
Learning by Answer Sets

Chiaki Sakama
Wakayama University, Japan

Presented at AAAI Spring Symposium on 
Answer Set Programming, March 2001



Inductive Logic 
Programming (ILP)

Goal: Inductive construction of first-
order clausal theories from examples 
and background knowledge.

State of the art: mostly handles Horn 
logic programs or classical clausal 
theories as background knowledge.



Problems of Horn Logic 
Programs

Horn logic programs are monotonic, i.e.,  
adding a new sentence to a program 
never invalidates previous conclusion. 
Horn LPs are not sufficiently expressive 
to represent incomplete knowledge and 
do not characterize nonmonotonic
human thinking. 



Nonmonotonic Logic 
Programs (NMLP)

Goal: Representing incomplete 
knowledge and reasoning with  
commonsense. 

State of the art: non-Horn extensions 
of logic programming such as 
programs with negation as failure, 
explicit negation, disjunction, 
hypothesis, etc. 



Nonmonotonicity in 
Induction

Induction is nonmonotonic in the sense that 
once induced hypotheses might be changed 
by the introduction of new evidence.  
Induction problems assume background 
knowledge which is incomplete, otherwise 
there is no need to learn.

Representing and reasoning with 
incomplete knowledge are vital issues in ILP.



Limitations of Horn ILP

Negation as failure (NAF) is useful to 
effectively specify exceptions.  

B:  bird(x) ← penguin(x).          
bird(a).  bird(b).  bird(c).  penguin(d).

positive ex.:  fly(a), fly(b), fly(c). 
negative ex.:  fly(d).
a possible hypothesis:

fly(x) ← bird(x), not penguin(x).
It would require indirect and unsuccinct
representaion to specify the same 
hypothesis using a Horn program.



Limitations of Horn ILP

Negation as failure appears in many 
basic and practical Prolog programs.

e.g.  Computing set differences:              
diffR-S(X) ← R(X), not S(X).

Horn ILP cannot handle a program 
containing such a rule with NAF.



NMR

NMILP provides a framework for realizing both 
commonsense reasoning and inductive learning.
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NMILP: Perspectives

Extend the representation language
Enable reasoning and learning from 
default knowledge
Use well-established theoretical and 
procedural tools in NMLP
Open new applications in nonmonotonic
problems



What is the problem for 
NMILP?

NMLP is different from classical logic, 
then existing techniques of Horn ILP 
are not directly applicable to NMILP. 
Extension of the present framework 
and introduction of new techniques 
for NMILP are necessary. 



Purpose of this Research

Consider extended logic programs
(ELP) as background KB
Build a theory of nonmonotonic
inductive logic programming
Develop a procedure for inducing  
nonmonotonic rules to explain 
positive/negative examples



Contents of This Talk

Preliminary Definitions
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Discussion



Preliminary Definitions 

An extended logic program (ELP) is a set of 
rules of the form:
L0 ← L１ ,…, Lm, not Lm+1 ,…, not Ln

where not represents negation as failure(NAF)
pred(L) denotes the predicate of L, and 
const(L) denotes the set of constants in L. 
The semantics of an ELP is given by the 
answer set semantics (Gelfond&Lifschitz).



Preliminary Definitions 

A program is consistent if it has a 
consistent answer set. 
A consistent program which has a 
single answer set is called categorical.
When a rule R is satisfied in every 
answer set of a program P, it is 
written as P |= R.



Preliminary Definitions 

A literal L or an NAF formula not L is 
called an LP-literal.
Let Lit be the set of all ground literals 
and S⊆Lit, then define                         

S+= S ∪ { not L | L ∈ Lit＼S }.
For an LP-literal K, 
|K|=K if K is a literal; 
|K|=L if K=not L. 



Learning from Positive 
Examples: Problem Setting

Given:
a background knowledge base P as 
a function-free & categorical ELP
a positive example L as a ground 
literal s.t. P|≠Ｌ

Find: a rule R satisfying: P∪{R} |= Ｌ



Proposition

Let P be a program and R a rule s.t.      
P ∪ {R} is consistent. 

For any ground literal L, P ∪ {R} |= Ｌ
and P |= R imply P |= L.



Relevance

For two ground LP-literals L1 and L2,    
L1~L2 if pred(L1)=pred(L2) and 
const(L1)=const(L2)．
Let L be a ground LP-literal and S a set of 
ground LP-literals. L1 in S is relevant to L if 
either (i) L1~L or (ii) L1 shares a constant 
with L2 in S where L2 is relevant to L. 
L is involved in a program P if |L| appears 
in the ground instance of P.



Constructing Hypothesis

Let S be the answer set of P.      
Then, P∪{R} |= L and P |≠ L imply P |≠ R 

(by Proposition), thereby 
S |≠ R .

Consider the integrity constraint 
← Γ

where Γ is the set of ground LP-literals in 
S+ s.t. every element in Γ is relevant to  
L and is involved in P∪{L}.



Constructing Hypotheses

As S does not satisfy the constraint, 
S  |≠ ← Γ.

By S|≠L, not L is in S+ and also in Γ.
Shifting L to the head, we get

L ← Γ’
where Γ’=Γ＼{ not L }.
Finally, construct a rule R* s.t. 
R*θ = L ← Γ’ for some substitution θ .



Example

Ｐ： bird(x)← penguin(x),
bird(tweety)←, penguin(polly)←.

L: flies(tweety). 
Initially, P|≠flies(tweety).
S+={bird(t), bird(p), peng(p),             

not peng(t), not flies(t), not flies(p),
not￢ bird(t/p), not￢ peng(t/p), 
not￢ flies(t/p) }  ( t/p means t or p).



Example (cont.)

Picking up LP-literals which are relevant 
to L and are involved in P ∪{L}: 

← bird(t),not peng(t),not flies(t).
Shifting L=flies(t) to the head:

flies(t)← bird(t), not peng(t).
Replacing tweety by a variable x:
R*= flies(x)← bird(x), not peng(x)

where P ∪{R*} |= flies(tweety) holds. 



Correctness Theorem

A rule R is negative-cycle-free if for 
any not L in body(R), 

pred(L)≠ pred(head(R)). 
Let P be a categorical program,         

L a ground literal, and R* a rule 
obtained as above. If R* is negative-
cycle-free and pred(L) appears 
nowhere in P, then P∪ {R*} |= Ｌ.



Learning from Negative 
Examples: Problem Setting

Given:
a background knowledge base P as 
a function-free & categorical ELP
a negative example L as a ground 
literal s.t. P|=Ｌ

Find: a rule R satisfying:
P∪ {R} |≠ Ｌ



Target Predicate
A target predicate is a pre-specified 
predicate which is subject to learn. 
In case of positive examples, a target 
predicate is identified with the one 
appearing in the example. 
In case of negative examples, a negative 
example L is already entailed from P. The 
purpose is then to block the derivation of 
L by introducing some rule R to P. 
We set a target predicate which is 
different from the one appearing in L. 



Selection of Target Predicate

In a predicate dependency-graph,           
p1 strongly depends on p2 if for any path 
containing p1, p1 depends on p2. 
p1 negatively depends on p2 if any path 
from p1 to p2 contains an odd number of 
negative edges. 
We select a target predicate from 
predicates in P on which pred(L) strongly 
and negatively depends. 



Proposition

Let P be a program and R a rule s.t.   
P ∪ {R} is consistent. 

For any ground literal L, P ∪ {R} |≠ Ｌ
and P |= R imply P |≠ L.



Constructing Hypothesis

Let S be the answer set of P.      
Then, P∪{R} |≠ L and P |＝ L imply P |≠ R 

(by Proposition), thereby 
S |≠ R .

Consider the integrity constraint 
← Γ

where Γ is the set of ground LP-literals in 
S+ s.t. every element in Γ is relevant to  
L and is involved in P∪{L}.



Constructing Hypotheses

As S does not satisfy the constraint, 
S  |≠ ← Γ.

If Γ contains not K which has the 
target predicate, shifting K to the 
head, we get
K ← Γ’

where Γ’=Γ＼{ not K }.
Finally, construct a rule R* s.t. 
R*θ = L ← Γ’ for some substitution θ .



Example
Ｐ： bird(x)← bird(x), not ab(x), 

bird(x)← penguin(x),
bird(tweety)←, penguin(polly)←.

L: flies(polly). 
Initially, P|= flies(polly).
S+={bird(t), bird(p), peng(p), not peng(t), 

flies(t), flies(p), not ab(t), not ab(p),   
not￢ bird(t/p), not￢ peng(t/p),            
not￢ flies(t/p), not￢ ab(t/p) }.



Example (cont.)

Picking up LP-literals which are relevant 
to L and are involved in P ∪{L}: 

← bird(p),peng(p),flies(p),not ab(p).
Let ab be the target predicate on which 

flies strongly and negatively depends.  
Shifting L=ab(p) to the head:
ab(p)← bird(p),peng(p),flies(p).

Replacing polly by x:
R*= ab(x)← bird(x),peng(x),flies(x).



Example (cont.)

In this case, however, P ∪{R*} is 
inconsistent. To get a consistent 
program, dropping flies(x) from R*, 
we get 
R**= ab(x)← bird(x),peng(x)

where P ∪{R**} |≠ flies(p) holds. 
The rule R** is further simplified as 

ab(x)← peng(x)
using the second rule in P. 



Correctness Theorem

Let P be a categorical program,         
L a ground literal, and R* a rule 
obtained as above. If P∪ {R*} is 
consistent and P∪ {R*θ} |≠ Ｌ for 
some substitutionθ, then             
P∪ {R*} |≠ Ｌ.



Discussion
Learning from Multiple Ex’s
Our algorithm is applicable to 
learning from a set of examples by 
iteratively applying the procedure to 
each example. 
The result of induction depends on 
the order of examples in general.



Learning from  
Non-Categorical Programs
When a program has more than one 
answer set, different rules are induced 
by each answer set. 
For example, the program 
p(a)←not q(a),   q(a)←not p(a)

has two answer sets: {p(a)},{q(a)}.
Given the positive example r(a), applying 

the procedure to each AS produces 
r(x) ← p(x), not q(x) and
r(x) ← q(x), not p(x).



Correctness and 
Completeness

We provided sufficient conditions to 
guarantee the correctness of the procedure. 
On the other hand, the procedure is not 
complete in general. 
There exist possibly infinite solutions for 
explaining examples, so that selecting 
meaningful hypotheses is important. 
In our algorithm, conditions of relevance 
and involvement are used to filter out 
useless hypotheses. 



Computability
We consider function-free and categorical
ELPs. 
With the f-f setting, S+ is finite and the 
selection of relevant and involved literals 
from S+ is done in polynomial time. 
An important class of categorical 
programs is stratified programs.            
In a f-f stratified program, an inductive 
hypothesis R* is efficiently constructed
from S+.



Connection to Answer Set 
Programming (ASP)

ASP solves a problem by computing 
answer sets which correspond to 
solutions.  
We constructed inductive hypotheses   
by computing answer sets of an ELP. 
This enables us to use existing ASP 
solvers for computing induction in 
NMLP. 



Summary

This paper introduced a method of 
inductive learning in nonmonotonic
LPs.  
The result combines techniques of 
the two important fields of logic 
programming, NMLP and ILP, and 
contributes to a theory of NMILP. 
The paper is available from my HP:
http://www.wakayama-u.ac.jp/～sakama
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