
Learning by Answer Sets

Chiaki Sakama
Wakayama University, Japan

Presented at AAAI Spring Symposium on
Answer Set Programming, March 2001

Inductive Logic
Programming (ILP)

Goal: Inductive construction of first-
order clausal theories from examples
and background knowledge.

State of the art: mostly handles Horn
logic programs or classical clausal
theories as background knowledge.

Problems of Horn Logic
Programs

Horn logic programs are monotonic, i.e.,
adding a new sentence to a program
never invalidates previous conclusion.
Horn LPs are not sufficiently expressive
to represent incomplete knowledge and
do not characterize nonmonotonic
human thinking.

Nonmonotonic Logic
Programs (NMLP)

Goal: Representing incomplete
knowledge and reasoning with
commonsense.

State of the art: non-Horn extensions
of logic programming such as
programs with negation as failure,
explicit negation, disjunction,
hypothesis, etc.

Nonmonotonicity in
Induction

Induction is nonmonotonic in the sense that
once induced hypotheses might be changed
by the introduction of new evidence.
Induction problems assume background
knowledge which is incomplete, otherwise
there is no need to learn.

Representing and reasoning with
incomplete knowledge are vital issues in ILP.

Limitations of Horn ILP

Negation as failure (NAF) is useful to
effectively specify exceptions.

B: bird(x) ← penguin(x).
bird(a). bird(b). bird(c). penguin(d).

positive ex.: fly(a), fly(b), fly(c).
negative ex.: fly(d).
a possible hypothesis:

fly(x) ← bird(x), not penguin(x).
It would require indirect and unsuccinct
representaion to specify the same
hypothesis using a Horn program.

Limitations of Horn ILP

Negation as failure appears in many
basic and practical Prolog programs.

e.g. Computing set differences:
diffR-S(X) ← R(X), not S(X).

Horn ILP cannot handle a program
containing such a rule with NAF.

NMR

NMILP provides a framework for realizing both
commonsense reasoning and inductive learning.

Machine
LearningILPNMLP NMILP

LP

Nonmonotonic ILP
(NMILP)

NMILP: Perspectives

Extend the representation language
Enable reasoning and learning from
default knowledge
Use well-established theoretical and
procedural tools in NMLP
Open new applications in nonmonotonic
problems

What is the problem for
NMILP?

NMLP is different from classical logic,
then existing techniques of Horn ILP
are not directly applicable to NMILP.
Extension of the present framework
and introduction of new techniques
for NMILP are necessary.

Purpose of this Research

Consider extended logic programs
(ELP) as background KB
Build a theory of nonmonotonic
inductive logic programming
Develop a procedure for inducing
nonmonotonic rules to explain
positive/negative examples

Contents of This Talk

Preliminary Definitions
Learning from Positive Example
Learning from Negative Example
Discussion

Preliminary Definitions

An extended logic program (ELP) is a set of
rules of the form:
L0 ← L１ ,…, Lm, not Lm+1 ,…, not Ln

where not represents negation as failure(NAF)
pred(L) denotes the predicate of L, and
const(L) denotes the set of constants in L.
The semantics of an ELP is given by the
answer set semantics (Gelfond&Lifschitz).

Preliminary Definitions

A program is consistent if it has a
consistent answer set.
A consistent program which has a
single answer set is called categorical.
When a rule R is satisfied in every
answer set of a program P, it is
written as P |= R.

Preliminary Definitions

A literal L or an NAF formula not L is
called an LP-literal.
Let Lit be the set of all ground literals
and S⊆Lit, then define

S+= S ∪ { not L | L ∈ Lit＼S }.
For an LP-literal K,
|K|=K if K is a literal;
|K|=L if K=not L.

Learning from Positive
Examples: Problem Setting

Given:
a background knowledge base P as
a function-free & categorical ELP
a positive example L as a ground
literal s.t. P|≠Ｌ

Find: a rule R satisfying: P∪{R} |= Ｌ

Proposition

Let P be a program and R a rule s.t.
P ∪ {R} is consistent.

For any ground literal L, P ∪ {R} |= Ｌ
and P |= R imply P |= L.

Relevance

For two ground LP-literals L1 and L2,
L1~L2 if pred(L1)=pred(L2) and
const(L1)=const(L2)．
Let L be a ground LP-literal and S a set of
ground LP-literals. L1 in S is relevant to L if
either (i) L1~L or (ii) L1 shares a constant
with L2 in S where L2 is relevant to L.
L is involved in a program P if |L| appears
in the ground instance of P.

Constructing Hypothesis

Let S be the answer set of P.
Then, P∪{R} |= L and P |≠ L imply P |≠ R

(by Proposition), thereby
S |≠ R .

Consider the integrity constraint
← Γ

where Γ is the set of ground LP-literals in
S+ s.t. every element in Γ is relevant to
L and is involved in P∪{L}.

Constructing Hypotheses

As S does not satisfy the constraint,
S |≠ ← Γ.

By S|≠L, not L is in S+ and also in Γ.
Shifting L to the head, we get

L ← Γ’
where Γ’=Γ＼{ not L }.
Finally, construct a rule R* s.t.
R*θ = L ← Γ’ for some substitution θ .

Example

Ｐ： bird(x)← penguin(x),
bird(tweety)←, penguin(polly)←.

L: flies(tweety).
Initially, P|≠flies(tweety).
S+={bird(t), bird(p), peng(p),

not peng(t), not flies(t), not flies(p),
not￢ bird(t/p), not￢ peng(t/p),
not￢ flies(t/p) } (t/p means t or p).

Example (cont.)

Picking up LP-literals which are relevant
to L and are involved in P ∪{L}:

← bird(t),not peng(t),not flies(t).
Shifting L=flies(t) to the head:

flies(t)← bird(t), not peng(t).
Replacing tweety by a variable x:
R*= flies(x)← bird(x), not peng(x)

where P ∪{R*} |= flies(tweety) holds.

Correctness Theorem

A rule R is negative-cycle-free if for
any not L in body(R),

pred(L)≠ pred(head(R)).
Let P be a categorical program,

L a ground literal, and R* a rule
obtained as above. If R* is negative-
cycle-free and pred(L) appears
nowhere in P, then P∪ {R*} |= Ｌ.

Learning from Negative
Examples: Problem Setting

Given:
a background knowledge base P as
a function-free & categorical ELP
a negative example L as a ground
literal s.t. P|=Ｌ

Find: a rule R satisfying:
P∪ {R} |≠ Ｌ

Target Predicate
A target predicate is a pre-specified
predicate which is subject to learn.
In case of positive examples, a target
predicate is identified with the one
appearing in the example.
In case of negative examples, a negative
example L is already entailed from P. The
purpose is then to block the derivation of
L by introducing some rule R to P.
We set a target predicate which is
different from the one appearing in L.

Selection of Target Predicate

In a predicate dependency-graph,
p1 strongly depends on p2 if for any path
containing p1, p1 depends on p2.
p1 negatively depends on p2 if any path
from p1 to p2 contains an odd number of
negative edges.
We select a target predicate from
predicates in P on which pred(L) strongly
and negatively depends.

Proposition

Let P be a program and R a rule s.t.
P ∪ {R} is consistent.

For any ground literal L, P ∪ {R} |≠ Ｌ
and P |= R imply P |≠ L.

Constructing Hypothesis

Let S be the answer set of P.
Then, P∪{R} |≠ L and P |＝ L imply P |≠ R

(by Proposition), thereby
S |≠ R .

Consider the integrity constraint
← Γ

where Γ is the set of ground LP-literals in
S+ s.t. every element in Γ is relevant to
L and is involved in P∪{L}.

Constructing Hypotheses

As S does not satisfy the constraint,
S |≠ ← Γ.

If Γ contains not K which has the
target predicate, shifting K to the
head, we get
K ← Γ’

where Γ’=Γ＼{ not K }.
Finally, construct a rule R* s.t.
R*θ = L ← Γ’ for some substitution θ .

Example
Ｐ： bird(x)← bird(x), not ab(x),

bird(x)← penguin(x),
bird(tweety)←, penguin(polly)←.

L: flies(polly).
Initially, P|= flies(polly).
S+={bird(t), bird(p), peng(p), not peng(t),

flies(t), flies(p), not ab(t), not ab(p),
not￢ bird(t/p), not￢ peng(t/p),
not￢ flies(t/p), not￢ ab(t/p) }.

Example (cont.)

Picking up LP-literals which are relevant
to L and are involved in P ∪{L}:

← bird(p),peng(p),flies(p),not ab(p).
Let ab be the target predicate on which

flies strongly and negatively depends.
Shifting L=ab(p) to the head:
ab(p)← bird(p),peng(p),flies(p).

Replacing polly by x:
R*= ab(x)← bird(x),peng(x),flies(x).

Example (cont.)

In this case, however, P ∪{R*} is
inconsistent. To get a consistent
program, dropping flies(x) from R*,
we get
R**= ab(x)← bird(x),peng(x)

where P ∪{R**} |≠ flies(p) holds.
The rule R** is further simplified as

ab(x)← peng(x)
using the second rule in P.

Correctness Theorem

Let P be a categorical program,
L a ground literal, and R* a rule
obtained as above. If P∪ {R*} is
consistent and P∪ {R*θ} |≠ Ｌ for
some substitutionθ, then
P∪ {R*} |≠ Ｌ.

Discussion
Learning from Multiple Ex’s
Our algorithm is applicable to
learning from a set of examples by
iteratively applying the procedure to
each example.
The result of induction depends on
the order of examples in general.

Learning from
Non-Categorical Programs
When a program has more than one
answer set, different rules are induced
by each answer set.
For example, the program
p(a)←not q(a), q(a)←not p(a)

has two answer sets: {p(a)},{q(a)}.
Given the positive example r(a), applying

the procedure to each AS produces
r(x) ← p(x), not q(x) and
r(x) ← q(x), not p(x).

Correctness and
Completeness

We provided sufficient conditions to
guarantee the correctness of the procedure.
On the other hand, the procedure is not
complete in general.
There exist possibly infinite solutions for
explaining examples, so that selecting
meaningful hypotheses is important.
In our algorithm, conditions of relevance
and involvement are used to filter out
useless hypotheses.

Computability
We consider function-free and categorical
ELPs.
With the f-f setting, S+ is finite and the
selection of relevant and involved literals
from S+ is done in polynomial time.
An important class of categorical
programs is stratified programs.
In a f-f stratified program, an inductive
hypothesis R* is efficiently constructed
from S+.

Connection to Answer Set
Programming (ASP)

ASP solves a problem by computing
answer sets which correspond to
solutions.
We constructed inductive hypotheses
by computing answer sets of an ELP.
This enables us to use existing ASP
solvers for computing induction in
NMLP.

Summary

This paper introduced a method of
inductive learning in nonmonotonic
LPs.
The result combines techniques of
the two important fields of logic
programming, NMLP and ILP, and
contributes to a theory of NMILP.
The paper is available from my HP:
http://www.wakayama-u.ac.jp/～sakama

	 Learning by Answer Sets
	Inductive Logic Programming (ILP)
	Problems of Horn Logic Programs
	Nonmonotonic Logic Programs (NMLP)
	Nonmonotonicity in Induction
	Limitations of Horn ILP
	Limitations of Horn ILP
	Nonmonotonic ILP (NMILP)
	NMILP: Perspectives
	What is the problem for NMILP?
	Purpose of this Research
	Contents of This Talk
	Preliminary Definitions
	Preliminary Definitions
	Preliminary Definitions
	Learning from Positive Examples: Problem Setting
	Proposition
	Relevance
	Constructing Hypothesis
	Constructing Hypotheses
	Example
	Example (cont.)
	Correctness Theorem
	Learning from Negative Examples: Problem Setting
	Target Predicate
	Selection of Target Predicate
	Proposition
	Constructing Hypothesis
	Constructing Hypotheses
	Example
	Example (cont.)
	Example (cont.)
	Correctness Theorem
	Discussion�Learning from Multiple Ex’s
	Learning from �Non-Categorical Programs
	Correctness and Completeness
	Computability
	Connection to Answer Set Programming (ASP)
	Summary

