Argument and Belief

Chiaki Sakama

Wakayama University, Japan

COMMA 2024@Hagen

Background & Motivation

- Given AF = ({p, q}, {(p, q)}), argumentation semantics normally concludes that p is accepted and q is rejected.
- To reject *p*, on the other hand, a counter-argument attacking *p* is to be introduced.
- A player participating in an argumentation or a person in the audience of a public debate would have opinions s.t. "I do not believe p", "I still believe q", or "I do not believe that p attacks q" without any concrete grounds.

Contributions

- We introduce the framework of **AF** with beliefs (**AFB**) to represent interaction between **arguments** and **beliefs**.
- In AFB an agent's beliefs are added to the argumentation graph and **interact** with arguments.
- We introduce **axioms** for interlinking arguments and beliefs, and compute **belief extensions** that represent (dis)believed arguments as well as accepted arguments.
- We apply the framework to modelling the **audience** of argumentation, **dialogue** between two agents, and **inner conflict** of an agent.

Representing belief in AF

- If an agent *a* believes an argument *p* (resp. an attack $p \rightarrow q$) to be true, it is represented as $B_a p$ (resp. $B_a(p \rightarrow q)$).
- When the agent's identification is unimportant, a is omitted and it is simply written as Bp or $B(p \rightarrow q)$.
- An agent's disbelieving p (resp. $p \rightarrow q$) is represented by $\neg Bp$ (resp. $\neg B(p \rightarrow q)$).

Technically, we handle $p \to q$, $p \leftrightarrow q$, $(\neg)Bp$, $(\neg)B(p \to q)$ or $(\neg)B(p \leftrightarrow q)$ as an atom, so *B* is not an operator in modal epistemic logic. In this setting, the "atom" $\neg \neg Bp$ is identified with Bp.

AF with belief

Given an argumentation framework AF = (A, R), the set \mathcal{B}_{AF} of belief atoms over AF is defined as $\mathcal{B}_{AF} = \{Bp, \neg Bp \mid p \in A\} \cup \{B(p \rightarrow q), \neg B(p \rightarrow q) \mid (p,q) \in R\}.$

AF with belief

Given AF = (A, R), AF with belief (or AFB) is defined as a triple $\Gamma = (A, R, S)$ where $S \subseteq \mathcal{B}_{AF}$. Γ is often written as (AF, S).

attacks over beliefs

Given AF = (A, R), define $R_B = R \cup \{ (\neg Bp, p), (\neg Bp, Bp), (Bp, \neg Bp) \mid p \in A \}.$

Attack axiom

attack axiom

Let p and q be arguments. Then

 $(\mathbf{AT}) \qquad Bp \land B(p \to q) \supset \neg Bq$

is called the attack axiom.

(AT) is rewritten as

 $Bq \wedge B(p \rightarrow q) \supset \neg Bp$ or $Bp \wedge Bq \supset \neg B(p \rightarrow q)$.

Closure

$cl_{AT}(S)$

Given $S \subseteq \mathcal{B}_{AF}$, define $cl_{AT}(S) \subseteq \mathcal{B}_{AF}$ as the smallest set of belief atoms satisfying the following conditions:

- $I S \subseteq cl_{AT}(S).$
- ② If $Bp \in cl_{AT}(S)$ and $B(p \rightarrow q) \in cl_{AT}(S)$, then ¬ $Bq \in cl_{AT}(S)$.
- If $Bq \in cl_{AT}(S)$ and $B(p \rightarrow q) \in cl_{AT}(S)$, then $\neg Bp \in cl_{AT}(S)$.
- If $Bp \in cl_{AT}(S)$ and $Bq \in cl_{AT}(S)$, then $\neg B(p \rightarrow q) \in cl_{AT}(S)$.

 $cl_{AT}(S)$ is consistent if it does not contain {Bp, $\neg Bp \mid p \in A$ } nor { $B(p \rightarrow q)$, $\neg B(p \rightarrow q) \mid p, q \in A$ } as a subset.

Belief extension

Let σ be an argumentation semantics.

belief extension

Given an AFB $\Gamma = (A, R, S)$, a set *E* is a σ belief extension of Γ if *E* is a σ extension of AF = (X, Y) with

 $X = A \cup cl_{AT}(S)_A,$

 $Y = ((X \times X) \cap R_B) \setminus \{(p \to q) \mid \neg B(p \to q) \in cl_{AT}(S)_R\},\$

where

 $cl_{AT}(S)_A = cl_{AT}(S) \cap \{Bp, \neg Bp \mid p \in A\},\$

 $cl_{AT}(S)_R = cl_{AT}(S) \cap \{ B(p \to q), \neg B(p \to q) \mid (p \to q) \in R \}, \text{ and}$

 $R_B = R \cup \{ (\neg Bp, p), (\neg Bp, Bp), (Bp, \neg Bp) \mid p \in A \}.$

Example (1)

Suppose an agent in the audience of a public debate.

Let $AF = (\{p, q\}, \{(p, q)\})$ and $\sigma \in \{(co)mplete, (st)able, (pr)eferred, (gr)ounded \}$.

- $\Gamma_1 = (AF, \{Bp, B(p \to q)\})$ has the σ belief extension $E_1 = \{p, Bp, \neg Bq\}.$
- $\Gamma_2 = (AF, \{\neg Bp\})$ has the σ belief extension $E_2 = \{\neg Bp, q\}.$

• $\Gamma_3 = (AF, \{Bq, \neg B(p \rightarrow q)\})$ has the σ belief extension $E_3 = \{p, q, Bq\}.$

Example (2)

- $\Gamma_4 = (AF, \{Bq, B(p \rightarrow q)\})$ has the σ belief extension $E_4 = \{\neg Bp, Bq, q\}.$
- $\Gamma_5 = (AF, \{Bp, Bq, B(p \rightarrow q)\})$ has the grounded belief extension $E_5 = \emptyset$; four stable (or preferred) belief extensions $E_6 = \{p, Bp, \neg Bq\}, E_7 = \{p, Bp, Bq\}, E_8 = \{q, \neg Bp, Bq\}$, and $E_9 = \{\neg Bp, \neg Bq\}$; and five complete belief extensions E_5, E_6, E_7, E_8, E_9 .

Properties (1)

- Since *co*, *pr*, *gr* are universal, $\Gamma = (AF, S)$ has a σ belief extension if AF = (A, R) has a σ extension for $\sigma \in \{co, pr, gr\}$.
- When AF = (A, R) has a stable extension, $\Gamma = (AF, S)$ may not have a stable extension; and when AF = (A, R) has no stable extension, $\Gamma = (AF, S)$ may have a stable belief extension.

Example

(1) $AF = (\{p, q\}, \{(p, q), (q, q)\})$ has the stable extension $\{p\}$, while $AFB = (AF, \{\neg Bp\})$ has no stable belief extension.

(2) $AF = (\{p\}, \{(p, p)\})$ has no stable extension, while $AFB = (AF, \{\neg Bp\})$ has the stable belief extension $\{\neg Bp\}$.

Properties (2)

An AFB $\Gamma = (A, R, S)$ is rational if $cl_{AT}(S)$ is consistent, i.e., a rational AFB represents an agent who has a consistent belief over AF.

Let $\Gamma = (A, R, S)$ be a rational AFB and $\sigma \in \{co, st, pr, gr\}$.

- $cl_{AT}(S)_A \subseteq E$ holds for any σ belief extension E of Γ , where $cl_{AT}(S)_A = cl_{AT}(S) \cap \{Bp, \neg Bp \mid p \in A\},\$
- If $B(p \leftrightarrow q)$ is in $cl_{AT}(S)$, there is no σ belief extension E such that $\{Bp, Bq\} \subseteq E$.
- If $B(p \rightarrow p)$ is in $cl_{AT}(S)$, there is no σ belief extension E such that $Bp \in E$.

Dialogue

Consider dialogues between two agents a and b. Belief of each agent is represented by B_a and B_b , respectively. An argument p made by an agent a is represented by p_a .

dialogue

A dialogue between two agents a and b is defined as a pair $\Delta = (\Gamma_a, \Gamma_b)$ where $\Gamma_a = (AF, S_a)$ and $\Gamma_b = (AF, S_b)$ are AFBs.

(in)sincere agent

Let $\Gamma_a = (AF, S_a)$ be an AFB with AF = (A, R). The agent a is sincere if $p_a \in A$ implies $B_a p_a \in S_a$; otherwise, a is insincere.

A sincere agent makes an argument only if she believes it.

Static belief extension

Given AF = (A, R), attacks over beliefs and the attack axiom are modified as:

 $R_B = R \cup \{ (\neg B_i p_j, p_j), (\neg B_i p_j, B_i p_j), (B_i p_j, \neg B_i p_j) \},$ (AT) $B_i p_j \land B_i (p_j \rightarrow q_k) \supset \neg B_i q_k$

where $p_j, q_k \in A$ and $i, j, k \in \{a, b\}$.

static belief extension

Let $\Delta = (\Gamma_a, \Gamma_b)$ be a dialogue where $\Gamma_a = (AF, S_a)$ and $\Gamma_b = (AF, S_b)$. A pair (E, F) is a static σ belief extension (or σ -SBE for short) of Δ if - E is a σ extension of AF = (X, Y) where $X = A \cup cl_{AT}(S_a)_A;$ $Y = ((X \times X) \cap R_B) \setminus \{(p \to q) \mid \neg B_a(p \to q) \in cl_{AT}(S_a)_R\}.$ - F is a σ extension of AF = (X, Y) where $X = A \cup cl_{AT}(S_b)_A;$ $Y = ((X \times X) \cap R_B) \setminus \{(p \to q) \mid \neg B_b(p \to q) \in cl_{AT}(S_b)_R\}.$

Example (1)

Let $AF = (\{p_a, q_b\}, \{(p_a, q_b)\})$ and $\sigma \in \{co, st, pr, gr\}$.

- $\Delta_1 = (\Gamma_a^1, \Gamma_b^1)$ where $\Gamma_a^1 = (AF, \{B_a(p_a \to q_b), B_a p_a\})$ and $\Gamma_b^1 = (AF, \{B_b(p_a \to q_b), B_b q_b\})$ has the σ -SBE $(\{p_a, B_a p_a, \neg B_a q_b\}, \{q_b, B_b q_b, \neg B_b p_a\}).$
- $\Delta_2 = (\Gamma_a^1, \Gamma_b^2)$ where $\Gamma_b^2 = (AF, \{\neg B_b(p_a \rightarrow q_b), B_bq_b\})$ has the σ -SBE $(\{p_a, B_ap_a, \neg B_aq_b\}, \{p_a, q_b, B_bq_b\})$.

Example (2)

Suppose that the agent a is **insincere**.

- $\Delta_3 = (\Gamma_a^3, \Gamma_b^1)$ where $\Gamma_a^3 = (AF, \{B_a(p_a \rightarrow q_b)\})$ and $\Gamma_b^1 = (AF, \{B_b(p_a \rightarrow q_b), B_bq_b\})$ has the σ -SBE $(\{p_a\}, \{q_b, B_bq_b, \neg B_bp_a\}).$
- $\Delta_4 = (\Gamma_a^4, \Gamma_b^1)$ where $\Gamma_a^4 = (AF, \{\neg B_a p_a, B_a(p_a \rightarrow q_b)\})$ has the σ -SBE ($\{\neg B_a p_a, q_b\}, \{q_b, B_b q_b, \neg B_b p_a\}$).

Characterizing dynamic aspect

 $B_a^t p$ (resp. $B_a^t (p \to q)$) means that *a* believes *p* (resp. $p \to q$) at time *t* where $t \ge 0$ is an integer representing discrete time steps. Let *T* be a set of integers.

belief change axiom

$$(\mathbf{BC}) \qquad B_a^t p \wedge B_a^t (p \to q) \supset \neg B_a^{t+1} q \quad (t \in T)$$

inertia rule

(**IR**)
$$\frac{B_a^t \alpha : B_a^{t+1} \alpha}{B_a^{t+1} \alpha}$$
 and $\frac{\neg B_a^t \alpha : \neg B_a^{t+1} \alpha}{\neg B_a^{t+1} \alpha}$ $(t \in T)$

where α is either an argument p or an attack $p \rightarrow q$.

(IR) are normal default rules in **default logic** meaning that if $(\neg)B_a^t\alpha$ is the case and $(\neg)B_a^{t+1}\alpha$ is consistently assumed then conclude $(\neg)B_a^{t+1}\alpha$.

Closure

Given AF = (A, R), define $\mathcal{B}_{AF}^{T} = \{ B_{i}^{t}p, \neg B_{i}^{t}p \mid p \in A \text{ and } t \in T \}$ $\cup \{ B_{i}^{t}(p \rightarrow q), \neg B_{i}^{t}(p \rightarrow q) \mid (p,q) \in R \text{ and } t \in T \}.$

$cl_D(S)$

Given $S \subseteq \mathcal{B}_{AF}^{T}$, define $cl_{D}(S) \subseteq \mathcal{B}_{AF}^{T}$ as the smallest set of belief atoms satisfying the following conditions:

- $I S \subseteq cl_D(S).$
- 2 If $B_a^t p \in cl_D(S)$ and $B_a^t(p \to q) \in cl_D(S)$ then $\neg B_a^{t+1} q \in cl_D(S)$.
- If $B_a^{t+1}q \in cl_D(S)$ and $B_a^t(p \to q) \in cl_D(S)$ then $\neg B_a^t p \in cl_D(S)$.
- If $B_a^t p \in cl_D(S)$ and $B_a^{t+1} q \in cl_D(S)$ then $\neg B_a^t(p \to q) \in cl_D(S)$.
- **●** If $B_a^t \alpha \in cl_D(S)$ and $\{B_a^{t+1} \alpha\} \cup cl_D(S)$ is consistent, then $B_a^{t+1} \alpha \in cl_D(S)$.
- If $\neg B_a^t \alpha \in cl_D(S)$ and $\{\neg B_a^{t+1} \alpha\} \cup cl_D(S)$ is consistent, then $\neg B_a^{t+1} \alpha \in cl_D(S)$.

Dynamic belief extension

Given AF = (A, R), define $R_D = R \cup \{ (\neg B_i^t p_j, p_j), (\neg B_i^t p_j, B_i^t p_j), (B_i^t p_j, \neg B_i^t p_j) | p_j \in A, i, j \in \{a, b\}, and t \in T \}, cl_D(S)_A = cl_D(S) \cap \{ B_i^t p, \neg B_i^t p | p \in A, i \in \{a, b\}, t \in T \}, cl_D(S)_R = cl_D(S) \cap \{ B_i^t (p \to q), \neg B_i^t (p \to q) | (p \to q) \in R, i \in \{a, b\}, t \in T \}.$

dynamic belief extension

Let $\Delta = (\Gamma_a, \Gamma_b)$ be a dialogue where $\Gamma_a = (AF, S_a)$ and $\Gamma_b = (AF, S_b)$. A pair (E, F) is a dynamic σ belief extension (or σ -DBE for short) of Δ if - E is a σ extension of AF = (X, Y) where $X = A \cup cl_D(S_a)_A$; $Y = ((X \times X) \cap R_D) \setminus \{(p \to q) \mid \neg B_a^t(p \to q) \in cl_D(S_a)_R\}$. - F is a σ extension of AF = (X, Y) where $X = A \cup cl_D(S_b)_A$; $Y = ((X \times X) \cap R_D) \setminus \{(p \to q) \mid \neg B_b^t(p \to q) \in cl_D(S_b)_R\}$.

Example (1)

Consider a dialogue $\Delta = (\Gamma_a, \Gamma_b)$ with $\Gamma_a = (AF, \{B_a^1(p_a \rightarrow q_b), B_a^1p_a\})$ and $\Gamma_b = (AF, \{B_b^1(p_a \rightarrow q_b), B_b^0q_b, B_b^1p_a\})$ where $AF = (\{p_a, q_b\}, \{(p_a, q_b)\}).$

- At t = 0, b makes an argument q_b and she believes it.
- At t = 1, a makes a counter-argument p_a with the attack $p_a \rightarrow q_b$, and he believes them.
- At t = 1, b also believes the argument p_a and the attack $p_a \rightarrow q_b$.

$$B_{b}^{0}q_{b} \qquad B_{a}^{1}p_{a} \qquad B_{b}^{1}p_{a}$$

$$q_{b} \qquad P_{a} B_{a}^{1} q_{b} \qquad P_{a} B_{b}^{1} q_{b}$$

$$t = 0 \qquad t = 1$$

Example (2)

- **1** $B_a^1 p_a$ and $B_a^1 (p_a \to q_b)$ imply $\neg B_a^2 q_b$ by (**BC**).
- **2** $B_b^1 p_a$ and $B_b^1 (p_a \to q_b)$ imply $\neg B_b^2 q_b$ by (**BC**).
- **(a)** $B_a^1 p_a$ and $B_b^1 p_a$ respectively imply $B_a^2 p_a$ and $B_b^2 p_a$ by (**IR**).
- **5** $B_a^1(p_a \to q_b)$ and $B_b^1(p_a \to q_b)$ respectively imply $B_a^2(p_a \to q_b)$ and $B_b^2(p_a \to q_b)$ by (**IR**).
- **6** $B_b^1 q_b$ does **not** imply $B_b^2 q_b$ by (**IR**) and (2).

As a result, Δ has the σ -DBE (E, F) such that $E = \{p_a, B_a^1 p_a, B_a^2 p_a, \neg B_a^2 q_b\}$ and $F = \{p_a, B_b^0 q_b, B_b^1 q_b, B_b^1 p_a, B_b^2 p_a, \neg B_b^2 q_b\}.$

Deception

Consider a dialogue $\Delta = (\Gamma_a, \Gamma_b)$ with $\Gamma_a = (AF, \{B_a^1(p_a \to q_b), \neg B_a^1p_a\})$ and $\Gamma_b = (AF, \{B_b^1(p_a \to q_b), B_b^0q_b, B_b^1p_a\}).$

The belief state of each agent is computed as follows.

- **1** $B_b^1 p_a$ and $B_b^1 (p_a \to q_b)$ imply $\neg B_b^2 q_b$ by (**BC**).
- 2 $B_b^0 q_b$ implies $B_b^1 q_b$ by (IR).
- **(a)** $\neg B_a^1 p_a$ and $B_b^1 p_a$ respectively imply $\neg B_a^2 p_a$ and $B_b^2 p_a$ by (IR).
- ^(a) $B_a^1(p_a \to q_b)$ and $B_b^1(p_a \to q_b)$ respectively imply $B_a^2(p_a \to q_b)$ and $B_b^2(p_a \to q_b)$ by (**IR**).
- **5** $B_b^1 q_b$ does **not** imply $B_b^2 q_b$ by (**IR**) and (1).

As a result, Δ has the σ -DBE (E, F) such that $E = \{\neg B_a^1 p_a, \neg B_a^2 p_a, q_b\}$ and $F = \{p_a, B_b^0 q_b, B_b^1 q_b, B_b^1 p_a, B_b^2 p_a, \neg B_b^2 q_b\}.$ As a result, *b* accepts the argument p_a and *a* successfully deceives *b* by lying.

Final remarks

- The AFB is used for representing **belief states of players** and the **audience** of argumentation.
- In two-persons dialogue, AFB can distinguish belief states of (in)sincere players. Belief change of a player is represented by dynamic belief extensions that can also model deceptive dialogues.
- Inner conflicts of an agent are expressed using **nested** beliefs, and self-deception is realized by belief extensions of AF with nested belief (AFNB).
- An interesting research issue is to represent and reason about argument and belief using structured argumentation.