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Representation of Logic Programs in Vector Space

Representation of Logic Programs in Vector Space

Recently, there are many attempts1,2,3,4 to tensorize logic programs into matrix representation
Tensorizing logic programs is the method of encoding the logic programs as tensors (mul-
tidimensional array) then using algebraic computation to do logic operators.
Approaches may different but they share the same idea: determine the vector space of
standardized logic programs and then convert to matrices with some elimination strategies.

A standardized program is a finite set of rules that are either AND-rule or OR-rule.

h← b1 ∧ · · · ∧ bm (m ≥ 0)

h← b1 ∨ · · · ∨ bm (m ≥ 0)

1Sakama, Inoue, and Sato, “Linear Algebraic Characterization of Logic Programs”, 2017.
2Nguyen et al., “Computing Logic Programming Semantics in Linear Algebra”, 2018.
3Sakama et al., Partial Evaluation of Logic Programs in Vector Spaces, EasyChair, 2018.
4Kojima and Sato, “A tensorized logic programming language for large-scale data”, 2019.
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Representation of Logic Programs in Vector Space

Representation of Logic Programs in Vector Space

Definition 1 (Matrix representation of standardized
programs)

Let P be a standardized program and BP = {p1, . . .,
pn}. Then P is represented by a matrix MP ∈ Rn×n

such that for each element aij (1 ≤ i , j ≤ n) in MP ,
1 aijk = 1

m (1 ≤ k ≤ m; 1 ≤ i , jk ≤ n) if
pi ← pj1 ∧ · · · ∧ pjm is in P ;

2 aijk = 1 (1 ≤ k ≤ l ; 1 ≤ i , jk ≤ n) if
pi ← pj1 ∨ · · · ∨ pjl is in P ;

3 aii = 1 if pi ← is in P ;
4 aij = 0, otherwise.

Example 1:
P = {p ← q ∧ r , p ← s ∧ t,
r ← s, q ← t, s ←, t ←}
Transform P to P ′

P ′ = {u ← q ∧ r , v ← s ∧ t,
p ← u∨v , r ← s, q ← t, s ←, t ←}



p q r s t u v
p 0 0 0 0 0 1 1
q 0 0 0 0 1 0 0
r 0 0 0 1 0 0 0
s 0 0 0 1 0 0 0
t 0 0 0 0 1 0 0
u 0 1/2 1/2 0 0 0 0
v 0 0 0 1/2 1/2 0 0
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Representation of Logic Programs in Vector Space

Representation of Logic Programs in Vector Space

Definition 2 (Matrix representation of normal
programs)

Let P be a normal program and BP = {p1, . . ., pn} and
its positive form P+ with
BP+ = {p1, . . . , pn, qn+1, . . . , qm}.
Then P+ is represented by a matrix MP ∈ Rm×m such
that for each element aij (1 ≤ i , j ≤ m):

1 aii = 1 for n + 1 ≤ i ≤ m;
2 aij = 0 for n + 1 ≤ i ≤ m and 1 ≤ j ≤ m such that

i 6= j;
3 Otherwise, aij (1 ≤ i ≤ n; 1 ≤ j ≤ m) is encoded as

in Definition 1.

Example 2:
P = {p ← q ∧ s, q ← p ∧ t,
s ← ¬t, t ←, u ← v}
Transform P to P+

P+ = {p ← q ∧ s, q ← p ∧ t,
s ← t, t ←, u ← v}.



p q s t u v t
p 0 1/2 1/2 0 0 0 0
q 1/2 0 0 1/2 0 0 0
s 0 0 0 0 0 0 1
t 0 0 0 1 0 0 0
u 0 0 0 0 0 1 0
v 0 0 0 0 0 0 0
t 0 0 0 0 0 0 1


Tuan Nguyen Quoc, Katsumi Inoue, Chiaki Sakama Enhancing Linear Algebraic Computation of Logic Programs Using Sparse RepresentationSeptember 16, 2020 6 / 25



Representation of Logic Programs in Vector Space

Algorithm 1: Matrix computation of least model
input : a definite program P and its Herbrand base

BP = {p1, p2, ..., pn}
output: a vector v representing the least model

1 transform P to a standardized program Pδ

2 create matrix MPδ ∈ Rm×m representing Pδ

3 create initial vector v0 = (v1, v2, ..., vm)T of Pδ

4 v = v0
5 u = θ(MPδ v) . θ thresholding method
6 while u 6= v do
7 v = u
8 u = θ(MPδ v) . θ thresholding method
9 end

10 return v

Interpretation vector v is a
vector which represents the
truth value of the proposi-
tion in P .
Initial vector v0 is the start-
ing point of v in which only
propositions are fact have
the truth value is 1.
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Representation of Logic Programs in Vector Space

Algorithm 2: Matrix computation of stable models
input : a normal program P and its Herbrand base

BP = {p1, p2, ..., pn}
output: a set of vectors V representing the stable

models or P
1 transform P to a standardized program P+ with

BP+ = {p1, . . . , pn, qn+1, . . . , qm}.
2 create the matrix MP ∈ Rm×m representing P+

3 create the initial matrix M0 ∈ Rm×h

4 M = M0, U = θ(MP+M) . θ thresholding method
5 while U 6= M do
6 M = U, U = θ(MP+M) . θ thresholding method
7 end
8 V = find stable models of P . refer to Algorithm 3

in the paper
9 return V

V is a set of interpretation
vector v .
M0 is the initial point of V .
M0 is created by enumerat-
ing all the combinations of
the truth value of negations
appear in P .
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Sparse Representation of Logic Programs

Sparse Representation of Logic Programs

Matrix multiplication is the most time-
consuming task.
Noticeably, matrices representing logic pro-
grams are sparse.
This is because |body(r)| � |BP | for each
rule r of program p.

sparsity(P) = 1−

∑
r∈P
|body(r)|

n2 (1)

The complexity of these aformentioned algebraic methods could be enhanced remarkably from
O(m3) or O(m2n) to approximate the number of non-zero elements5.

5Gustavson, “Two fast algorithms for sparse matrices: Multiplication and permuted transposition”, 1978.
Tuan Nguyen Quoc, Katsumi Inoue, Chiaki Sakama Enhancing Linear Algebraic Computation of Logic Programs Using Sparse RepresentationSeptember 16, 2020 10 / 25



Sparse Representation of Logic Programs

Sparse Representation of Logic Programs
P = {p ← q ∧ r , p ← s ∧ t, r ← s, q ← t, s ←, t ←}
P ′ = {u ← q ∧ r , v ← s ∧ t, p ← u ∨ v , r ← s, q ← t, s ←, t ←}


p q r s t u v

p 0 0 0 0 0 1 1
q 0 0 0 0 1 0 0
r 0 0 0 1 0 0 0
s 0 0 0 1 0 0 0
t 0 0 0 0 1 0 0
u 0 1/2 1/2 0 0 0 0
v 0 0 0 1/2 1/2 0 0


sparsity = 1− 10

72 = 0.796

Example 3:
Coordinate (COO) representation for P in Example 1

Row index 0 0 1 2 3 4 5 5 6 6
Col index 5 6 4 3 3 4 1 2 3 4
Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5

Example 4:
Compressed Sparse Row (CSR) representation for P in Example 1

Row index 0 2 3 4 5 6 8 10
Col index 5 6 4 3 3 4 1 2 3 4
Value 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5
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Experimental results

Experimental results

We use the same method of Logic Programming (LP) generation conducted in6 that the
size of logic program defined by the size n = |BP | of the Herband base BP and the number
of rules m = |P | in P .

Table: Proportion of rules in P based on the number of propositional variables in their bodies.

Body length 0 1 2 3 4 5 6 7 8
Allocated proportion < n/3 4% 4% 10% 40% 35% 4% 2% 1%

Further experiment using non-random problems with definite programs using transitive
closure problem. The graph is selected from the Koblenz network collection7. This dataset
contains binary tuples and we compute transitive closure of them using the following rules:
path(X , Y )← edge(X , Y ) and path(X , Y )← edge(X , Z) ∧ path(Z , Y )

6Nguyen et al., “Computing Logic Programming Semantics in Linear Algebra”, 2018.
7Kunegis, “Konect: the koblenz network collection”, 2013.
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Experimental results

Experimental results

IWe compare our methods with TP -operator and Clasp (Clingo v5.4.1 running with flag
−−method=clasp)8 .
Our implementations are done with dense matrix method and sparse matrix method using
C++ with CPU x64 as a targeted device (we do not use GPU accelerated code).
In terms of matrix representations and operators, we use Eigen 3 library9.
Environment configurations: CPU: Intel Cote i7-4770 (4 cores, 8 threads) @3.4GHz; RAM:
16GB DDR3 @1333MHz; Operating system: Ubuntu 18.04 LTS 64bit.

8Gebser et al., “Theory solving made easy with clingo 5”, 2016.
9Guennebaud and Jacob, Eigen v3, 2010.
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Experimental results

Experimental results - definite programs, artificial data

Figure: Execution time comparison of TP -operator, Clasp and linear algebraic methods (with dense and
sparse representation) on definite programs.
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Experimental results

Experimental results - definite programs, artificial data

Table: Details of experimental results on definite programs of TP -operator, Clasp and linear algebraic
methods (with dense and sparse representation). n′ indicates the actual matrix size after transformation.

No. n m n′ Sparsity TP-operator Clasp Dense
matrix

Sparse
matrix

1 1000 5000 5788 0.99 0.0402 0.1680 2.0559 0.0071
2 1000 10000 10799 0.99 0.1226 0.2940 17.9986 0.0127
3 1600 24000 25198 0.99 0.3952 1.8480 73.3541 0.0357
4 1600 30000 31285 0.99 0.4793 2.5360 116.1158 0.0605
5 2000 36000 37596 0.99 0.7511 3.1690 155.4312 0.0692
6 2000 40000 41936 0.99 0.9763 5.1610 187.6549 0.0675
7 10000 120000 127119 0.99 18.5608 9.0720 - 0.3798
8 10000 160000 167504 0.99 25.6532 15.7760 - 0.4832
9 16000 200000 211039 0.99 57.0223 19.9760 - 0.8643
10 16000 220000 231439 0.99 60.4486 24.7860 - 0.9429
11 20000 280000 297293 0.99 104.9978 30.5730 - 0.9048
12 20000 320000 337056 0.99 108.5883 34.4030 - 1.0614
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Experimental results

Experimental results - definite programs, real data

Figure: Execution time comparison of TP -operator, Clasp and sparse representation method on definite
programs with Transitive closure problem using Koblenz network datasets.
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Experimental results

Experimental results - definite programs, real data

Table: Details of experimental results on transitive closure problem of TP -operator, Clasp and sparse
representation approach. n′ indicates the actual matrix size after transformation.

Data name
(|V |, |E |) n m n′ Sparsity TP-operator Clasp Sparse

matrix
Club membership
(65, 95) 1200 14492 15600 0.99 0.8397 0.3370 0.0255

Cattle
(28, 217) 1512 20629 21924 0.99 0.9541 0.5060 0.0365

Windsurfers
(43, 336) 4324 99788 103776 0.99 3.6453 3.3690 0.1824

Contiguous USA
(49, 107) 4704 113003 117600 0.99 4.2975 3.8830 0.1830

Dolphins
(62, 159) 7564 230861 238266 0.99 12.3067 9.3820 0.4019

Train bombing
(64, 243) 8064 254259 262080 0.99 15.2257 10.6350 0.4524

Highschool
(70, 366) 9660 333636 342930 0.99 19.9622 15.8010 0.6618

Les Miserables
(77, 254) 11704 445006 456456 0.99 27.7931 21.9560 0.8300
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Experimental results

Experimental results - normal programs, artificial data

Figure: Execution time comparison of TP -operator, Clasp and linear algebraic methods (with dense and
sparse representation) on normal programs.
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Experimental results

Experimental results - normal programs, artificial data

Table: Details of experimental results on normal programs of TP -operator, Clasp and linear algebraic
methods (with dense and sparse representation). n′ indicates the actual matrix size after transformation.

No. n m n′ k 10 Sparsity TP-operator Clasp Dense
matrix

Sparse
matrix

1 1000 5000 6379 8 0.99 0.0472 0.3070 3.9560 0.0119
2 1000 10000 12745 8 0.99 0.1838 1.0920 28.1806 0.0178
3 1600 24000 30061 8 0.99 0.5525 3.2760 105.4931 0.0559
4 1600 30000 36402 7 0.99 0.6801 4.3050 168.8044 0.0832
5 2000 36000 42039 5 0.99 1.2378 6.7180 203.2749 0.0897
6 2000 40000 48187 8 0.99 1.5437 7.1800 256.9701 0.0991
7 10000 120000 171967 6 0.99 27.3162 7.6820 - 0.7124
8 10000 160000 207432 7 0.99 32.5547 24.6990 - 0.8424
9 16000 200000 250194 5 0.99 70.3114 30.7180 - 1.5603
10 16000 220000 278190 6 0.99 86.5192 35.4050 - 1.8314
11 20000 280000 357001 4 0.99 133.7881 50.1970 - 1.9170
12 20000 320000 396128 4 0.99 150.3377 58.6090 - 2.1066
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Conclusions and Future Works

Conclusions and Future Works

1 Analyze the sparsity of matrix representation for LP
2 Demonstrate the improvement using sparse matrix representation in terms of computation

performance even when compared to Clasp.
3 Apply a sampling method to reduce the number of guesses in the initial matrix for normal

programs that also reduce the dimension of the matrix representation.
4 Conduct more experiments on real Answer Set Programming (ASP) problems (usually

including many negations).
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Thank you for your attention
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