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Transformation from AF to LP 
representational viewpoint 

• meta-interpretative representation 
individual AFs are given as input to a single metalogic 
program which produces canonical (or selected) 
models characterizing input AF semantics.  

• object-level representation 
individual AFs are transformed to corresponding logic 
programs whose canonical models characterize input 
AF semantics.  

! Encoding AF semantics in meta-interpretative 
LP often results in complicated programs.  

 



Transformation from AF to LP 
semantical viewpoint 

• extension-based semantics 
extensions of an AF are characterized by canonical 
models of a transformed logic program.   

• labelling-based semantics 
labellings of an AF are characterized by canonical 
models of a transformed logic program.   
 

! Extension-based semantics does not distinguish 
rejected arguments and undecided arguments.  

 



Transformation from AF to LP 
transformational viewpoint 

• one-to-one mapping 
different semantics of an AF are characterized by 
different semantics of a transformed LP.  

• many-to-one mapping 
different semantics of an AF are characterized by  
a single semantics of a transformed LP.  

 
! Many-to-one mapping enables one to use a 
single LP solver for computing different 
semantics of AF.   

 
 

 



Transformation from AF to LP 
Existing Studies 

Studies representation semantics transformation 

Dung  
(1995) 

meta-
interpretative 

extension stable ext. → stable model 
grounded ext. → well-founded model 

Nieves, et al. 
(2008) 

object level 
 

extension preferred ext. → stable model 

Wu, et al.  
(2009) 

object level labelling complete labelling → 3-valued stable 
model 

Wakaki, et al. 
(2009) 

meta-
interpretative 

labelling complete/stable/grounded/preferred/ 
semi-stable labelling → ASP 

Egly, et al.  
(2010) 

meta-
interpretative 

extension complete/stable/grounded/preferred/ 
ext. → ASP 

Caminada, et al. 
(2015) 

object level labelling stable/grounded/preferred/semi-stable 
labelling → stable/well-founded/ 
regular/L-stable model 

Our current 
study 

object level labelling complete/stable/grounded/preferred/ 
labelling → ASP 



Preliminaries 
• An argumentation framework: AF=(Ar,att).  
• For x∈Ar,  x-={ y | (y, x)∈att }.  
• Labelling L: Ar → { in, out, und } 
• When L(a)=in (resp. out or und) for a∈Ar, it is written as 

in(a) (resp. out(a) or und(a)) (called labelled arguments).  
• Complete labelling, stable labelling, grounded labelling, 

and preferred labelling are defined as usual.  
• A logic program consists of rules:  
            a1∨・・・∨al ← al+1,…,am, not am+1,…,not an 

       where ai :ground atom, not:negation as failure 
• The semantics of a program is given by stable models (or 

answer sets).  



LP Rules for AF 

• Given AF=(Ar,att), the Herbrand base B is defined as  
 B={ in(x), out(x), und(x) | x∈Ar }.  

• The set ΓAF of rules is defined as follows: 
     ΓAF = { in(x)←out(y1),…,out(yk) |  
                                       x∈Ar  and  x- ={y1,…,yk} (k≧0) } 
            ∪ { out(x)←in(y) | (y,x)∈att }  
            ∪ { ←in(x), not out(y) | (y,x)∈att }  
            ∪ { ←out(x), not in(y1),…,not in(yk) |   
                                      x∈Ar  and  x- ={y1,…,yk} (k≧0) }  
 



AF program under  
complete semantics 

Given AF=(Ar,att), an AF-program under the complete 
semantics ΠC

AF  is defined as follows: 
    ΠC

AF  = ΓAF ∪ { in(x) ∨ out(x) ∨ und(x) ← | x∈Ar }  
                    ∪ { ←in(x), out(x) | x∈Ar }  
             ∪ { ←in(x), und(x) | x∈Ar }  
                    ∪ { ←out(x), und(x) | x∈Ar }  
Theorem   
The sets of labelled arguments under the complete 
semantics of AF coincide with the stable models of ΠC

AF . 



Example 
• Given AF=({a,b,c},{(a,b),(b,a),(b,c)}), ΠC

AF consists of 
    in(a)←out(b),  in(b)←out(a),  in(c)←out(b),  
     out(a)←in(b),  out(b)←in(a),  out(c)←in(b), 
     ←in(a), not out(b),  ←in(b), not out(a),  ←in(c), not out(b),  
     ←out(a), not in(b),  ←out(b), not in(a),  ←out(c), not in(b),  
     in(x) v out(x) v und(x) ←   where x∈{a,b,c} 
     ←in(x),out(x),  ←in(x),und(x),  ←out(x),und(x) where x∈{a,b,c} 
 
• ΠC

AF has 3 stable models: 
  {in(a),out(b),in(c)}, {out(a),in(b),out(c)}, {und(a),und(b),und(c)} 
which are equivalent to 3 sets of labelled arguments under 
the complete semantics of AF.    
 
 

a b 

c 



AF program under stable semantics 

Given AF=(Ar,att), an AF-program under the stable 
semantics ΠS

AF  is defined as follows: 
      ΠS

AF  = ΓAF  ∪ { in(x) ∨ out(x) ← | x∈Ar }  
                       ∪ { ←in(x), out(x) | x∈Ar }  
Theorem   
The sets of labelled arguments under the stable 
semantics of AF coincide with the stable models of ΠS

AF . 

Corollary   
AF has no stable labelling iff  ΠS

AF  has no stable model.  



Example 

• Given AF=({a,b,c},{(a,b),(b,c),(c,a)}), ΠS
AF consists of 

  in(a)←out(c),  in(b)←out(a),  in(c)←out(b),  
  out(a)←in(c),  out(b)←in(a),  out(c)←in(b), 
  ←in(a), not out(c),  ←in(b), not out(a),  ←in(c), not out(b),  
  ←out(a), not in(c),  ←out(b), not in(a),  ←out(c), not in(b),  
  in(x) v out(x) ←    where x∈{a,b,c} 
  ←in(x),out(x)    where x∈{a,b,c} 
 
• ΠS

AF has no stable model, so AF has no stable labelling.  

a b 

c 



AF program under  
grounded semantics 

Given AF=(Ar,att), an AF-program under the grounded  
semantics ΠG

AF  is defined as follows: 
  ΠG

AF  = ΓAF ∪ { und(x)←not in(x), not out(x) | x∈Ar }  
 

Theorem   
The set of labelled arguments under the grounded 
semantics of AF coincides with the stable model of ΠG

AF . 



Example 

• Given AF=({a,b,c,d},{(a,b),(b,a),(b,c),(d,c)}), ΠG
AF consists of 

  in(a)←out(b),   in(b)←out(a),   in(c)←out(b),out(d),     in(d)←, 
  out(a)←in(b),   out(b)←in(a),   out(c)←in(b),   out(c)←in(d), 
  ←in(a), not out(b),   ←in(b), not out(a),   ←in(c), not out(b),  
  ←in(c), not out(d),    ←out(a), not in(b),   ←out(b), not in(a),   
  ←out(c), not in(b), not in(d),      ←out(d),  
  und(x) ← not in(x), not out(x)  where x∈{a,b,c,d} 
 
• ΠG

AF has the unique stable model {und(a),und(b),out(c),in(d)} 
which is equivalent to the set of labelled arguments under 
the grounded semantics of AF.    

a c 

d 

b 



AF program under  
preferred semantics 

• Given AF=(Ar,att), the Herbrand base B’ is defined as  
 B’={ in(x), out(x), IN(x), OUT(x), UND(x) | x∈Ar }.  

• Given AF=(Ar,att), an AF-program under the preferred 
semantics ΠP

AF  is defined as follows: 
    ΠP

AF  = ΓAF ∪ { in(x) ∨ out(x) ← | x∈Ar }  
                    ∪ { IN(x)←in(x), not out(x) | x∈Ar }  
            ∪ { OUT(x)← not in(x), out(x) | x∈Ar }  
                    ∪ { UND(x)←in(x), out(x) | x∈Ar }  
Theorem   
There is a 1-1 correspondence between the sets of labelled 
arguments under the preferred semantics of AF and the 
stable models of ΠP

AF . 



Example 
• Given AF=({a,b,c},{(a,b),(b,a),(b,c),(c,c)}), ΠP

AF  consists of 
  in(a)←out(b),   in(b)←out(a),   in(c)←out(b),out(c),      
  out(a)←in(b),   out(b)←in(a),   out(c)←in(b),   out(c)←in(c), 
  ←in(a), not out(b),   ←in(b), not out(a),   ←in(c), not out(b),  
  ←in(c), not out(c),    ←out(a), not in(b),   ←out(b), not in(a),   
  ←out(c), not in(b), not in(c),    in(x) v out(x) ←   where x∈{a,b,c} 
  IN(x)←in(x), not out(x),     OUT(x)←not in(x), out(x),  
  UND(x)←in(x), out(x)        where x∈{a,b,c} 
• ΠP

AF has 2 stable models  
{ out(a), in(b), out(c), OUT(a), IN(b), OUT(c) } 
{ in(a), out(b), in(c), out(c), IN(a), OUT(b), UND(c) } 

Then 2 sets {OUT(a), IN(b), OUT(c)} and {IN(a), OUT(b), UND(c)} 
correspond to 2 sets of labelled arguments under the preferred 
semantics of AF (of which the 1st one represents stable labelling).   

a c b 



Application: Query Answering 

Theorem   Let AF=(Ar,att). For any x∈Ar,  
1. x is labelled  in  in some complete labelling of AF  

      iff   ΠC
AF  ∪ { ← not in(x) } has a stable model.   

2. x is labelled  in  in every complete labelling of AF  
      iff   ΠC

AF  ∪ { ← in(x) } has no stable model.   
The result also holds by replacing in with out or und.  
 
Similar results hold for ΠS

AF , ΠG
AF , and ΠP

AF . 
 



Application: Enforcement 

• The universal argumentation framework (UAF) is  
(U, attU) where U is the set of all arguments in the 
language and attU ⊆U×U.  

• AF=(Ar, att) is defined as a sub-AF of the UAF s.t. 
Ar⊆U and att= attU ∩(Ar × Ar).  

• BU is defined as BU ={ in(x), out(x), und(x) | x∈U }.  
• Given an enforcement set E⊂BU , if one can construct 

a new AF’ such that (i) AF’=(Ar’,att’) where Ar⊆Ar’⊆U 
and att’= attU ∩(Ar’ × Ar’), and (ii) AF’ has a complete 
labelling L s.t. L(x)=ℓ for any ℓ(x)∈E, then AF satisfies 
the enforcement E (under the complete semantics).  



Application: Enforcement 

• An AF-program under the complete semantics for the 
enforcement εΠC

AF is defined as  
 εΠC

AF =  ΠC
UAF＼{ in(x)←,  ←out(x) | x∈U＼Ar } 

 
Theorem   Given an enforcement set E⊂BU , AF =(Ar,att) 
satisfies the enforcement E iff   
εΠC

AF ∪{ ← not ℓ(x) | ℓ(x)∈E where ℓ∈{in, out, und} } 
has a stable model.  
 
Similar results hold for ΠS

AF , ΠG
AF , and ΠP

AF . 
 



Example 

• Let UAF=({a,b,c,d},{(d,c),(c,b),(b,a)}) and AF=({a,b},{(b,a)}). Then 
AF has the complete labelling {out(a),in(b)}. εΠC

AF  consists of 
  in(a)←out(b),   in(b)←out(c),   in(c)←out(c),   in(d)←  
  out(a)←in(b),   out(b)←in(c),   out(c)←in(d),   
  ←in(a), not out(b),   ←in(b), not out(c),   ←in(c), not out(d),  
  ←out(a), not in(b),   ←out(b), not in(c),   ←out(c), not in(d),    ←out(d),  
   in(x) v out(x) v und(x)←   where x∈{a,b,c,d} 
  ←in(x), out(x),   ← in(x), und(x),   ←out(x), und(x)   where x∈{a,b,c,d} 
• Given E={in(a)}, εΠC

AF ∪{ ← not in(a) } has the stable model  
{in(a), out(b), in(c), out(d)}. Then AF satisfies the enforcement E, 
i.e., to enforce in(a), AF is modified by introducing the new 
argument c and the attack relation (c,b).   

a c b d 

AF 
UAF 



Application: Agreement 
• Let AF1 and AF2 be two sub-AFs of the UAF. If AF1 (resp. AF2) has a set 

S (resp. T) of labelled arguments under a complete labelling such that 
S∩T≠{}, then AF1 and AF2 can reach an agreement.  

• Let ΠC
AF be a program in which predicates in, out and und in ΠC

AF  
are renamed by in’, out’ and und’, respectively.  Define  
       Φ = { agree(x)←in(x),in’(x) | x∈U } 

               ∪{ agree(x)←out(x),out’(x) | x∈U } 
               ∪{ agree(x)←und(x),und’(x) | x∈U } 
               ∪{ ok←agree(x) | x∈U } ∪{ ←not ok } 
 Theorem AF1 and AF2 can reach an agreement iff  ΠC

AF1 ∪ΠC
AF2 ∪Φ   

 has a stable model M. In this case, AF1 and AF2 agree on each argument  
 x s.t. agree(x)∈M.  
 † Similar results hold for ΠS

AF , ΠG
AF , and ΠP

AF . 
 †† The result is extended to agreement among more than 2 agents. 



Final Remark 

• ΠC
AF  and ΠS

AF can be represented by semantically 
equivalent normal logic programs, while ΠP

AF cannot. 
• Thus, ΠP

AF  is in the class of LPs that are more expressive 
and computationally expensive than others. 

• The proposed method is simple and uniform for different 
AF semantics.  

• Several techniques developed in LP (e.g. equivalence issue, 
optimisation, update, etc) are directly applied to 
transformed AF-programs.  

• The result of this study implicates potential use of rich LP 
techniques in AF (via AF-programs).  
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