Disjunctive Explanations

Katsumi Inoue

Kobe University

Chiaki Sakama

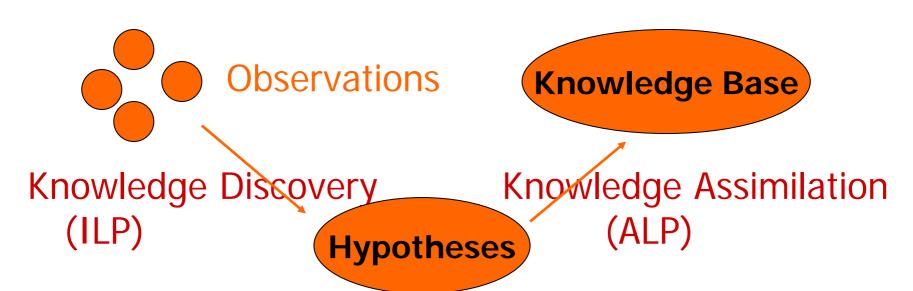
Wakayama University

2002.07.31 (ICLP 2002)

Knowledge Discovery and Abduction

Knowledge Discovery by Induction

Knowledge Assimilation by Abduction



(Normal) Abduction

- ****** K: background theory
- $\mathcal{H}G$: observation
- **∺** Γ: set of **abducible** rules/literals
- $\sqsubseteq E \subseteq \Gamma$ is an **explanation** of *G* if:
 - 1. $K \cup E = G$
 - 2. $K \cup E$ is consistent
- **#In general, many explanations exist.**

Disjunctive Explanations

When *E1* and *E2* are explanations, *E1* v *E2* is also an explanation, because

- 1. $K \cup \{E1 \vee E2\} \models G$
- 2. $K \cup \{E1 \lor E2\}$ is consistent.
- # Usually, each *Ei* is minimal.
- \mathbb{H} E1 \vee E2 is **weaker** than each Ei.

How to Assimilate Explanations

- # Disjunctive explanation is assimilated.
- ***Merit:** The assimilated KB preserves the intended semantics from the collection of all possible updated KBs (**this work**).
- ***Merit:** One current KB is only necessary at a time, still keeping every possible change in a single state.
- ***DEmerit:** The assimilated KB is weaker than any possible single update.

Removing Disjunctions from KB

 H To delete p in view update from

$$p \leftarrow a$$
, $p \leftarrow b$, $a : b$,

with {a, b}: removable abducibles, removing {a}, {b}, or {a,b} does not work.

- **#** Instead, { a; b } should be removed.
- ** Not much work exists for this kind of disjunctive update in literature.

Minimal Change Problem

 H To **insert** p in **view update** from

```
p \leftarrow not \ a,
p \leftarrow not \ b,
a,
b,
```

with {a, b}: (removable) abducibles, removing {a}, {b}, or {a,b} is too strong.

In fact, we may remove either {a} or {b}, but how can we represent this indefiniteness?

Skeptical Abduction

= Circumscription [Helft et al. 91]

 $\Re p$ is entailed by circumscribing ab1, ab2 in

$$\neg ab1 \supset p$$
, $\neg ab2 \supset p$,

 $ab1 \vee ab2$.

 \aleph This is verified by computing explanations of p:

¬ab1, ¬ab2, then combining these as

whose negation $ab1 \land ab2$ cannot be explained.

Disjunctive Hypotheses in Inductive Logic Programming

Suppose we learned two rules for p as

$$C1(x) \supset p(x)$$
,
 $C2(x) \supset p(x)$.

X Taking the disjunction (lub) of these 2 rules corresponds to computing the

greatest specialization under implication:

$$C1(x) \wedge C2(y) \supset p(x) \vee p(y)$$
.

I.e., specialization in ILP is realized.

Related Work

- Work on disjunctive explanations in AI
 - Circumscriptive theorem prover [Helft et al. IJCAI-91]
 - Cautious explanations in causal theories [Konolige AIJ92]
 - Weakest sufficient conditions [Lin KR2000]
- View updates in disjunctive databases
 - Updates by inserting/deleting disjunctive facts in stratified DB [Grant et al. JAR93]
 - Model based view updates [Fernandez et al. JAR96]
- Knowledge assimilation
 - Abduction and ATMS/JTMS [Kakas & Mancarella ECAI90]
 - Theory change by Fagin et al. [84; 86]

In the rest of this talk, I will

- # restrict our attention to the answer set semantics in extended disjunctive programs.
- # analyze the property of disjunctive explanations in normal abduction.
- **#**extend the notion of disjunctive explanations to extended abduction [Inoue & Sakama, IJCAI95; KR98].

Extended Disjunctive Program (EDP)

Rules:

$$L_1$$
: ...; $L_1 \leftarrow L_{l+1}$, ..., L_m , **not** L_{m+1} , ..., **not** L_n

- # Extended logic program (ELP): k=1.
- # Normal logic program (NLP): ELP & $\forall L_i$: atom.
- \mathbb{H} Integrity constraint (IC): I=0.
- \Re (Disjunctive) fact: m=n=l (≥ 2).
- \mathbb{H} Every rule in K is either in I(K) or in F(K), where F(K) denotes the facts in K and I(K) = K F(K).

Answer Sets for EDP (1)

- # Answer set semantics [Gelfond & Lifschitz, NGC91]
- When K is an EDP without not (m=n),
 - **S** is an **answer set** of K if
 - **s** is a minimal set satisfying the conditions:
 - 1. For each ground rule from *K*:

$$L_{1}; ...; L_{l} \leftarrow L_{l+1}, ..., L_{m},$$

 $\{L_{l+1}, ..., L_{m}\} \subseteq \mathbf{S} \text{ implies } \{L_{1}, ..., L_{l}\} \cap \mathbf{S} \neq \phi;$

2. If S contains a pair of complementary literals, then S = Lit.

Answer Sets for EDP (2)

When K is any EDP,
 the EDP (without not) K^S is obtained as follows:
 A rule

$$L_1$$
; ...; $L_l \leftarrow L_{l+1}$, ..., L_m

is in K^S iff there is a ground rule from K of the form

$$L_{1}$$
; ...; $L_{l} \leftarrow L_{l+1}$, ..., L_{m} , **not** L_{m+1} , ..., **not** L_{n}
s.t. $\{L_{m+1}, ..., L_{n}\} \cap S = \phi$.

Then, S is an **answer set** of K if S is an answer set of K^{S} .

Answer Sets for GEDP (3)

- △An answer set is consistent if it is not *Lit*.
- An EDP is **consistent** if it has a consistent answer set.
- \triangle The set of all answer sets of K is denoted as AS(K).
- $\triangle K$ entails L ($K \models L$) if $L \in S$ for every $S \in AS(K)$.

Entailment between Programs

- **\Re** R is <u>weaker than</u> R' (R' |= R) if for any $S \in AS(R)$, there exists $S' \in AS(R')$ such that $S' \subseteq S$.
- # For example, $\{a,b\} \models \{a\} \models \{a;b\}$.
- $\Re R$ and R' are **equivalent** if AS(R) = AS(R').
- $\Re R$ is less presumptive (relative to K) than R' if $K \cup R' \models K \cup R$.
- # R and R' are equivalent relative to K if $AS(K \cup R) = AS(K \cup R')$.

Disjunctive Explanations in Normal Abduction

- **#** A: set of abducibles (literals)
- $E \subseteq A$ is an **elementary explanation** of G wrt $\langle K,A \rangle$ if:
 - 1. $K \cup E \models G$
 - 2. $K \cup E$ is consistent.
- ******Any disjunction of elementary explanations is an **explanation**.

Disjunctive Hypotheses

- #A: set of abducibles (literals)
- $\mathcal{Z}(A)$: the set of all disjunctions formed with abducibles from A
- Theorem: There is a one-to-one correspondence between the elementary explanations of G wrt $\langle K, D(A) \rangle$ and the disjunctive explanations of G wrt $\langle K, A \rangle$.
- Note: The former is CNF, while the latter is DNF.

Explanation Closures

- **X**An explanation is **minimal** if it is a weakest one.
- #The <u>explanation closure</u> is the disjunction of all minimal elementary explanations.
- **Theorem:** The explanation closure wrt $\langle K, A \rangle$ is equivalent to the least presumptive elementary explanation wrt $\langle K, D(A) \rangle$.
- **Theorem:** The explanation closure wrt $\langle K, A \rangle$ preserves all and only minimal answer sets from the collection of programs with minimal elementary explanations wrt $\langle K, A \rangle$.

Explanation Closure Theorem

Theorem: The explanation closure F wrt $\langle K, A \rangle$ preserves all and only minimal answer sets from the collection of programs with each minimal elementary explanation E wrt $\langle K, A \rangle$.

$$AS(K \cup \{F\}) = \mu \bigcup_{E \in ME(G)} AS(K \cup E).$$

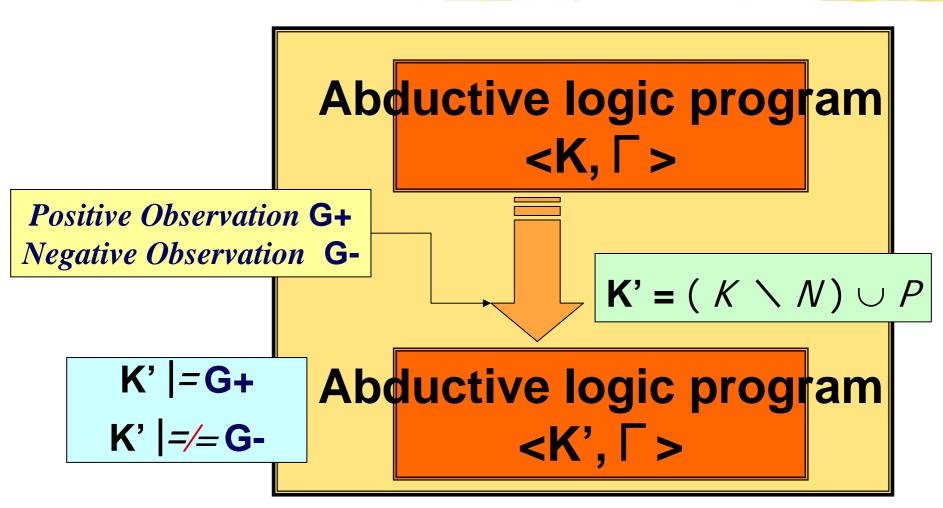
Extended Abduction [Inoue & Sakama 95]

- \mathbb{H} Abductive logic program: $\langle K, A \rangle$
 - \times K: EDP
 - \boxtimes \mathcal{A} : set of literals (abducibles)
- (P,N) is a **scenario** for $\langle K, A \rangle$ if
 - 1. P, N are sets of instances of elements from A
 - 2. $(K \setminus N) \cup P$ is consistent

Abductive Explanations

- A scenario (P,N) is an **elementary explanation** of G if: $(K \setminus N) \cup P \models G$
- A scenario (P,N) is an elementary antiexplanation of G if: $(K \setminus N) \cup P \mid =/= G$
- An elementary (anti-)explanation (P,N) is **minimal** if: for any el. (anti-)explanation (P',N'), $P' \subseteq P$ and $N' \subseteq N$ imply P'=P and N'=N.

Framework of Extended Abduction



From Extended Abduction to Normal Abduction

$$\mathcal{H}$$
 $\nu(K, A) = \langle K', A' \rangle$

1.
$$K' = (K \setminus A) \cup \{ a \leftarrow not \ a' \mid a \in K \cap A \}.$$

2.
$$\mathcal{A}' = \mathcal{A} \cup \{ a' \mid a \in K \cap \mathcal{A} \}.$$

a' represents the *deletion* of a.

Theorem [Inoue 2000]

(P,N) is a minimal elementary explanation of G wrt $\langle K, A \rangle$ under extended abduction

if and only if

E is a minimal elementary explanation of G wrt ν (K, A) under normal abduction, where

$$P = \{ a \mid a \in E \cap A \},\$$

$$N = \{ a \mid a' \in E \}.$$

Translation of Anti-Explanations

(P,N) is a minimal elementary anti-explanation of G wrt $\langle K, A \rangle$ if and only if

 (E, ϕ) is a minimal elementary anti-explanation of G wrt ν (K, A), where

$$P = \{ a \mid a \in E \cap \mathcal{A} \},\$$

$$N = \{ a \mid a' \in E \}.$$

Anti-explanations can be converted into explanations by associating *G* with the new rule:

$$G' \leftarrow not G$$
.

Extended Disjunctive Abduction

- (P,N) is a **d-scenario** for $\langle K, A \rangle$ if
 - 1. P is a set of instances of elements from A,
 - 2. N is a set of instances of elements from D(A),
 - 3. $(K \setminus N) \cup P$ is consistent.
- A d-scenario (P,N) is an elementary **d-explanation** of G if: $(K \setminus N) \cup P \models G$.
- A d-scenario (P,N) is an elementary **d-anti-explanation** of G if: $(K \setminus N) \cup P \mid = G$.
- An el. d-(anti-)explanation (P,N) is **minimal** if: for any el. d-(anti-)explanation (P',N'), $P' \models P$ and $N' \models N$ imply $P' \models P$ and $N' \models N$.

From Extended Disjunctive Abduction to Normal Abduction

$$\mathcal{L}^{d}(K, \mathcal{A}) = \langle K', \mathcal{A}' \rangle$$

$$1. \ K' = (K \setminus D(\mathcal{A}))$$

$$\cup \{ a \leftarrow not \ del(a) \mid a \in K \cap D(\mathcal{A}) \}.$$

$$2. \ \mathcal{A}' = \mathcal{A} \cup \{ del(a) \mid a \in K \cap D(\mathcal{A}) \}.$$

Explanation Closure Theorem

Theorem: The explanation closure F wrt $\langle K, A \rangle$ preserves all and only minimal answer sets from the collection of programs with each minimal elementary d-explanation (P,N) wrt $\langle K, A \rangle$.

$$AS^{-del}(v^d(K) \cup \{F\}) = \mu \bigcup_{(P,N) \in ME^d(G)} AS((K \neq N) \cup P).$$

Anti-Explanation Closure Theorem

Theorem: The anti-explanation closure H wrt $\langle K, A \rangle$ preserves all and only minimal answer sets from the collection of programs with each minimal el. d-anti-explanation (P, N) wrt $\langle K, A \rangle$.

$$AS^{-del}(v^d(K) \cup \{H\}) = \mu \bigcup_{(P,N) \in MEA^d(G)} AS((K \neq N) \cup P).$$

Indefinite Removal Example

```
\mathbb{H} Insert p in view update from
                   p \leftarrow not a
                  p \leftarrow not b
                        a ,
                        b.
    with {a, b}: (removable) abducibles.
Solutions (minimal el. explanation):
  (P1,N1)=(\{\},\{a\}), (P2,N2)=(\{\},\{b\}).
```

Indefinite Removal Example

$$p \leftarrow not \ a,$$

 $p \leftarrow not \ b,$
 $a \leftarrow not \ del(a),$
 $b \leftarrow not \ del(b).$

$$\Re$$
 Solutions (explanation closure):
 $F = del(a)$; $del(b)$.

Conclusion

- ******Abduction from $\langle K, D(A) \rangle$ is worth considering, as it can be applied to knowledge assimilation, view updates, skeptical reasoning, specialization, etc.
- **pprox** Abduction from $\langle K, D(A) \rangle$ is easy to implement by considering disjunctive explanations which are constructed with elementary explanations in abduction from $\langle K, A \rangle$.
- **pprox** Extended abduction from $\langle K, D(A) \rangle$ is similarly realized by converting it to normal abduction. Updates in disjunctive programs can also be formalized in this way.