 (1 ≤ k ≤ l ; 1 ≤ i , jk ≤ n) if
pi ← pj1 ∨ · · · ∨ pjl (Or -rule) is in P ;

3 aii = 1 if pi ← (fact) is in P or pi ∈ H;
4 aij = 0, otherwise.

Example 2: The PHCAP in Example 1
L = {p, q, r , s, h1, h2, h3},
H = {h1, h2, h3}, O = {p},
P = {p ← q ∧ r , q ← h1 ∨ s, r ←
s ∨ h2, s ← h3}.



p q r s h1 h2 h3

p 1/2 1/2
q 1 1
r 1 1
s 1
h1 1
h2 1
h3 1


4Sakama, Inoue, and Sato, “Linear Algebraic Characterization of Logic Programs”, 2017
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Abduction using Matrix Representation

Definition (Abductive matrix of PHCAP)

Suppose a PHCAP has P with its program matrix MP . The abductive matrix of P is the
transpose of MP represented as MP

T .

Example 3: L = {p, q, r , s, h1, h2, h3}, H = {h1, h2, h3}, O = {p},
P = {p ← q ∧ r , q ← h1 ∨ s, r ← s ∨ h2, s ← h3}.

MP =



p q r s h1 h2 h3

p 1/2 1/2
q 1 1
r 1 1
s 1
h1 1
h2 1
h3 1


, MP

T =



p q r s h1 h2 h3

p
q 1/2
r 1/2
s 1 1
h1 1 1
h2 1 1
h3 1 1
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Abduction using Matrix Representation

Interpretation vector v is a vector which represents the truth value of propositions.

v =
( p q r s h1 h2 h3

1 0 0 0 0 0 0
)T

or we say: v = {p}

Initial condition:
n∑

i=1
v [i] = 1

θ-thresholding: limiting the value of every element by 1.

An interpretation vector is called insufficient to be an explanation if
n∑

i=1
v [i] < 1.

These above definitions and conditions can also be applied to multiple vectors that form a
interpretation matrix.

Tuan Nguyen, Katsumi Inoue and Chiaki Sakama (National Institute of Informatics)Linear Algebraic Computation of Propositional Horn Abduction November 1st , 2021 9 / 24



Abduction using Matrix Representation

Abduction using Matrix Representation

Definition (Or-computable and And-computable)

1 A vector v is Or -computable iff v ∩ head(TOr ) 6= ∅.
2 A matrix M is Or -computable iff ∃v ∈ M, v is Or -computable.
3 A vector v is And-computable iff v is not Or -computable.
4 A matrix M is And-computable iff ∀v ∈ M, v is not Or -computable.

For And-computable vector/matrix,
we can compute the explanation by
performing matrix multiplication.

For Or -computable vector/matrix, we
can find the explanation by enumerat-
ing Minimal Hitting Sets (MHS) 5.

5Gainer-Dewar and Vera-Licona, “The minimal hitting set generation problem: algorithms and computation”,
2017
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Abduction using Matrix Representation
Example 4:
L = {p, q, r , s, h1, h2, h3},
H = {h1, h2, h3}, O = {p},
P = {p ← q ∧ r , q ← h1 ∨ s, r ←
s ∨ h2, s ← h3}.

MP
T =



p q r s h1 h2 h3

p
q 1/2
r 1/2
s 1 1
h1 1 1
h2 1 1
h3 1 1



M(0) = O =
( p q r s h1 h2 h3

1 0 0 0 0 0 0
)

M(1) = MP
T ·M(0) =

( p q r s h1 h2 h3

0 1/2 1/2 0 0 0 0
)

M(1) = {{q, r}}
S(M(1)

0 , POr ) = {{h1, s}, {s, h2}}

MHS(S(M(1)
0 , POr )) = {{s}, {h1, h2}} (= M(2))

M(2) =
( p q r s h1 h2 h3

0 0 0 1 0 0 0
0 0 0 0 1/2 1/2 0

)

M(3) = MP
T ·M(2) =

( p q r s h1 h2 h3

0 0 0 0 0 0 1
0 0 0 0 1/2 1/2 0

)

E = {{h3}, {h1, h2}}
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Abduction using Matrix Representation

Definition
1-step abduction for PAnd :

M(t+1) = MP(PAnd)T ·M(t) (1)

Definition
1-step abduction for POr :

M(t+1) =
⋃

∀v∈M(t)

⋃
∀s∈MHS(S(v, POr ))

((
v \ head(POr )

)
∪ s
)

(2)

where: S(v , POr ) = {body(r1), body(r2), . . . , body(rk)} such
that v ∩ head(POr ) = {head(r1), head(r2), . . . , head(rk)}.

Algorithm 1 Explanations finding in a vector space

Input: PHCAP consists of a tuple 〈L,H,O,P〉
Output: Set of explanations E

1: Create an abductive matrix MP
T from P

2: Initialize the observation matrix M from O
3: E = ∅
4: while True do
5: M ′ = MP

T ·M
6: M ′ = consistent(M ′)
7: v_sum = sumcol(M ′) < 1− ε
8: M ′ = M ′[v_sum = False]
9: if M ′ = M or M ′ = ∅ then

10: v_ans = θ(M + H) ≤ θ(H)
11: E = E ∪M[v_ans = True]
12: return minimal(E)
13: do
14: v_ans = θ(M ′ + H) ≤ θ(H)
15: E = E ∪M ′[v_ans = True]
16: M ′ = M ′[v_ans = False]
17: M = M ∪M ′[not Or -computable]
18: M ′ = M ′[Or -computable]

19: M ′ =
⋃

∀v∈M′

⋃
∀s∈MHS(S(v, POr ))

((
v \ head(POr )

)
∪ s
)

20: M ′ = consistent(M ′)
21: while M ′ 6= ∅
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Experimental Results

Experimental Results

We experiment on the benchmark dataset
by Koitz-Hristov and Wotawa 6, 7.

Artificial samples I: artificial, deeper graph
structure.

Artificial samples II: artificial, deeper
graph structure, some problem involves
solving a large number of medium-size
MHS problems.

FMEA samples: real-world data, shallow
but wider graph structure, usually involing
a few (but) large-size MHS problems.

We implement our method as two ver-
sions: Dense matrix and Sparse matrix in
Python 3.7 programming language (using
Numpy and Scipy for matrices representa-
tion and computation). For large-size MHS
problems, which have more than 50,000
posible combinations, we use MHS enumer-
ator provided by PySAT 8.
Other competitors are ATMS, ASP , CF ,
HS-DAG and HS-DAGQX

6Koitz-Hristov and Wotawa, “Applying algorithm selection to abductive diagnostic reasoning”, 2018
7Koitz-Hristov and Wotawa, “Faster horn diagnosis-a performance comparison of abductive reasoning

algorithms”, 2020
8Ignatiev, Morgado, and Marques-Silva, “PySAT: A Python Toolkit for Prototyping with SAT Oracles”, 2018
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Experimental Results

Experimental Results

Artificial samples I benchmark dataset (166
files)

mean std min max
|H| 275.07 167.12 10.00 504.00
|L′ \H| 1903.23 1504.90 6.00 6466.00
|T′| 2951.10 2131.57 11.00 7187.00
|O| 2.86 1.38 1.00 5.00
|P | 2088.32 1584.48 11.00 6601.00
|PAnd | 1188.63 1349.59 8.00 6375.00
|POr | 899.69 839.58 3.00 3345.00
|P| 2372.36 1730.91 24.00 7148.00
ηz(MP

T ) 6354.90 4902.87 50.00 22307.00
sparsity(MP

T ) 0.99 0.02 0.90 1.00
max(|M|) 250.34 1729.52 1.00 16866.00
max(ηz(M)) 5138.28 37776.87 1.00 428754.00
min(sparsity(M)) 0.98 0.05 0.68 1.00
max_iter 4.63 5.36 2.00 65.00
|E| 2.77 5.06 1.00 50.00

(*) Actual solving time vs Penalized time (40 minutes for each unresolved run)
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Artificial samples II benchmark dataset (118
files)

mean std min max
|H| 120.42 74.35 12.00 235.00
|L′ \H| 252.74 220.50 13.00 1055.00
|T′| 417.70 320.56 21.00 1147.00
|O| 2.72 1.71 1.00 13.00
|P | 321.86 252.64 18.00 1110.00
|PAnd | 201.86 186.64 9.00 1007.00
|POr | 119.99 107.40 4.00 437.00
|P| 450.89 318.33 38.00 1397.00
ηz(MP

T ) 1180.36 861.83 83.00 4117.00
sparsity(MP

T ) 0.99 0.01 0.90 1.00
max(|M|) 16494.04 149787.13 1.00 1618050.00
max(ηz(M)) 390900.36 3240888.43 1.00 34882765.00
min(sparsity(M)) 0.94 0.08 0.59 1.00
max_iter 6.56 8.56 2.00 58.00
|E| 499.60 5386.87 1.00 58520.00

(*) Actual solving time vs Penalized time (40 minutes for each unresolved run)
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Experimental Results

FMEA benchmark dataset (213 files)
mean std min max

|H| 26.16 20.81 3.00 90.00
|L′ \H| 27.58 19.32 6.00 84.00
|T′| 71.59 75.88 13.00 299.00
|O| 10.79 6.94 1.00 29.00
|P | 27.58 19.32 6.00 84.00
|PAnd | 16.10 9.23 1.00 43.00
|POr | 11.48 11.01 1.00 41.00
|P| 53.74 39.59 9.00 174.00
ηz(MP

T ) 107.54 98.57 18.00 413.00
sparsity(MP

T ) 0.95 0.04 0.73 0.99
max(|M|) 2126.49 15512.54 1.00 154440.00
max(ηz(M)) 43738.87 334393.40 1.00 3459456.00
min(sparsity(M)) 0.79 0.13 0.46 0.99
max_iter 1.94 0.24 1.00 2.00
|E| 68.89 272.54 1.00 2288.00

(*) Actual solving time vs Penalized time (40 minutes for each unresolved run)
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Experimental Results

Experimental Results

Discussions about the experimental results:
The linear algebraic approaches take advantages on problems that have wider and not too
deep graph structure.
Sparse matrix is the most stable algorithm in terms of std among those having the highest
#solved.
The sparsity level of interpretation matrix also has significant impact on performance.
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Conclusions and Future Works

Conclusions and Future Works

We have proposed a linear algebraic approach for solving PHCAP.
Defining the abductive matrix to realize abductive reasoning.
The proposed method is competitive with other existing methods.
There are many rooms for further improvement using a more powerful BLAS.

Some related works
Aspis, Broda, and Russo, “Tensor-Based Abduction in Horn Propositional Programs”, 2018
Sato, Inoue, and Sakama, “Abducing Relations in Continuous Spaces.”, 2018
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Conclusions and Future Works

Future works
Working on a parallel implementation of the algorithm.
Taking the MHS problem into account in vector space.
We can consider a more compiled method for handling consistency.
Further extend to deal with probabilistic logic.
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Thank you for your attention
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