Generality and Equivalence Relations in Default Logic

Katsumi Inoue

National Institute of Informatics

Chiaki Sakama

Wakayama University

AAAI-2007, Vancouver, Canada

Comparing the Amounts of Information between Programs

- # Assessment of relative value of each theory/ontology
 #Generality/Specificity and Abstraction/Refinement
 #Equivalence/Non-equivalence
 #Strength/Weakness and Higher/Lower Priority
- ## Theory of generality is central in Inductive Logic Programming (ILP), in which domain-independent criteria to compose better theories are investigated.
- ## Synthesizing a common generalized/specialized theory from different sources of information is important in **Multi-Agent Systems** (MAS).

Comparing First-order Theories

```
XT1, T2: first-order theory
```

- #T1 is **more general** (or stronger) **than** T2 if T1 \models T2 [Plotkin; Niblett].
- \mathbb{H} e.g., $\{ p, p \rightarrow q \}$ is stronger than $\{ p \lor q \}$.
- #T1 and T2 are **logically equivalent** if $T1 \equiv T2$, i.e., $T1 \models T2$ and $T2 \models T1$.
- #Logically equivalent theories belong to the same equivalence class of the generality relation.

Comparing Nonmonotonic Theories

- XT1, T2: (nonmonotonic) theories
- #When can we say that T1 is more general than (or is more informative than) T2?
- **%**T1 and T2 are **equivalent** if T1 and T2 have the same semantical meaning:
 - **#** weak/strong equivalence [Lifschitz et al., Turner]
- **#**Under which generality relation do equivalent theories belong to the same equivalence class?

Comparing Nonmonotonic Theories

$$\Delta 1: \frac{: \rho}{\rho}$$

$$\Delta 2: \frac{: \neg q}{\rho}, \frac{: \neg \rho}{q}$$

- Δ 1 has the extension: $cl(\{p\})$
- Δ 2 has the extensions: $cl(\{p\})$, $cl(\{q\})$
- # ∆1 is *more informative* than ∆2 in the sense that ∆1 has the **skeptical** consequences $cl(\{p\}) \supseteq cl(\{p \lor q\})$.
- # ∆2 is *more informative* than ∆1 in the sense that ∆2 has the **credulous** consequences $cl(\{p\}) \cup cl(\{q\}) \supseteq cl(\{p\})$.
- Thus, several generality measures can be considered.

Goals

- ****** We construct multiple criteria to decide if a theory is more general than another theory in **(disjunctive)** default logic.
- **#** Generality relations are mathematically defined as **pre-orders** based on **comparing sets of extensions**.
 - ➤ Any pair of theories should have both minimal upper and maximal lower bounds under such generality orderings.
 - ➤ We devise those generality orderings in such a way that any pair of equivalent theories belong to the same equivalence class that is induced from such pre-ordered sets.
- ****** We also provide the notion of **strong generality** that implies strong equivalence within the same equivalence class.
- # These generality relations should **extend** both those for **first-order theories** [Niblett] and those for **answer set programming** [Inoue & Sakama, ICLP'06].

Disjunctive Default Theory

(disjunctive) default d:

$$\frac{\alpha : \beta_1, \dots, \beta_m}{\gamma_1 \mid \dots \mid \gamma_n}$$

where $\alpha, \beta_1, \dots, \beta_m, \dots, \gamma_1, \dots, \gamma_n$ are propositional formulas.

$$\operatorname{preq}(\mathbf{d}) = \{\alpha\}, \operatorname{just}(\mathbf{d}) = \{\beta_1, \dots, \beta_m\}, \operatorname{cons}(\mathbf{d}) = \{\gamma_1, \dots, \gamma_n\}.$$

- $\Re \text{Reiter's (non-disjunctive) default}$: $|\text{cons}(\mathbf{d})| = 1$.
- # non-default rule: just(d)={}.
- \Re (disjunctive) fact: $\alpha = \text{true } \& \text{ just}(\alpha) = \{\},$ written as $\gamma_1 \mid \cdots \mid \gamma_n$.

Extensions of Default Theories

 $\mathbb{H} \Delta$: default theory, E: set of formulas

$$\Delta^{E} = \left\{ \frac{\alpha :}{\gamma_{1} \mid \cdots \mid \gamma_{n}} \mid \frac{\alpha : \beta_{1}, \dots, \beta_{m}}{\gamma_{1} \mid \cdots \mid \gamma_{n}} \in \Delta, \neg \beta_{1}, \dots, \neg \beta_{m} \notin E \right\}$$

\# A set E' is **closed** under the rules of Δ^{E} if for any default

$$\frac{\alpha:}{\gamma_1 \mid \cdots \mid \gamma_n} \in \Delta^E, \quad \alpha \in E' \quad implies \quad \{\gamma_1, \dots, \gamma_n\} \cap E' \neq \phi.$$

- $\Re E$ is an **extension** of Δ iff E is a minimal set closed under provability in propositional logic and the rules Δ^E from .
- # △ is [consistent / contradictory / incoherent] if it has
 [a consistent / an inconsistent / no] extension.

Equivalence between Default Theories

- $E(\Delta)$: the set of all extensions of Δ .
- A formula ψ is a **skeptical/credulous consequence** of Δ if ψ belongs to all/some extensions in $E(\Delta)$.
 - $skp(\Delta)$: the set of skeptical consequences of Δ
 - $crd(\Delta)$: the set of credulous consequences of Δ
- $\mathbb{H} \Delta_1$ and Δ_2 are **(weakly) equivalent** if $E(\Delta_1) = E(\Delta_2)$.
- $\# \Delta_1$ and Δ_2 are **strongly equivalent** [Turner, LPNMR'01] if $E(\Delta_1 \cup \Pi) = E(\Delta_2 \cup \Pi)$ for any default theory Π .
- If Strong equivalence implies weak equivalence

Ordering Extensions: Basic Intuition

Ordering on Powersets

```
# pre-order ≤: binary relation which is reflexive and transitive
# partial order ≤: pre-order which is also anti-symmetric
\Re \langle D, \leq \rangle: pre-ordered set / poset
\mathbb{H} S(D): the power set of D
\mathbb{X} The Smyth order: for X, Y \in S(D),
                    X \models^{\#} Y \text{ iff } \forall x \in X \exists y \in Y. y \leq x
\mathfrak{A} The Hoare order: for X, Y \in S(D),
                    X \models^{\flat} Y \text{ iff } \forall y \in Y \exists x \in X. y \leq x
```

 \mathbb{H} Both $\langle \mathbb{S}(D), \not\models^{\#} \rangle$ and $\langle \mathbb{S}(D), \not\models^{\flat} \rangle$ are pre-ordered sets.

Ordering Default Theories

```
\Re \langle S(O), \subseteq \rangle: poset \Re \mathcal{D}\mathcal{T}: the class of all default theories \Re \Delta_{1}, \Delta_{2} \in \mathcal{D}\mathcal{T}
```

• Δ_1 is more #-general than Δ_2 :

$$\Delta_1 \models \Delta_2 \text{ iff } E(\Delta_1) \models E(\Delta_2)$$

• Δ_1 is more **b**-general than Δ_2 :

$$\Delta_1 \models \Delta_2 \text{ iff } E(\Delta_1) \models E(\Delta_2)$$

****Theorem**:
$$\Delta_1 \models^{\#} \Delta_2$$
 and $\Delta_2 \models^{\#} \Delta_1$ iff $\Delta_1 \models^{\flat} \Delta_2$ and $\Delta_2 \models^{\flat} \Delta_1$ iff Δ_1 and Δ_2 are weakly equivalent.

Generality Ordering: Example

$$\Delta 1: \frac{\neg q}{p}$$

$$\Delta 2: \frac{\neg q}{p}, \frac{\neg p}{q}$$

$$\Delta 3: p \mid q$$

$$\Delta 4: \frac{\neg p}{p}, \frac{p:}{q}$$

$$E(\Delta 1) = \{cl(\{p\})\}, E(\Delta 2) = E(\Delta 3) = \{cl(\{p\})\}, cl(\{q\})\}, E(\Delta 4) = \{cl(\{p,q\})\}$$

- Δ4 | Δ1 | Δ2
- Δ4 | Δ2 | Δ1
- \bullet $\Delta 2 \not\models \Delta 3 \not\models \Delta 2$, $\Delta 2 \not\models \Delta 3 \not\models \Delta 2$

Minimal Upper/Maximal Lower Bounds

```
\mathbb{H} \Gamma is an <u>upper bound</u> of \Delta 1 and \Delta 2 in \langle \mathcal{DT}, | \# \rangle
     if \Gamma \models^{\#/\flat} \Delta 1 and \Gamma \models^{\#/\flat} \Delta 2.
\mathbb{X} An upper bound \Gamma is an \underline{mub} of \Delta 1 and \Delta 2 in \langle \mathcal{DT}, | \# \rangle
      if \Gamma \models^{\#/\flat} \Gamma' implies \Gamma' \models^{\#/\flat} \Gamma for any upper bound \Gamma' of \Delta 1 and \Delta 2.
\mathbb{H} \Gamma is a <u>lower bound</u> of \Delta1 and \Delta2 in \langle \mathcal{DT}, | + | \!\!\!/ \!\!\!\!/ \!\!\!\!\!/ \rangle
      if \Delta 1 \models \#/ \flat \Gamma and \Delta 2 \models \#/ \flat \Gamma.
\mathbb{X} A lower bound \Gamma is an <u>mlb</u> of \Delta 1 and \Delta 2 in \langle \mathcal{DT}_{i} | = \#/\flat \rangle
     if \Gamma' \models^{\#/\flat} \Gamma implies \Gamma \models^{\#/\flat} \Gamma' for any lower bound \Gamma' of \Delta 1 and \Delta 2.
```

Minimal Upper/Maximal Lower Bounds

Theorem:

```
\mathbb{H} \Gamma is an mub of \Delta1 and \Delta2 in \langle \mathcal{DT}_{i} | \mathcal{P}^{\#} \rangle
         iff E(\Gamma) = min\{ cl(S \cup T) \mid S \in E(\Delta 1), T \in E(\Delta 2) \}.
       \# \Gamma is an mlb of \Delta1 and \Delta2 in \langle \mathcal{DT}, \not\models \# \rangle
         iff E(\Gamma) = min(E(\Delta 1) \cup E(\Delta 2)).
       \# \Gamma is an mub of \Delta 1 and \Delta 2 in \langle \mathcal{DT}, \models^{\flat} \rangle
         iff E(\Gamma) = max(E(\Delta 1) \cup E(\Delta 2)).
       \# \Gamma is an mlb of \Delta1 and \Delta2 in \langle \mathcal{DT}, \models \rangle
         iff E(\Gamma) = max\{ S \cap T \mid S \in E(\Delta 1), T \in E(\Delta 2) \}.
\mathbb{H} A top / bottom element of \langle \mathcal{DT}, \mid \# \rangle is \{\frac{:\neg p}{p}\} / \{\}.
\mathbb{H} A top / bottom element of \langle \mathcal{DT}, \models^{\flat} \rangle is \{p, \neg p\} / \{\frac{: \neg p}{p}\}.
```

Skeptical/Credulous Entailment in More/Less General Default Theories

- \mathbb{H} Theorem: T_1 , T_2 : first-order theories
- $\bullet \quad T_1 \models T_2 \text{ iff } \quad T_1 \models T_2 \text{ iff } \quad T_1 \models T_2.$
- \mathbb{H} Theorem: Δ_1 , Δ_2 : default theories
- If $\Delta_1 \not\models \Delta_2$ then $skp(\Delta_2) \subseteq skp(\Delta_1)$.
- $\Delta_1 \models \Delta_2$ iff $crd(\Delta_2) \subseteq crd(\Delta_1)$.
- # Pre-orders $\models_{skp/crd}$ based on skeptical/credulous entailment relations can also be defined. Then, an mub/mlb of Δ_1 and Δ_2 in $\langle \mathcal{DT}, \models^{\#/\flat} \rangle$ is an mub/mlb of Δ_1 and Δ_2 in $\langle \mathcal{DT}, \models^{\#/\flat} \rangle$.

Strong Generality

$$\# \Delta_1, \Delta_2 \in \mathcal{DT}$$

- Δ_1 is strongly more #-general than Δ_2 :
 - $\Delta_1 \quad \underline{\triangleright}^{\sharp} \Delta_2 \quad \text{iff} \quad \Delta_1 \cup \Pi \not \models^{\sharp} \Delta_2 \cup \Pi \quad \text{for any } \Pi \in \mathcal{D}T.$
- Δ_1 is **strongly more b**-general than Δ_2 :
 - $\Delta_1 \quad \underline{\triangleright}^{\ \ } \Delta_2 \quad \text{iff} \quad \Delta_1 \cup \Pi \not \models \Delta_2 \cup \Pi \quad \text{for any } \Pi \in \mathcal{D}T.$
- $\mathbb{H} \Delta_1 \stackrel{\triangleright^{\#/\flat}}{\triangleright} \Delta_2$ implies $\Delta_1 \stackrel{\#/\flat}{\triangleright} \Delta_2$.
- \mathbb{H} ⟨𝔻𝒯𝒯, $\trianglerighteq^{\#/\flat}$ ⟩ is a pre-ordered set.
- \mathbb{H} Theorem: $\Delta_1 \stackrel{\triangleright}{=} \Delta_2$ and $\Delta_2 \stackrel{\triangleright}{=} \Delta_1$
 - iff $\Delta_1 \trianglerighteq^{\flat} \Delta_2$ and $\Delta_2 \trianglerighteq^{\flat} \Delta_1$
 - iff Δ_1 and Δ_2 are strongly equivalent.

Strong Generality: Example

$$\Delta 1: \frac{:\neg q}{\rho}$$

$$\Delta 2: \frac{:\neg q}{\rho}, \frac{:\neg p}{q}$$

$$\Delta 3: \rho \mid q$$

$$\Delta 4: \frac{:\rho}{\rho}, \frac{\rho:}{q}$$

$$E(\Delta 1) = \{cl(\{p\})\}, E(\Delta 2) = E(\Delta 3) = \{cl(\{p\})\}, cl(\{q\})\}, E(\Delta \frac{p}{q})\}$$

- \bullet $\Delta 1 \stackrel{\triangleright}{\triangleright} \Delta 2 \stackrel{\triangleright}{\triangleright} \Delta 3$
- \bullet $\Delta 3 \stackrel{\triangleright^{\#/}}{\Delta} 2 \qquad \Delta 1$
- No relation holds between $\Delta 4$ and others.

Inclusion [Eiter, Tompits & Woltran, IJCAI-05] in Strongly More/Less General Theories

第 Theorem:

- If $\Delta_1 \triangleright^{\#} \Delta_2$ then $E(\Delta_1) \subseteq E(\Delta_2)$.
- If $\Delta_1 \trianglerighteq \Delta_2$ then $E(\Delta_2) \subseteq E(\Delta_1)$.
- # The converse of each does not hold.

- # Theorem (not in the paper, due to JianMin Ji):
- $\Delta_1 \trianglerighteq^*$ Δ_2 iff $E(\Delta_1 \cup \Pi) \subseteq E(\Delta_2 \cup \Pi)$ for any $\Pi \in \mathcal{D}T.\triangleright^{\flat}$
- Δ_1 Δ_2 iff $E(\Delta_2 \cup \Pi) \subseteq E(\Delta_1 \cup \Pi)$ for any $\Pi \in$

Generality in the Literature

- Generality is often discussed in ILP, but for the FO case only.
- ◆ Sakama [IJCAI-2003; TCS 2005]
 - defines an ordering over extended default theories based on multi-valued logics;
 - distinguishes definite and skeptical/credulous default information derived from a program.
 - Equivalent programs do not belong to the same equivalence class induced by Sakama's pre-order. (ex. $\{p\} \ge \{\frac{p}{p}\}$)
- ◆ Eiter, Tompits & Woltran [IJCAI-2005]
 - propose a general framework for comparing logic programs;
 - do not consider generality relations.
- ◆ Inoue & Sakama [ICLP 2006]
 - define generality relations for logic programs;
 - do not capture the generality relation in first-order logic.
 - Those relations for logic programs can be viewed as a special case of generality orderings for default logic.

Contributions

- ## A framework to compare generality between disjunctive default theories is proposed and several orderings are defined: #- and b- generalities and their strong versions.
- ## Both minimal upper and maximal lower bonds can be defined for any pair of default theories in these generality orderings.
- #-general theories entails more skeptical consequences, while b- general theories entails more credulous consequences.
- ## Both (strong) #- and (strong) b- generalities are defined in a way that (strongly) equivalent theories belong to the same equivalence class induced by these orderings.
- ## These orderings are generalizations of generality relations over first-order theories and those for answer set programming.
- ## The proposed orderings can also be applied to any default semantics in which extensions are guaranteed to be *minimal*.

Future Work

- # Computing a more (or less) (strongly) general default theory
 for a given default theory
- \mathbb{X} Computational complexity (Π_{P}^{3} -hard?)
- ★ Developing generalization/specialization methods in nonmonotonic ILP
- **X** Investigating the notion of relative/relativized generality
- **X** Extending generality orderings to the class of nested default theories which have non-minimal extensions