
Combining Answer Sets of
Nonmonotonic Logic Programs

Chiaki Sakama
Wakayama University

Katsumi Inoue
National Institute of Informatics

Compositionality of
Logic Programs

• A desirable feature for declarative knowledge
representation languages is compositionality in
its semantics.

• A semantics is compositional if the
meaning of a program can be obtained
from the meaning of its components.

Compositionality of
Logic Programs

• Semantics of LPs is not compositional wrt the union
of programs even for definite programs.

• For instance, two programs P1 ={ p ← q } and
P2 ={ q ← } have the least models Φ and {q},
respectively. But the least model of P1 ∪ P2 is
not obtained by the composition of Φ and {q}.

• To solve the problem, a number of different
compositional semantics for definite programs
are proposed.

Combining Knowledge in
Multi-Agent Systems

• In MAS different knowledge/belief of agents
are combined/coordinated to solve problems
cooperatively/collaboratively.

• Individual agents in MAS have incomplete
information, so combining multiple knowledge
is formulated as the problem of composing
different nonmonotonic theories.

Difficulty of Composing
Nonmonotonic Theories

• “Nonmonotonic reasoning and
compositionality are intuitively orthogonal
issues that do not seem easy to be reconciled.
Indeed the semantics for extended logic
programs are typically non-compositional
w.r.t. program union” [Brogi, 2004].

Example

• There is a trouble in a system which consists of
three components c1, c2, and c3.

• After some diagnoses, an expert E1 concludes
that the trouble would be caused by either c1 or
c2. Another expert E2 concludes that it would be
caused by either c2 or c3.

• E1 has no knowledge on the component c3, and
E2 has no knowledge on c1.

Example – cont.

• Two experts’ diagnoses are encoded as:
E1: c1 ; c2 ←

E2: c2 ; c3 ←
• Merging these programs, E1 ∪ E2 has two answer

sets: { c2 } and { c1, c3 }.
• The first one is the common solution, while the second

one is cooperative. Two solutions have different
grounds and would be acceptable to each expert.

Example – cont.

• E1 knows that c1 is older than c2, so c1 is more likely
to disorder. On the other hand, E2 knows that c2 is
more fragile than c3 and is more likely to cause the
trouble. Two experts then modify their diagnoses as:

E1’: c1 ← not c2, c2 ←￢ c1
E2’: c2 ← not c3, c3 ←￢ c2

• Merging two programs, E1’ ∪ E2’ has the single
answer set: { c2 }, which reflects the result of diagnoses
of E2’ but does not reflect E1’.

Problem

• E1’ puts weight on c1 relative to c2, and E2’ puts
weights on c2 relative to c3.

• Simple merging has the effect of preferring c2 to
c1 as c2 is included in a relatively lower stratum
than c1.

• However, there is no reason to conclude c2 as the
plausible solution. Because the local preference
in E1’ or E2’ does not necessarily imply the
global preference in E1’ ∪ E2’.

Purpose

• Composition of nonmonotonic theories is not
achieved by simple program union.

• The problem is then how to build a
compositional semantics of NM theories.

• In this study we consider composition of
extended disjunctive programs (EDP) under
the answer set semantics.

Extended Disjunctive Program

• A program consists of rules of the form:
L1 ; … ; Ll ← Ll+1 ,…, Lm , not Lm+1 ,…, not Ln

where Li is a literal and not represents NAF.
A program is NAF-free if it contains no NAF.

• For each rule r of the above form,
head(r) = { L1 ,…, Ll }, body+(r) = { Ll+1 ,…,
Lm }, and body-(r)={ Lm+1 ,…, Ln }.

Answer Sets

• For an NAF-free EDP P, a set S is an answer
set of P if it is a minimal set satisfying every
rule in P and is logically closed
(i.e., S=Lit if S is contradictory).

• For any EDP P, a set S is an answer set of P if
S is an answer set of the reduct sP. Here, the
rule head(r) ∩S ← body+(r) is included in sP
if body+(r) ⊆S and body-(r) ∩S = Φ for any
rule r in the ground instantiation of P.

Remark

• The definition of reduct is different from the
original one in [Gelfond&Lifschitz, 1991]. In
GL-reduction, the rule head(r) ← body+(r) is
included in the reduct Ps if body-(r) ∩S = Φ.

• Two reducts produce the same answer sets, i.e.,
for any EDP P, S is an answer set of sP iff S is
an answer set of Ps.

Example

P: p ; q ← , q ← p, r ← not p .
For S={ q, r }, Ps becomes

Ps : p ;q ← , q ← p, r ← ,
while sP becomes

sP : q ← , r ← .
Two reducts produce the same answer set S.

Combining Answer Sets

• Let S and T be two sets of literals. Then, define
S ∪ T = S ∪ T, if S ∪ T is consistent;

Lit , otherwise.
• Let AS(P) be the set of answer sets of P. Then,

define
AS(P1) ∪ AS(P2) =

{ S ∪ T | S ∈AS(P1) and T ∈AS(P2) }.

+

+
+

Compositional Semantics

• Given two consistent programs P1 and P2 ,
the program Q satisfying

AS(Q) = min(AS(P1) ∪ AS(P2))
is called a composition of P1 and P2.

• The set AS(Q) is called the compositional
semantics of P1 and P2 .

+

Example

For AS(P1) = { {p} , {q} } and
AS(P2) = { {p}, {r} },
the compositional semantics becomes
AS(Q) = {{p}, {q, r}}.

Properties

• Let P1 and P2 be two consistent programs,
and Q a result of composition. Then,
for any S∈AS(Q), there is T∈AS(Pi) for i=1,2
such that T⊆ S.

† Every answer set in the compositional
semantics extends some answer sets of the
original programs.

Properties
Def. Let P1 and P2 be two consistent programs,

and Q a result of composition. When
AS(Q)=AS(P1), P1 absorbs P2.

† When one program absorbs another program,
the compositional semantics coincides with
one of the original programs.

• P1 absorbs P2 iff for any S∈AS(P1) there is
T∈AS(P2) such that T⊆ S.

Properties

Def. A literal L is a consequence of credulous/skeptical
reasoning in P (written as L∈crd(P) / L∈skp(P))
if L is included in some/every answer set of P.

• Let P1 and P2 be two consistent programs. When a
result Q of composition is consistent,

1. crd(Q) = crd(P1) ∪ crd(P2) ;
2. skp(Q) = skp(P1) ∪ skp(P2).

† A consistent compositional semantics combines
skeptical consequences of P1 and P2 , and any
information included in an answer set of Q has its
origin in an answer set of either P1 or P2 .

Properties

† Composition of consistent programs may
become inconsistent.

ex) Composing AS(P1)={{p}} and
AS(P2)={{￢p}} becomes AS(Q)={ Lit }.

• Let P1 and P2 be consistent programs, and Q a
result of composition. Then, Q is consistent iff
there are S∈AS(P1) and T∈AS(P2) such that
S ∪ T is consistent.

Composing Programs

• Given programs P1 ,..., Pk , define
P1 ; … ; Pk = {

head(r1) ; … ; head(rk) ← body(r1),...,body(rk)
| ri∈Pi (1≤i≤k) }.

• Let P1 and P2 be two consistent programs s.t.
AS(P1)={ S1,...,Sm } and AS(P2)={ T1,...,Tn }.
Then, define

P1 ◎ P2 = R(S1,T1); … ; R(Sm,Tn)
where R(S,T)=SP1 ∪ TP2 and R(S1,T1),...,R(Sm,Tn) is
any enumeration of the R(Si,Tj)’s for Si∈AS(P1)
(i=1,...,m) and Tj∈AS(P2) (j=1,...,n).

Example (1)

P1: p ← not q, q ← not p, s ← p
P2: p ← not r , r ← not p
where AS(P1) = { {p,s}, {q} } and
AS(P2) = { {p}, {r} }.
There are four R(S,T)’s such that

R({p,s},{p}): p← , s← p
R({p,s},{r}): p← , s← p , r←
R({q},{p}): q← , p←
R({q},{r}): q← , r←

Example (2)

Then, P1◎P2 contains
p;q← , p;r← , p;q;r← , q;s← p,
q;r;s← p, p;q;s← p, p;r;s← p.

Among them, yellow rules are redundant
and eliminated, the result then becomes

p;q← , p;r← , q;s← p.

Properties

• The operation ◎ is commutative and
associative.

• For two consistent programs P1 and P2 ,
AS(P1 ◎ P2) = min(AS(P1) ∪ AS(P2)).+

Composition vs. Merging

• For two consistent NAF-free EDPs P1 and P2 ,
if P1 ∪ P2 is consistent, P1 ◎ P2 is consistent.

• For two consistent NAF-free ELPs P1 and P2 ,
P1 ◎ P2 ⊆ P1 ∪ P2 .

• For two consistent NAF-free ELPs P1 and P2 ,
U ⊆ V holds for the answer set U of P1 ◎ P2
and the answer set V of P1 ∪ P2 .

Compositional Semantics for
Multi-Agent Coordination.

Let P1 and P2 be two consistent programs, and
Q a result of composition. Then, any answer
set S ∈AS(Q) is conservative if it satisfies
every rule in P1 ∪ P2.

Example

P1: p ← not q, q ← not p, s ← p
P2: p ← not r , r ← not p
where AS(P1) = { {p,s}, {q} } and
AS(P2) = { {p}, {r} }.
The compositional semantics is
AS(Q)={{p,q}, {p,s}, {q,r}}.
Among them, {p,s} and {q,r} satisfy every
rule in P1 ∪ P2 , so they are conservative.
Note: {p,q} does not satisfy s ← p in P1 .

Notes

• Conservative answer sets are acceptable to each
agent because they satisfy the original programs.

• Conservative answer sets do not always exist in
compositional semantics.

• We introduce a permissible version of
compositional semantics that retains persistent
beliefs of each agent in coordination.

Persistent Beliefs

• Persistent Beliefs in a program P are
distinguished as PB ⊆ P where PB is the set of
rules that should be satisfied by the
compositional semantics.

Permissible Composition

• Let P1 and P2 be two consistent programs, and
PB1 and PB2 their persistent beliefs, respectively.
A program Ω is called permissible composition of
P1 and P2 if it satisfies the condition:

• AS(Ω) = { S | S ∈ min(AS(P1) ∪ AS(P2)) and
S satisfies PB1 ∪ PB2 }.

• The set AS(Ω) is called the permissible
compositional semantics of P1 and P2 .

• Any answer set in AS(Ω) is called a permissible
answer set.

+

Properties

• The permissible compositional semantics
reduces to the compositional semantics
when PB1 ∪ PB2 =Φ .

• Conservative answer sets are permissible
answer sets with PB1 ∪ PB2 = P1 ∪ P2.

• Every permissible answer set satisfies
persistent beliefs of each agent, and extends
some answer sets of an agent by additional
information of another agent.

Program Composition for
Permissible Semantics

• Let P1 and P2 be two consistent programs,
and Ω a result of permissible composition.
Then, AS(Ω)
= AS((P1◎ P2) ∪ IC(PB1) ∪ IC(PB2)),
where IC(PB)={← body(r), not_head(r)

| head(r)← body(r) ∈ PB }
and not_head(r) = { not L1 ,..., not Ll } for
head(r)={ L1 ,..., Ll }.

Example

P1: p ← not q, q ← not p, s ← p,
P2: p ← not r , r ← not p.
Let PB1={ s ← p } and PB2= Φ . Then,
(P1◎ P2) ∪ IC(PB1) ∪ IC(PB2) becomes
p;q ← , p;r ←, q; s ← p, ← p, not s,
which has two permissible answer sets
{p,s} and {q,r}.

Final Remarks

• Simple union of different programs does not
reflect the meaning of individual programs.

• We then took an approach of retaining belief of
each agent and combine answer sets of different
programs.

• Program composition should be distinguished
from revision or update, where one of the two
information sources is known more reliable.

Final Remarks

• From the viewpoint of answer set programming,
program composition is considered a program
development under a specification that requests
a program reflecting the meanings of two or
more programs.

• Future work includes investigation of other
types of program composition for multi-agent
coordination, and their characterization in
computational logic.

	 Combining Answer Sets of �Nonmonotonic Logic Programs�
	Compositionality of Logic Programs
	Compositionality of Logic Programs
	Combining Knowledge in �Multi-Agent Systems
	Difficulty of Composing �Nonmonotonic Theories
	Example
	Example – cont.
	Example – cont.
	 Problem
	Purpose
	Extended Disjunctive Program
	Answer Sets
	Remark
	Example
	Combining Answer Sets
	Compositional Semantics
	Example
	Properties
	Properties
	Properties
	Properties
	Composing Programs
	Example (1)
	Example (2)
	Properties
	Composition vs. Merging
	Compositional Semantics for Multi-Agent Coordination.
	Example
	Notes
	Persistent Beliefs
	Permissible Composition
	Properties
	Program Composition for Permissible Semantics
	Example
	Final Remarks
	Final Remarks

