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(Normal) Abduction

K : background theory 
G : observation
Γ: set of abducible rules/literals

E ⊆ Γ is an explanation of G if: 
1.  K   ∪ E   |= G
2. K   ∪ E is consistent 

In general, many explanations exist. 
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Disjunctive Explanations

When E1 and E2 are explanations, 
E1 ∨ E2 is also an explanation, 

because
1. K   ∪ {E1 ∨ E2  }  |= G
2. K   ∪ {E1 ∨ E2  } is consistent.

Usually, each Ei is minimal. 
E1 ∨ E2  is weaker than each Ei.
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How to Assimilate Explanations

Disjunctive explanation is assimilated.
Merit: The assimilated KB preserves the 
intended semantics from the collection of 
all possible updated KBs (this work).  
Merit: One current KB is only necessary 
at a time, still keeping every possible    
change in a single state.
DEmerit: The assimilated KB is weaker    
than any possible single update.  
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Removing Disjunctions from KB

To delete p in view update from 

p ← a,
p ← b,
a ; b ,

with {a, b} : removable abducibles, 
removing {a}, {b}, or {a,b} does not work. 
Instead, { a ; b } should be removed.  
Not much work exists for this kind of 
disjunctive update in literature.  
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Minimal Change Problem

To insert p in view update from 

p ← not a,
p ← not b,

a , 
b ,

with {a, b} : (removable) abducibles, 
removing {a}, {b}, or {a,b} is too strong.   

In fact, we may remove either {a} or {b}, 
but how can we represent this indefiniteness?  
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Skeptical Abduction 
= Circumscription [Helft et al. 91]

p is entailed by circumscribing ab1, ab2  in
￢ ab1  ⊃ p,

￢ ab2  ⊃ p,
ab1 ∨ ab2 .

This is verified by computing explanations of p: 

￢ab1, ￢ab2,  then combining these as

 ￢ab1 ∨ ￢ab2, 

 whose negation ab1 ∧ ab2 cannot be explained.  
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Disjunctive Hypotheses in 
Inductive Logic Programming 

Suppose we learned two rules for p as 
C1(x)  ⊃ p(x),
C2(x)  ⊃ p(x).

Taking the disjunction (lub) of these 2 rules  

corresponds to computing the 

greatest specialization under implication: 
C1(x) ∧ C2(y)  ⊃ p(x) ∨ p(y) . 

I.e., specialization in ILP is realized.  
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Related Work Related Work 
Work on disjunctive explanations in AI

Circumscriptive theorem prover [Helft et al. IJCAI-91]
Cautious explanations in causal theories [Konolige
AIJ92]
Weakest sufficient conditions [Lin KR2000]

View updates in disjunctive databases
Updates by inserting/deleting disjunctive facts in 
stratified DB [Grant et al. JAR93] 
Model based view updates [Fernandez et al. JAR96]

Knowledge assimilation 
Abduction and ATMS/JTMS [Kakas & Mancarella
ECAI90]
Theory change by Fagin et al. [84; 86]
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In the rest of this talk, I will 

restrict our attention to the answer set semantics 

in extended disjunctive programs. 

analyze the property of disjunctive explanations in 

normal abduction. 

extend the notion of disjunctive explanations to 

extended abduction [Inoue & Sakama, IJCAI95; 

KR98].
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Extended Disjunctive Program 
(EDP)
Extended Disjunctive Program 
(EDP)

Rules: 

L1; …; Ll ← Ll+1, …, Lm, not Lm+1, …, not Ln

Extended logic program (ELP):  k=1.
Normal logic program (NLP):  ELP & ∀Li : atom. 

Integrity constraint (IC):  l=0. 

(Disjunctive) fact:  m=n=l ( ≥2).  

Every rule in K  is either in I(K) or in F(K), 

where F(K)  denotes the facts in K and I(K) = K −F(K).  
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Answer Sets for EDP (1) Answer Sets for EDP (1) 

Answer set semantics [Gelfond & Lifschitz, NGC91]

I. When K is an EDP without not (m=n) , 

S is an answer set of K  if
S is a minimal set satisfying the conditions: 

1. For each ground rule from K :

L1; …; Ll ← Ll+1, …, Lm,
{Ll+1, …, Lm } ⊆ S implies {L1, …, Lｌ } ∩S ≠φ;

2. If S contains a pair of complementary literals,  
then S = Lit. 
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Answer Sets for EDP (2)Answer Sets for EDP (2)

II. When K  is any EDP,
the EDP (without not) KS is obtained as follows:
A rule 

L1; …; Ll ← Ll+1, …, Lm

is in KS iff there is a ground rule from K of the form 
L1; …; Ll ← Ll+1, …, Lm, not Lm+1, …, not Ln

s.t. {Lm+1, …, Ln } ∩S =φ.

Then, S is an answer set of K  if 
S is an answer set of KS. 
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Answer Sets for GEDP (3)Answer Sets for GEDP (3)

An answer set is consistent if it is not Lit. 

An EDP is consistent if it has a consistent answer set. 

The set of all answer sets of K is denoted as AS(K).  

K entails L  ( K |= L )  if  L ∈ S  for every S ∈ AS(K).

Every answer set of any EDP is minimal [Gelfond & Lifschitz]
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R is weaker than R’ ( R’ |= R )  
if for any S  ∈ AS(R),  there exists S’ ∈ AS(R’)  
such that S’ ⊆ S.  
For example, {a,b} |= {a} |= {a;b} .

R and R’ are equivalent if AS(R) =AS(R’).
R is less presumptive (relative to K) than R’
if  K ∪ R’ |= K ∪ R .
R and R’ are equivalent relative to K
if AS(K ∪ R) =AS(K ∪ R’).

Entailment between Programs
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K : EDP
A : set of abducibles (literals)

E ⊆ A  is an elementary explanation of G wrt
〈K,A 〉 if: 

1.  K   ∪ E   |= G
2. K   ∪ E is consistent.

Any disjunction of elementary explanations is an  

explanation. 

Disjunctive Explanations 
in Normal Abduction
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K : EDP
A : set of abducibles (literals)
D(A) : the set of all disjunctions formed with 
abducibles from A

Theorem: There is a one-to-one correspondence 

between the elementary explanations of G
wrt 〈K, D(A) 〉 and the disjunctive 
explanations of G wrt 〈K, A 〉.  

Note:  The former is CNF, while the latter is DNF.  

Disjunctive Hypotheses
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An explanation is minimal if it is a weakest one.    
The explanation closure is the disjunction of all 
minimal elementary explanations.  
Theorem: The explanation closure wrt 〈K, A〉 is 
equivalent to the least presumptive elementary 
explanation wrt 〈K, D(A) 〉.  
Theorem: The explanation closure wrt 〈K, A〉
preserves all and only minimal answer sets from 
the collection of programs with minimal elementary 
explanations wrt 〈K, A〉.  

Explanation Closures
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Theorem: The explanation closure F wrt 〈K, A〉
preserves all and only minimal answer sets from 
the collection of programs with each minimal 
elementary explanation E wrt 〈K, A〉. 

U
)(

).(}){(
GMEE

EKASFKAS
∈

∪=∪ μ

Explanation Closure Theorem
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Extended Abduction [Inoue & Sakama 
95]
Extended Abduction [Inoue & Sakama 
95]

Abductive logic program: ＜K, A＞
⌧ K： EDP 
⌧ A : set of literals  (abducibles)

(P,N) is a scenario for ＜K, A＞ if 

1. P, N are sets of instances of elements from A
2. ( K ＼ N ) ∪ P is consistent
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Abductive ExplanationsAbductive Explanations
A scenario (P,N) is an elementary explanation

of G if: ( K ＼ N ) ∪ P   |= G  

A scenario (P,N) is an elementary anti-

explanation of G if: ( K ＼ N ) ∪ P   |=/=  G  

An elementary (anti-)explanation (P,N) is 

minimal if:  for any el. (anti-)explanation (P’,N’) , 
P' ⊆ P and N' ⊆ N imply  P'=P and N'=N.
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Framework of Extended 
Abduction

Abductive logic program
<K,Γ>

Abductive logic program
<K’,Γ>

Positive Observation G+
Negative Observation G-

K’ |= G+
K’ |=/= G-

K’ = ( K ＼ N ) ∪ P
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From Extended Abduction to 
Normal Abduction

ν(K,  A )  =  ＜K’,  A ’＞

1. K’ = (K ＼ A )  ∪ { a ← not a’ |  a ∈ K ∩ A }.

2. A ’ =  A ∪ { a’ |  a ∈ K ∩ A }.

a’ represents the deletion of a.  
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Theorem [Inoue 2000]

(P,N) is a minimal elementary explanation of G
wrt ＜K, A＞ under extended abduction   

if and only if

E is a minimal elementary explanation of G wrt ν(K, A)  
under normal abduction,  where 

P = { a |  a  ∈ E ∩ A }, 

N = { a |  a’ ∈ E }.  
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Translation of Anti-Explanations

(P,N) is a minimal elementary anti-explanation of G
wrt ＜K, A＞ if and only if

(E, φ) is a minimal elementary anti-explanation of G
wrt ν(K, A),  where 

P = { a |  a  ∈ E ∩ A }, 

N = { a |  a’ ∈ E }.  

Anti-explanations can be converted into explanations 

by associating G with the new rule: 

G‘ ← not G.
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Extended Disjunctive AbductionExtended Disjunctive Abduction

(P,N) is a d-scenario for ＜K, A＞ if 

1. P  is a set of instances of elements from A,
2. N  is a set of instances of elements from D(A),
3. ( K ＼ N ) ∪ P is consistent.  
A d-scenario (P,N) is an elementary d-explanation of G
if: ( K ＼ N ) ∪ P   |= G. 
A d-scenario (P,N) is an elementary d-anti-explanation
of G if: ( K ＼ N ) ∪ P   |=/=  G. 
An el. d-(anti-)explanation (P,N) is minimal if:             
for any el. d-(anti-)explanation (P’,N’) ,                          
P'  |= P and N'  |= N imply  P'  |= P and N’ |= N.
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From Extended Disjunctive 
Abduction to Normal Abduction

νd(K,  A )  =  ＜K’,  A ’＞

1. K’ =   (K ＼ D(A) ) 

∪ { a ← not del(a)  |  a ∈ K ∩D(A) }.

2. A ’ =  A ∪ { del(a) |  a ∈ K ∩ D(A) }.
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Theorem: The explanation closure F wrt 〈K, A〉
preserves all and only minimal answer sets from 
the collection of programs with each minimal 
elementary d-explanation (P,N) wrt 〈K, A〉. 
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Explanation Closure Theorem
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Theorem: The anti-explanation closure H wrt
〈K, A〉 preserves all and only minimal answer sets 
from the collection of programs with each 
minimal el. d-anti-explanation (P,N) wrt 〈K, A〉. 
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Anti-Explanation Closure Theorem
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Indefinite Removal Example

Insert p in view update from           
p ← not a,                         
p ← not b,                         

a ,                               
b ,                               

with {a, b} : (removable) abducibles.       

Solutions (minimal el. explanation):  

(P1,N1)=({},{a}), (P2,N2)=({},{b}).  
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Indefinite Removal Example

p ← not a,                         
p ← not b,                         

a ← not del(a),                      
b ← not del(b).                      

Solutions (explanation closure):          
F  = del(a) ; del(b).  
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Conclusion 

Abduction from 〈K, D(A) 〉 is worth considering, as 
it can be applied to knowledge assimilation, view 
updates, skeptical reasoning, specialization, etc. 
Abduction from 〈K, D(A) 〉 is easy to implement by 
considering disjunctive explanations which are 
constructed with elementary explanations in 
abduction from 〈K, A〉. 
Extended abduction from 〈K, D(A) 〉 is similarly 
realized by converting it to normal abduction.  
Updates in disjunctive programs can also be 
formalized in this way.  
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