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Compositionality of             
Logic Programs

• A desirable feature for declarative knowledge 
representation languages is compositionality in 
its semantics. 

• A semantics is compositional if the 
meaning of a program can be obtained 
from the meaning of its components.  



Compositionality of             
Logic Programs

• Semantics of LPs is not compositional wrt the union 
of programs even for definite programs. 

• For instance, two programs P1 ={  p ← q } and 
P2 ={ q ← } have the least models Φ and {q}, 
respectively.  But the least model of P1 ∪ P2 is 
not obtained by the composition of Φ and {q}. 

• To solve the problem, a number of different 
compositional semantics for definite programs 
are proposed. 



Combining Knowledge in 
Multi-Agent Systems

• In MAS different knowledge/belief of agents 
are combined/coordinated  to solve problems 
cooperatively/collaboratively. 

• Individual agents in MAS have incomplete 
information, so combining multiple knowledge  
is formulated as the problem of composing 
different nonmonotonic theories. 



Difficulty of Composing  
Nonmonotonic Theories

• “Nonmonotonic reasoning and 
compositionality are intuitively orthogonal 
issues that do not seem easy to be reconciled. 
Indeed the semantics for extended logic 
programs are typically non-compositional 
w.r.t. program union” [Brogi, 2004]. 



Example

• There is a trouble in a system which consists of  
three components c1, c2, and c3. 

• After some diagnoses, an expert E1 concludes 
that the trouble would be caused by either c1 or 
c2. Another expert E2 concludes that it would be 
caused by either c2 or c3. 

• E1 has no knowledge on the component c3, and  
E2 has no knowledge on c1. 



Example – cont.

• Two experts’ diagnoses are encoded as: 
E1:     c1 ; c2 ←

E2:     c2 ; c3 ←
• Merging these programs, E1 ∪ E2 has two answer 

sets:      {  c2 }  and { c1,  c3 }. 
• The first one is the common solution, while the second 

one is cooperative. Two solutions have different 
grounds and would be acceptable to each expert. 



Example – cont.

• E1 knows that  c1 is older than c2, so c1 is more likely 
to disorder.  On the other hand, E2 knows that c2 is 
more fragile than c3 and is more likely to cause the 
trouble.   Two experts then modify their diagnoses as: 

E1’:     c1 ← not c2, c2 ←￢ c1
E2’:     c2 ← not c3, c3 ←￢ c2 

• Merging two programs, E1’ ∪ E2’ has the single 
answer set: {  c2 }, which reflects the result of diagnoses 
of E2’ but does not reflect E1’. 



Problem

• E1’ puts weight on c1 relative to c2, and E2’ puts 
weights on c2 relative to c3. 

• Simple merging has the effect of preferring c2 to 
c1 as  c2 is included in a relatively lower stratum 
than c1. 

• However, there is no reason to conclude c2 as the 
plausible solution.  Because the local preference 
in E1’ or E2’ does not necessarily imply the 
global preference in E1’ ∪ E2’. 



Purpose

• Composition of nonmonotonic theories is not 
achieved by simple program union.  

• The problem is then how to build a 
compositional semantics of NM theories. 

• In this study we consider composition of 
extended disjunctive programs (EDP) under     
the  answer set semantics. 



Extended Disjunctive Program

• A program consists of rules of the form: 
L1 ; … ; Ll ← Ll+1 ,…, Lm , not Lm+1 ,…, not Ln

where Li is a literal and not represents NAF.         
A program is NAF-free if it contains no NAF. 

• For each rule  r of the above form,                      
head(r) = { L1 ,…, Ll },  body+(r) = { Ll+1 ,…,
Lm }, and  body-(r)={ Lm+1 ,…, Ln }. 



Answer Sets

• For an NAF-free EDP P, a set S is an answer 
set of P if it is a minimal set satisfying every 
rule in P and is logically closed                    
(i.e., S=Lit  if S is contradictory).  

• For any EDP P, a set S is an answer set of P if 
S is an answer set of the reduct sP.  Here, the 
rule head(r) ∩S ← body+(r) is included in sP
if body+(r) ⊆S and body-(r) ∩S = Φ for any 
rule r in the ground instantiation of P. 



Remark

• The definition of reduct is different from the 
original one in [Gelfond&Lifschitz, 1991]. In 
GL-reduction, the rule head(r) ← body+(r) is 
included in the reduct Ps if body-(r) ∩S = Φ. 

• Two reducts produce the same answer sets, i.e.,  
for any EDP P, S is an answer set of sP iff S is 
an answer set of Ps. 



Example

P:    p ; q ← ,    q ← p,     r ← not p .  
For S={ q, r }, Ps becomes 

Ps :   p ;q ← ,    q ← p,    r ← ,  
while sP becomes

sP :   q ← ,    r ← . 
Two reducts produce the same answer set S.



Combining Answer Sets

• Let S and T be two sets of literals. Then, define     
S ∪ T =        S ∪ T,  if  S ∪ T is consistent; 

Lit ,   otherwise. 
• Let AS(P) be the set of answer sets of  P. Then, 

define  
AS(P1) ∪ AS(P2)  =

{ S ∪ T  |  S ∈AS(P1) and T ∈AS(P2) }. 

+

+
+



Compositional Semantics

• Given  two consistent programs P1 and P2 , 
the program Q satisfying 

AS(Q) = min(AS(P1) ∪ AS(P2) )
is called a composition of P1 and P2.

• The set AS(Q) is called the compositional 
semantics of P1 and P2 .

+



Example

For   AS(P1) = { {p} , {q} }  and  
AS(P2) = { {p}, {r} }, 
the compositional semantics becomes
AS(Q) = {{p}, {q, r}}. 



Properties 

• Let P1 and P2 be two consistent programs,    
and Q a result of composition.  Then,             
for any S∈AS(Q), there is T∈AS(Pi) for i=1,2 
such that T⊆ S. 

† Every answer set in the compositional 
semantics extends some answer sets of the 
original programs.



Properties
Def.  Let P1 and P2 be two consistent programs, 

and Q a result of composition. When 
AS(Q)=AS(P1),  P1 absorbs P2.

† When one program absorbs another program, 
the compositional semantics coincides with 
one of the original programs.

• P1 absorbs P2 iff for any S∈AS(P1) there is 
T∈AS(P2) such that T⊆ S. 



Properties 

Def. A  literal L is a consequence of credulous/skeptical  
reasoning in P (written as L∈crd(P) / L∈skp(P) )     
if  L is included in some/every answer set of P.

• Let P1 and P2 be two consistent programs. When a 
result Q of composition is consistent, 

1.  crd(Q) = crd(P1) ∪ crd(P2) ;
2.  skp(Q) = skp(P1) ∪ skp(P2). 

† A consistent compositional semantics combines 
skeptical consequences of P1 and P2 , and any 
information included in an answer set of Q has its 
origin in an answer set of either P1 or P2 .



Properties 

† Composition of consistent programs may 
become inconsistent. 

ex) Composing AS(P1)={{p}} and 
AS(P2 )={{￢p}} becomes AS(Q)={ Lit }.  

• Let P1 and P2 be consistent programs, and Q a 
result of composition. Then, Q is consistent iff
there are S∈AS(P1) and T∈AS(P2) such that 
S ∪ T is consistent. 



Composing Programs

• Given programs P1 ,..., Pk , define  
P1 ; … ; Pk = {        

head(r1) ; … ; head(rk) ← body(r1),...,body(rk)
|  ri∈Pi (1≤i≤k) }.   

• Let P1 and P2 be two consistent programs s.t. 
AS(P1 )={ S1,...,Sm } and AS(P2)={ T1,...,Tn }.          
Then,  define 

P1 ◎ P2 = R(S1,T1); … ; R(Sm,Tn)
where R(S,T)=SP1 ∪ TP2 and R(S1,T1),...,R(Sm,Tn) is 
any enumeration of the R(Si,Tj)’s for Si∈AS(P1) 
(i=1,...,m) and Tj∈AS(P2) (j=1,...,n).



Example (1)

P1:   p ← not q,    q ← not p,    s ← p   
P2:   p ← not r ,   r ← not p
where AS(P1) = { {p,s}, {q} } and    
AS(P2) = { {p}, {r} }. 
There are four R(S,T)’s such that 

R({p,s},{p}):   p← ,   s← p 
R({p,s},{r}):   p← ,   s← p ,   r←
R({q},{p}):     q← ,   p←
R({q},{r}):    q← ,   r←



Example (2)

Then, P1◎P2 contains 
p;q← ,   p;r← ,   p;q;r← ,  q;s← p,   
q;r;s← p,   p;q;s← p,   p;r;s← p. 

Among them, yellow rules are redundant 
and eliminated, the result then becomes 

p;q← ,   p;r← ,   q;s← p.



Properties

• The operation ◎ is commutative and 
associative. 

• For two consistent programs P1 and P2 , 
AS(P1 ◎ P2) = min(AS(P1) ∪ AS(P2)).+



Composition vs. Merging

• For two consistent NAF-free EDPs P1 and P2 , 
if P1 ∪ P2 is consistent, P1 ◎ P2 is consistent. 

• For two consistent NAF-free ELPs P1 and P2 ,  
P1 ◎ P2 ⊆ P1 ∪ P2 . 

• For two consistent NAF-free ELPs P1 and P2  , 
U ⊆ V holds for the answer set U of  P1 ◎ P2
and the answer set V of P1 ∪ P2 . 



Compositional Semantics for     
Multi-Agent Coordination. 

Let P1 and P2 be two consistent programs, and 
Q a result of composition. Then, any answer 
set S ∈AS(Q) is conservative if it satisfies 
every rule in P1 ∪ P2.



Example 

P1:   p ← not q,    q ← not p,    s ← p            
P2:   p ← not r ,   r ← not p
where AS(P1) = { {p,s}, {q} } and    
AS(P2) = { {p}, {r} }. 
The compositional semantics is 
AS(Q)={{p,q}, {p,s}, {q,r}}.             
Among them, {p,s} and {q,r} satisfy every 
rule in P1 ∪ P2 , so they are conservative. 
Note: {p,q} does not satisfy  s ← p  in P1 .



Notes

• Conservative answer sets are acceptable to each 
agent because they satisfy the original programs.

• Conservative answer sets do not always exist in 
compositional semantics.

• We introduce a permissible version of 
compositional semantics that retains persistent 
beliefs of each agent in coordination. 



Persistent Beliefs

• Persistent Beliefs in a program P are 
distinguished as PB ⊆ P where PB is the set of 
rules that should be satisfied by  the 
compositional semantics. 



Permissible Composition

• Let P1 and P2 be two consistent programs, and    
PB1 and PB2 their persistent beliefs, respectively.          
A program Ω is called permissible composition of 
P1 and P2 if it satisfies the condition: 

• AS(Ω) = { S | S ∈ min(AS(P1) ∪ AS(P2) ) and     
S satisfies PB1 ∪ PB2 }.

• The set AS(Ω) is called the permissible 
compositional semantics of P1 and P2 .

• Any answer set in AS(Ω) is called a permissible 
answer set.  

+



Properties

• The permissible compositional semantics 
reduces to the compositional semantics  
when  PB1 ∪ PB2 =Φ . 

• Conservative answer sets are permissible 
answer sets with  PB1 ∪ PB2 = P1 ∪ P2.

• Every permissible answer set satisfies 
persistent beliefs of each agent, and extends 
some answer sets of an agent by additional 
information of another agent. 



Program Composition for 
Permissible Semantics

• Let P1 and P2 be two consistent programs, 
and Ω a result of permissible composition. 
Then,  AS(Ω) 
= AS( (P1◎ P2) ∪ IC(PB1) ∪ IC(PB2)  ),
where IC(PB)={← body(r), not_head(r)

|  head(r)← body(r) ∈ PB } 
and not_head(r) = { not L1 ,..., not Ll } for 
head(r)={ L1 ,..., Ll }. 



Example 

P1:   p ← not q,    q ← not p,    s ← p,           
P2:   p ← not r ,   r ← not p. 
Let PB1={ s ← p } and PB2= Φ .  Then, 
(P1◎ P2) ∪ IC(PB1) ∪ IC(PB2)  becomes     
p;q ← ,    p;r ←,    q; s ← p,  ← p, not s, 
which has two permissible answer sets 
{p,s} and {q,r}.



Final Remarks

• Simple union of different programs does not 
reflect the meaning of individual programs. 

• We then took an approach of retaining belief of 
each agent and combine answer sets of different 
programs. 

• Program composition should be distinguished 
from revision or update, where one of the two 
information sources is known more reliable. 



Final Remarks

• From the viewpoint of answer set programming, 
program composition is considered a program 
development under a specification that requests 
a program reflecting the meanings of  two or 
more programs.

• Future work includes investigation of other 
types of program composition for multi-agent 
coordination,  and their characterization in 
computational logic. 
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