
Reasoning and Planning with
Cooperative Actions for Multi-agents
Using Answer Set Programming

Tran Cao Son (New Mexico State University)

Chiaki Sakama (Wakayama University)

Outline

• Motivation

• An action language with cooperative actions

• Multi-agent planning with cooperative actions

• Discussion

• Conclusion

Motivation - Sharing

Mirror On

Diploma On

Painting
On

A

B

C

screw
nail

hammer

screw
nail

hammer

nail
hammer

screw
nail
hammer

nail

Can all three achieve their goals? Yes, but they need to cooperate!

Motivation - Sharing

Mirror On

Diploma On

Painting
On

A

B

C

screw
nail

hammer

screw
nail

hammer

nail
hammer

screw
nail
hammer

nail

Can all three achieve their goals? Yes, but they need to cooperate!

screw & hammer

nail & hammer

Motivation - Interference

on/off on/off

Light onLight on

Cooperative actions

• are those that establish/impose some
conditions for/on others

• might or might not affect the local world of
the action executor as well as other agent’s
world

• are needed in multi-agent planning

Overall questions

• Given: a multi-agent system with cooperative
actions

• Questions:
– how to represent and reason with cooperative

actions?

– can all agents achieve their goals, if so how?

An action language with
cooperative actions

• Extension of language A [Gelfond & Lifschitz, 93]
with cooperative actions

• Transition function based semantics

• Each agent knows
– knows about its actions

– knows who can help with their need

– knows who she can help

Specifying individual actions

• Effects of actions: action causes effects if conditions

hang_with_nail causes on_wall, -nail

(the object on the wall after the execution of
hang_with_nail depends on the person, A: mirror, B:
diploma, C: paiting)

• Executability condtions: action executable conditions

hang_with_nail executable has_nail, has_hammer

Specifying a request

action requests something from someone

may_cause effects if exec_conditions

give_me_hammer requets has_hammer

from {B,C} may_cause has_hammer

if –has_hammer

Specifying a support

action provides something to someone

causes effects if exec_conditions

something: effects on the world of the agent
requesting it

effects: effects on the world of the agent executing
the action

has_this_hammer provides has_hammer

to {B,C} causes -has_hammer if has_hammer

Domain with cooperative actions

• D = (DI, DC, I)
– DI: individual (non-cooperative) actions

– DC: cooperative actions

– I: initial state

• Semantics
– transition function based: defining a function ϕ

for computing the successor state

Semantics – Non-cooperative actions

ϕ(a,s) = s + e+(a,s) – e-(a,s)

• e+(a,s) is the positive effects of a in s
• e-(a,s) is the negative effects of a in s

Semantics – Cooperative actions

• Request: r requests ϒ from i may_cause ψ if
ω
– Executable only if ω is satisfied
– Successful: ϕ(r(ϒ,i), s) = s – ψ* + ψ where

ψ*={-l | l in ψ} (complement of ψ)
– Unsuccessful ϕ(r(ϒ,i), s) = s

• Provides: p provides ϒ to i causes ψ if ω
– Executable only if ω is satisfied
– Successful: ϕ(p(ϒ,i), s) = s – ψ* + ψ

ϕ – is a nondeterministic function

Reasoning with cooperative actions

• D = (DI, DC, I)
– DI: individual actions

– DC: cooperative actions

– I: initial state

• Trajectory: α=[s0 a1 s1 … sn-1 an sn]
si+1 belongs to ϕ(ai, si)
aj = r(ϒ,i) is satisfied in α if sj-1 ≠ sj

• φ is true after α if φ holds in sn

Planning with cooperative actions

• P = (DI, DC, I, G)
– DI: individual actions
– DC: cooperative actions
– I: initial state
– G: goal

• Possible plans:
– a trajectory α=[s0 a1 s1 … sn-1 an sn]
– s0 satisfies the initial conditions I
– sn satisfies goal G

Multi-agent system

• Each agent has its own (local) domain description
• Agents might have different/same representation

– (A, B, has_hammer, has_hammer)
• Execution of an action might change local/global

world
– A turn the light on  light will be on for B

• Agents might request for help
• Conditions on joint-actions (parallel, non-parallel)

– {(A, lift_move_table), (B, lift_move_table)}
– {(A, turn_on), (B, turn_on)}

Multi-agent planning problem

<Ag, PAg,F, IC, C>

• Ag: set of agents

• PAg: set of planning problem, one for each agent

• F: set of interacting fluents between agents

• IC: set of pairs of agents and actions that cannot
be executed concurrently

• C: set of actions that have to be executed
concurrently

Solution of <Ag, PAg,F, IC, C>

• Requirements:
– consists of possible plans for agents in Ag
– for each request-action, which is assumed to be

satisfied by some agent, there exists some agent who
provides for the request

– satisfies IC and C

request for f

provides f request for g

provides g

Joint-plan

Computing joint-plan <Ag, PAg,F, IC, C>
using Answer Set Programming

• ASP
– logic programming under answer set semantics
– simple syntax, expressive
– available solvers (active development by ASP

community)

• Computing joint-plan using ASP
– represent a multi-agent planning problem as logic

programs
– compute answer sets
– extract plans

• Translating each planning problem Pi into a
program π(Pi) such that each answer set of
π(Pi) is a possible solution of π(Pi)

• Combining answer sets of Pi to create joint-
plan: joint-plans equivalent to “compatible
answer sets”

Computing joint-plan <Ag, PAg,F, IC, C>
using Answer Set Programming

Pi = (DI,DC,I,G) and πi(Pi)
• Rules representing effects of non-cooperative actions:

(a causes f if pre) in DI
h(f, t+1) :- o(a,t), executable(a,t), h(pre,t)

• Rules representing effects of cooperative actions:
(r request γ from i may_cause ξ if Φ) in DC
0 {ok(r(γ,i), t+1)} 1 :- o(r(γ,i), t)
h(ξ,T) :- ok(r(γ,i), t+1)
(p provides γ to i causes ξ if Φ) – same as for normal actions

• Rules representing initial state
h(f,0) if f belongs to I

• Rules representing goal
:- not h(f,n) if g in G

• Rules generating action occurrences
1 {occ(a,T) : action(a)} :- T < n

• Inertial rules
h(f, T+1) :- h(f, T), not h(-f, T+1)
h(-f, T+1) :- h(-f, T), not h(f, T+1)

• Distributed computation: Combining answer
sets of π(Pi) to create joint-plan: joint-plans
equivalent to “compatible answer sets”

• Centralized computation:
– Combining π(Pi) into a single program π

– Adding to π(Pi) constraints expressing the
constrains of the problem π

– Computing answer set of π

Computing joint-plan <Ag, PAg,F, IC, C>
using Answer Set Programming

Related works

• Most works in multiagent planning
– employ partial plan representation
– assume that the partial plans exist, reasoning about effects

of actions
– concentrate on synchronizing the partial plans so that

constraints can be satisfied
– less focus on reasoning about effects of actions

• Our approach
– focus on reasoning about effects of actions
– use standard approach to compute joint-plans
– can be extended to allow different types of actions (non-

deterministic actions, parallel actions, etc.)

Conclusions and future works

• In this paper:
– Framework for reasoning and planning with

cooperative actions
– Implementation in answer set programming

• Future works:
– Experimenting with different solvers
– Investigating algorithms for distributed

computation of compatible answer sets
– Combining negotiation within planning

	Reasoning and Planning with Cooperative Actions for Multi-agents Using Answer Set Programming
	Outline
	Motivation - Sharing
	Motivation - Sharing
	Motivation - Interference
	Cooperative actions
	Overall questions
	An action language with �cooperative actions
	 Specifying individual actions
	Specifying a request
	Specifying a support
	Domain with cooperative actions
	Semantics – Non-cooperative actions
	Semantics – Cooperative actions
	Reasoning with cooperative actions
	Planning with cooperative actions
	Multi-agent system
	Multi-agent planning problem
	Solution of <Ag, PAg,F, IC, C>
	Computing joint-plan <Ag, PAg,F, IC, C>�using Answer Set Programming
	スライド番号 21
	Pi = (DI,DC,I,G) and πi(Pi)
	スライド番号 23
	Related works
	Conclusions and future works

