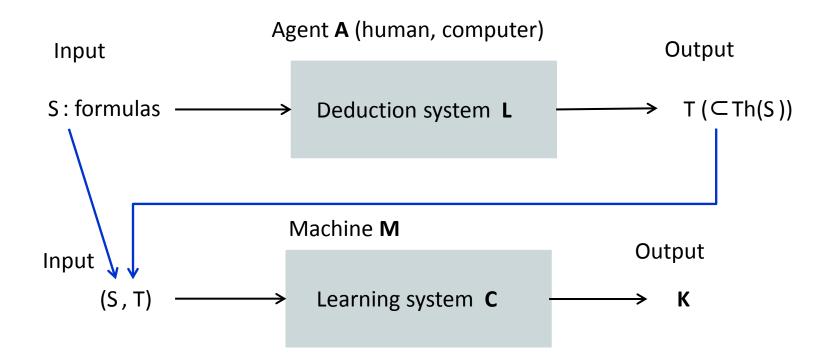
Can Machines Learn Logics?

Chiaki Sakama (Wakayama University) Katsumi Inoue (National Institute of Informatics)

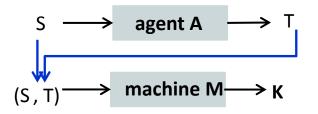
Learning Logics



- Given input (S, T), a machine **M** produces an axiomatic system **K**.
- **K** is sound (resp. complete) wrt **L** if $K \subseteq L$ (resp. $L \subseteq K$).

Remarks

- An agent A plays the role of a teacher who provides training examples representing premises along with entailed consequences.
- The output K is refined by incrementally providing examples.
- An agent A could be a system of arbitrary logic, e.g. nonmonotonic logic, modal logic, fuzzy logic, as far as it has a formal system of inference.



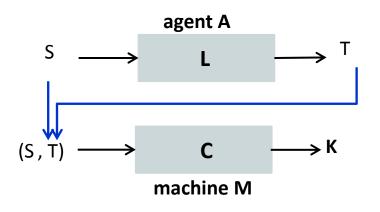
Remarks

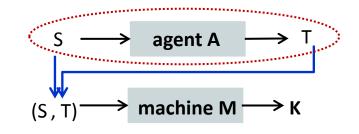
- Alternatively, we can consider a framework in which a teacher agent A is absent.
- In this case, given input-output pairs (S,T) as data, the problem is whether a machine M can find an unknown logic (or axiomatic system) that produces a consequence T from a premise S.

$$(S,T) \longrightarrow machine M \longrightarrow K$$

Challenging Problems

- Can we develop a sound and complete algorithm C for learning a classical or non-classical logic L?
- Is there any difference between learning axioms and learning inference rules?
- Does a machine M discover a new axiomatic system K such that K |- F iff L|- F for any formula F?



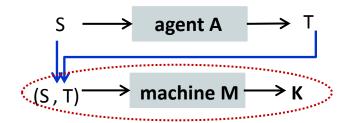


- S: a set of atomic formulas containing hold(F) where F is a formula in propositional logic.
- An agent **A** with an inference system **L** performs the inference: from hold(p) and $hold(p \supset q)$ infer hold(q)

where *p* and *q* are propositional variables.

In this case, given a finite set S of atoms as an input,
 A outputs the set:

 $T = S \cup \{ hold(q) \mid hold(p) \in S \text{ and } hold(p \supset q) \in S \}$



Given each pair (S, T) as an input, consider a machine M that constructs a rule:

 $A \leftarrow \bigwedge_{B_j \in S} B_j$ where $A \in T \setminus S$

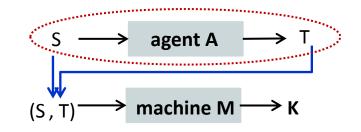
For example, given the set

S= { hold(p), hold(r), hold(p \supset q), hold(p \supset r), hold(r \supset s) },

two atoms hold(q) and hold(s) are in T \setminus S. Then the following two rules are constructed

 $hold(q) \leftarrow hold(p) \land hold(r) \land hold(p \supset q) \land hold(q \supset r) \land hold(r \supset s)$ $hold(s) \leftarrow hold(p) \land hold(r) \land hold(p \supset q) \land hold(q \supset r) \land hold(r \supset s)$

The condition contains atoms which do not contribute to deriving the atom in the consequence.



■ For each pair (S, T) from A such that T \ S ≠ φ, assume that the following rule R is constructed.

$$A \leftarrow \bigwedge_{B_j \in S} B_j$$
 where $A \in T \setminus S$

Then select a subset S_i of S and give it as an input to A. If its output T_i still contains the atom A, replace R with

$$A \leftarrow \bigwedge_{B_j \in S_i} B_j$$
 where $A \in T_i \setminus S_i$

• By continuing this process, find a minimal set S_i satisfying $A \in T_i$. Such S_i contains atoms that are necessary and sufficient for deriving atoms in $T_i \searrow S_i$.

 $S \longrightarrow \text{agent } A \longrightarrow T$ $(S, T) \longrightarrow \text{machine } M \longrightarrow K$

In the above example, there is the unique minimal set

 $S_1 = \{ hold(p), hold(p \supset q) \}$

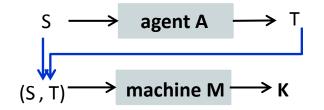
that satisfies $hold(q) \in T_1$, and there are two minimal sets that contain hold(s) in their output:

 $S_2 = \{ hold(r), hold(r \supset s) \}$

 $S_3 = \{ hold(p), hold(p \supset r), hold(r \supset s) \}$

Then the following 3 rules are obtained by replacing S with S_i

 $\begin{aligned} hold(q) \leftarrow hold(p) \land hold(p \supseteq q) & : Modus Ponens \\ hold(s) \leftarrow hold(r) \land hold(r \supseteq s) \\ hold(s) \leftarrow hold(p) \land hold(p \supseteq r) \land hold(r \supseteq s) \\ & : Multiple Modus Ponens \end{aligned}$



- Using the technique, the following inference rules are obtained:
 - hold(¬p) \leftarrow hold(¬q) \land hold(p \supset q) : Modus Tollens
 - hold(p \supset r) ← hold(p \supset q) ∧ hold(q \supset r) : Hypothetical Syllogism
 - hold(p) \leftarrow hold(p \lor q) \land hold(¬q) : **Disjunctive Syllogism**
 - hold(p) ← hold(q) ∧ hold(p⊃q) :
 Fallacy of Affirming the Consequence (for abductive inference)
- An interesting question is whether the same or a similar technique can be applied for learning non-logical systems (e.g. pragmatic rules of inference, conversational implicature, etc).