
Representing Argumentation
Frameworks in Answer Set

Programming

Chiaki Sakama (Wakayama Univ. Japan)
Tjitze Rienstra (Univ. of Luxembourg)

ArgLP, August 2015, Cork

Transformation from AF to LP
representational viewpoint

• meta-interpretative representation
individual AFs are given as input to a single metalogic
program which produces canonical (or selected)
models characterizing input AF semantics.

• object-level representation
individual AFs are transformed to corresponding logic
programs whose canonical models characterize input
AF semantics.

! Encoding AF semantics in meta-interpretative
LP often results in complicated programs.

Transformation from AF to LP
semantical viewpoint

• extension-based semantics
extensions of an AF are characterized by canonical
models of a transformed logic program.

• labelling-based semantics
labellings of an AF are characterized by canonical
models of a transformed logic program.

! Extension-based semantics does not distinguish
rejected arguments and undecided arguments.

Transformation from AF to LP
transformational viewpoint

• one-to-one mapping
different semantics of an AF are characterized by
different semantics of a transformed LP.

• many-to-one mapping
different semantics of an AF are characterized by
a single semantics of a transformed LP.

! Many-to-one mapping enables one to use a
single LP solver for computing different
semantics of AF.

Transformation from AF to LP
Existing Studies

Studies representation semantics transformation

Dung
(1995)

meta-
interpretative

extension stable ext. → stable model
grounded ext. → well-founded model

Nieves, et al.
(2008)

object level

extension preferred ext. → stable model

Wu, et al.
(2009)

object level labelling complete labelling → 3-valued stable
model

Wakaki, et al.
(2009)

meta-
interpretative

labelling complete/stable/grounded/preferred/
semi-stable labelling → ASP

Egly, et al.
(2010)

meta-
interpretative

extension complete/stable/grounded/preferred/
ext. → ASP

Caminada, et al.
(2015)

object level labelling stable/grounded/preferred/semi-stable
labelling → stable/well-founded/
regular/L-stable model

Our current
study

object level labelling complete/stable/grounded/preferred/
labelling → ASP

Preliminaries
• An argumentation framework: AF=(Ar,att).
• For x∈Ar, x-={ y | (y, x)∈att }.
• Labelling L: Ar → { in, out, und }
• When L(a)=in (resp. out or und) for a∈Ar, it is written as

in(a) (resp. out(a) or und(a)) (called labelled arguments).
• Complete labelling, stable labelling, grounded labelling,

and preferred labelling are defined as usual.
• A logic program consists of rules:
 a1∨・・・∨al ← al+1,…,am, not am+1,…,not an

 where ai :ground atom, not:negation as failure
• The semantics of a program is given by stable models (or

answer sets).

LP Rules for AF

• Given AF=(Ar,att), the Herbrand base B is defined as
 B={ in(x), out(x), und(x) | x∈Ar }.

• The set ΓAF of rules is defined as follows:
 ΓAF = { in(x)←out(y1),…,out(yk) |
 x∈Ar and x- ={y1,…,yk} (k≧0) }
 ∪ { out(x)←in(y) | (y,x)∈att }
 ∪ { ←in(x), not out(y) | (y,x)∈att }
 ∪ { ←out(x), not in(y1),…,not in(yk) |
 x∈Ar and x- ={y1,…,yk} (k≧0) }

AF program under
complete semantics

Given AF=(Ar,att), an AF-program under the complete
semantics ΠC

AF is defined as follows:
 ΠC

AF = ΓAF ∪ { in(x) ∨ out(x) ∨ und(x) ← | x∈Ar }
 ∪ { ←in(x), out(x) | x∈Ar }
 ∪ { ←in(x), und(x) | x∈Ar }
 ∪ { ←out(x), und(x) | x∈Ar }
Theorem
The sets of labelled arguments under the complete
semantics of AF coincide with the stable models of ΠC

AF .

Example
• Given AF=({a,b,c},{(a,b),(b,a),(b,c)}), ΠC

AF consists of
 in(a)←out(b), in(b)←out(a), in(c)←out(b),
 out(a)←in(b), out(b)←in(a), out(c)←in(b),
 ←in(a), not out(b), ←in(b), not out(a), ←in(c), not out(b),
 ←out(a), not in(b), ←out(b), not in(a), ←out(c), not in(b),
 in(x) v out(x) v und(x) ← where x∈{a,b,c}
 ←in(x),out(x), ←in(x),und(x), ←out(x),und(x) where x∈{a,b,c}

• ΠC

AF has 3 stable models:
 {in(a),out(b),in(c)}, {out(a),in(b),out(c)}, {und(a),und(b),und(c)}
which are equivalent to 3 sets of labelled arguments under
the complete semantics of AF.

a b

c

AF program under stable semantics

Given AF=(Ar,att), an AF-program under the stable
semantics ΠS

AF is defined as follows:
 ΠS

AF = ΓAF ∪ { in(x) ∨ out(x) ← | x∈Ar }
 ∪ { ←in(x), out(x) | x∈Ar }
Theorem
The sets of labelled arguments under the stable
semantics of AF coincide with the stable models of ΠS

AF .

Corollary
AF has no stable labelling iff ΠS

AF has no stable model.

Example

• Given AF=({a,b,c},{(a,b),(b,c),(c,a)}), ΠS
AF consists of

 in(a)←out(c), in(b)←out(a), in(c)←out(b),
 out(a)←in(c), out(b)←in(a), out(c)←in(b),
 ←in(a), not out(c), ←in(b), not out(a), ←in(c), not out(b),
 ←out(a), not in(c), ←out(b), not in(a), ←out(c), not in(b),
 in(x) v out(x) ← where x∈{a,b,c}
 ←in(x),out(x) where x∈{a,b,c}

• ΠS

AF has no stable model, so AF has no stable labelling.

a b

c

AF program under
grounded semantics

Given AF=(Ar,att), an AF-program under the grounded
semantics ΠG

AF is defined as follows:
 ΠG

AF = ΓAF ∪ { und(x)←not in(x), not out(x) | x∈Ar }

Theorem
The set of labelled arguments under the grounded
semantics of AF coincides with the stable model of ΠG

AF .

Example

• Given AF=({a,b,c,d},{(a,b),(b,a),(b,c),(d,c)}), ΠG
AF consists of

 in(a)←out(b), in(b)←out(a), in(c)←out(b),out(d), in(d)←,
 out(a)←in(b), out(b)←in(a), out(c)←in(b), out(c)←in(d),
 ←in(a), not out(b), ←in(b), not out(a), ←in(c), not out(b),
 ←in(c), not out(d), ←out(a), not in(b), ←out(b), not in(a),
 ←out(c), not in(b), not in(d), ←out(d),
 und(x) ← not in(x), not out(x) where x∈{a,b,c,d}

• ΠG

AF has the unique stable model {und(a),und(b),out(c),in(d)}
which is equivalent to the set of labelled arguments under
the grounded semantics of AF.

a c

d

b

AF program under
preferred semantics

• Given AF=(Ar,att), the Herbrand base B’ is defined as
 B’={ in(x), out(x), IN(x), OUT(x), UND(x) | x∈Ar }.

• Given AF=(Ar,att), an AF-program under the preferred
semantics ΠP

AF is defined as follows:
 ΠP

AF = ΓAF ∪ { in(x) ∨ out(x) ← | x∈Ar }
 ∪ { IN(x)←in(x), not out(x) | x∈Ar }
 ∪ { OUT(x)← not in(x), out(x) | x∈Ar }
 ∪ { UND(x)←in(x), out(x) | x∈Ar }
Theorem
There is a 1-1 correspondence between the sets of labelled
arguments under the preferred semantics of AF and the
stable models of ΠP

AF .

Example
• Given AF=({a,b,c},{(a,b),(b,a),(b,c),(c,c)}), ΠP

AF consists of
 in(a)←out(b), in(b)←out(a), in(c)←out(b),out(c),
 out(a)←in(b), out(b)←in(a), out(c)←in(b), out(c)←in(c),
 ←in(a), not out(b), ←in(b), not out(a), ←in(c), not out(b),
 ←in(c), not out(c), ←out(a), not in(b), ←out(b), not in(a),
 ←out(c), not in(b), not in(c), in(x) v out(x) ← where x∈{a,b,c}
 IN(x)←in(x), not out(x), OUT(x)←not in(x), out(x),
 UND(x)←in(x), out(x) where x∈{a,b,c}
• ΠP

AF has 2 stable models
{ out(a), in(b), out(c), OUT(a), IN(b), OUT(c) }
{ in(a), out(b), in(c), out(c), IN(a), OUT(b), UND(c) }

Then 2 sets {OUT(a), IN(b), OUT(c)} and {IN(a), OUT(b), UND(c)}
correspond to 2 sets of labelled arguments under the preferred
semantics of AF (of which the 1st one represents stable labelling).

a c b

Application: Query Answering

Theorem Let AF=(Ar,att). For any x∈Ar,
1. x is labelled in in some complete labelling of AF

 iff ΠC
AF ∪ { ← not in(x) } has a stable model.

2. x is labelled in in every complete labelling of AF
 iff ΠC

AF ∪ { ← in(x) } has no stable model.
The result also holds by replacing in with out or und.

Similar results hold for ΠS

AF , ΠG
AF , and ΠP

AF .

Application: Enforcement

• The universal argumentation framework (UAF) is
(U, attU) where U is the set of all arguments in the
language and attU ⊆U×U.

• AF=(Ar, att) is defined as a sub-AF of the UAF s.t.
Ar⊆U and att= attU ∩(Ar × Ar).

• BU is defined as BU ={ in(x), out(x), und(x) | x∈U }.
• Given an enforcement set E⊂BU , if one can construct

a new AF’ such that (i) AF’=(Ar’,att’) where Ar⊆Ar’⊆U
and att’= attU ∩(Ar’ × Ar’), and (ii) AF’ has a complete
labelling L s.t. L(x)=ℓ for any ℓ(x)∈E, then AF satisfies
the enforcement E (under the complete semantics).

Application: Enforcement

• An AF-program under the complete semantics for the
enforcement εΠC

AF is defined as
 εΠC

AF = ΠC
UAF＼{ in(x)←, ←out(x) | x∈U＼Ar }

Theorem Given an enforcement set E⊂BU , AF =(Ar,att)
satisfies the enforcement E iff
εΠC

AF ∪{ ← not ℓ(x) | ℓ(x)∈E where ℓ∈{in, out, und} }
has a stable model.

Similar results hold for ΠS

AF , ΠG
AF , and ΠP

AF .

Example

• Let UAF=({a,b,c,d},{(d,c),(c,b),(b,a)}) and AF=({a,b},{(b,a)}). Then
AF has the complete labelling {out(a),in(b)}. εΠC

AF consists of
 in(a)←out(b), in(b)←out(c), in(c)←out(c), in(d)←
 out(a)←in(b), out(b)←in(c), out(c)←in(d),
 ←in(a), not out(b), ←in(b), not out(c), ←in(c), not out(d),
 ←out(a), not in(b), ←out(b), not in(c), ←out(c), not in(d), ←out(d),
 in(x) v out(x) v und(x)← where x∈{a,b,c,d}
 ←in(x), out(x), ← in(x), und(x), ←out(x), und(x) where x∈{a,b,c,d}
• Given E={in(a)}, εΠC

AF ∪{ ← not in(a) } has the stable model
{in(a), out(b), in(c), out(d)}. Then AF satisfies the enforcement E,
i.e., to enforce in(a), AF is modified by introducing the new
argument c and the attack relation (c,b).

a c b d

AF
UAF

Application: Agreement
• Let AF1 and AF2 be two sub-AFs of the UAF. If AF1 (resp. AF2) has a set

S (resp. T) of labelled arguments under a complete labelling such that
S∩T≠{}, then AF1 and AF2 can reach an agreement.

• Let ΠC
AF be a program in which predicates in, out and und in ΠC

AF
are renamed by in’, out’ and und’, respectively. Define
 Φ = { agree(x)←in(x),in’(x) | x∈U }

 ∪{ agree(x)←out(x),out’(x) | x∈U }
 ∪{ agree(x)←und(x),und’(x) | x∈U }
 ∪{ ok←agree(x) | x∈U } ∪{ ←not ok }
 Theorem AF1 and AF2 can reach an agreement iff ΠC

AF1 ∪ΠC
AF2 ∪Φ

 has a stable model M. In this case, AF1 and AF2 agree on each argument
 x s.t. agree(x)∈M.
 † Similar results hold for ΠS

AF , ΠG
AF , and ΠP

AF .
 †† The result is extended to agreement among more than 2 agents.

Final Remark

• ΠC
AF and ΠS

AF can be represented by semantically
equivalent normal logic programs, while ΠP

AF cannot.
• Thus, ΠP

AF is in the class of LPs that are more expressive
and computationally expensive than others.

• The proposed method is simple and uniform for different
AF semantics.

• Several techniques developed in LP (e.g. equivalence issue,
optimisation, update, etc) are directly applied to
transformed AF-programs.

• The result of this study implicates potential use of rich LP
techniques in AF (via AF-programs).

	Representing Argumentation Frameworks in Answer Set Programming
	Transformation from AF to LP�representational viewpoint
	Transformation from AF to LP�semantical viewpoint
	Transformation from AF to LP�transformational viewpoint
	Transformation from AF to LP�Existing Studies
	Preliminaries
	LP Rules for AF
	AF program under �complete semantics
	Example
	AF program under stable semantics
	Example
	AF program under �grounded semantics
	Example
	AF program under �preferred semantics
	Example
	Application: Query Answering
	Application: Enforcement
	Application: Enforcement
	Example
	Application: Agreement
	Final Remark

