Representing Argumentation
Frameworks in Answer Set
Programming

Chiaki Sakama (Wakayama Univ. Japan)
Tjitze Rienstra (Univ. of Luxembourg)

ArgLP, August 2015, Cork

Transformation from AF to LP
representational viewpoint

* meta-interpretative representation

individual AFs are given as input to a single metalogic
program which produces canonical (or selected)
models characterizing input AF semantics.

* object-level representation

individual AFs are transformed to corresponding logic
programs whose canonical models characterize input
AF semantics.

| Encoding AF semantics in meta-interpretative
LP often results in complicated programs.

Transformation from AF to LP
semantical viewpoint

e extension-based semantics

extensions of an AF are characterized by canonical
models of a transformed logic program.

e |abelling-based semantics

labellings of an AF are characterized by canonical
models of a transformed logic program.

| Extension-based semantics does not distinguish
rejected arguments and undecided arguments.

Transformation from AF to LP
transformational viewpoint

* onhe-to-one mapping
different semantics of an AF are characterized by
different semantics of a transformed LP.

°* many-to-one mapping

different semantics of an AF are characterized by
a single semantics of a transformed LP.

I Many-to-one mapping enables one to use a
single LP solver for computing different
semantics of AF.

Transformation from AF to LP
Existing Studies

Studies representation semantics transformation
Dung meta- extension stable ext. - stable model
(1995) interpretative grounded ext. » well-founded model
Nieves, et al. object level extension preferred ext. > stable model
(2008)
Wu, et al. object level labelling complete labelling & 3-valued stable
(2009) model
Wakaki, et al. meta- labelling complete/stable/grounded/preferred/
(2009) interpretative semi-stable labelling > ASP
Egly, et al. meta- extension complete/stable/grounded/preferred/
(2010) interpretative ext. > ASP
Caminada, et al. object level labelling stable/grounded/preferred/semi-stable
(2015) labelling - stable/well-founded/

regular/L-stable model

Our current object level labelling complete/stable/grounded/preferred/
study labelling > ASP

Preliminaries

An argumentation framework: AF=(Ar,att).
Forx€Ar, x={y | (y, x)Eatt }.
Labelling L: Ar - {in, out, und }

When L(a)=in (resp. out or und) for a € Ar, it is written as
in(a) (resp. out(a) or und(a)) (called labelled arguments).

Complete labelling, stable labelling, grounded labelling,
and preferred labelling are defined as usual.

A logic program consists of rules:
a;V---va, & dyq,...,d,, Ot a,41,...,n0t 0,
where g; :ground atom, not:negation as failure

The semantics of a program is given by stable models (or
answer sets).

LP Rules for AF

e Given AF=(Ar,att), the Herbrand base B is defined as
B={ in(x), out(x), und(x) | x€Ar }.

e The set ') of rules is defined as follows:

Lar = {in(x)&out(y,),...,out(yy) |
xEAr and x ={yi,...,v«} (k20) }

U {out(x)&in(y) | (y,x)Eatt}
U { &in(x), not out(y) | (y,x)Eatt }

U { &out(x), not in(y;),...,not in(y,) |
x€Ar and x ={y;,...,v«} (k20) }

AF program under
complete semantics

Given AF=(Ar,att), an AF-program under the complete
semantics HCAF is defined as follows:

1 = T4 U {in(x) V out(x) V und(x) < | xEAr}
U { &in(x), out(x) | x€EAr}
U { &in(x), und(x) | x€Ar}
U { &out(x), und(x) | x€EAr}

Theorem

The sets of labelled arguments under the complete
semantics of AF coincide with the stable models of HCAF_

Example " £

e Given AF=({a,b,c},{(a,b),(b,a),(b,c)}), HCAF consists of

in(a)&out(b), in(b)é&out(a), in(c)&out(b), c
out(a)<in(b), out(b)<in(a), out(c)&in(b),

&in(a), not out(b), &in(b), not out(a), &in(c), not out(b),
&out(a), not in(b), €<out(b), not in(a), <out(c), not in(b),
in(x) v out(x) v und(x) < where x€{a,b,c}

&in(x),out(x), <in(x),und(x), <out(x),und(x) where xE{a,b,c}

e TI%4rhas 3 stable models:

{in(a),out(b),in(c)}, {out(a),in(b),out(c)}, {und(a),und(b),und(c)}
which are equivalent to 3 sets of labelled arguments under
the complete semantics of AF.

AF program under stable semantics

Given AF=(Ar,att), an AF-program under the stable
semantics IT°,; is defined as follows:

Iy =T U {in(x) V out(x) & | xEAr}
U { &in(x), out(x) | x€EAr}

Theorem

The sets of labelled arguments under the stable
semantics of AF coincide with the stable models of HSAF,

Corollary
AF has no stable labelling iff HSAF has no stable model.

b

Example : .

+ Given AF=({a,b,c},{(a,b),(b,c),(c,a)}), T+ cobj.

C

in(a)&out(c), in(b)&out(a), in(c)&out(b),

out(a)&in(c), out(b)<in(a), out(c)<in(b),

&in(a), not out(c), <in(b), not out(a), <in(c), not out(b),
&out(a), not in(c), <out(b), notin(a), <out(c), not in(b),
in(x) v out(x) < where x€{a,b,c}

&in(x),out(x) where x€{a,b,c}

. HSAF has no stable model, so AF has no stable labelling.

AF program under
grounded semantics

Given AF=(Ar,att), an AF-program under the grounded
semantics I1°,; is defined as follows:

[1°,; = Tar U {und(x)¬ in(x), not out(x) | xEAr}

Theorem

The set of labelled arguments under the grounded
semantics of AF coincides with the stable model of HGAF_

Example =

e Given AF=({a,b,c,d},{(a,b),(b,a),(b,c),(d,c)}), HGAF consists of

in(a)éout(b), in(b)é&out(a), in(c)éout(b),out(d), in(d)<&,
out(a)é&in(b), out(b)&in(a), out(c)&in(b), out(c)&in(d),
&in(a), not out(b), <in(b), not out(a), <in(c), not out(b),
&in(c), not out(d), <out(a), notin(b), <out(b), notin(a),
&out(c), not in(b), not in(d), <out(d),

und(x) €< not in(x), not out(x) where x€{a,b,c,d}

o TI°,-has the unique stable model {und(a),und(b),out(c),in(d)}

which is equivalent to the set of labelled arguments under
the grounded semantics of AF.

AF program under

preferred semantics

e Given AF=(Ar,att), the Herbrand base B’ is defined as
B’={ in(x), out(x), IN(x), OUT(x), UND(x) | xEAr }.

 Given AF=(Ar,att), an AF-program under the preferred
semantics I1' 4 is defined as follows:

174 =Ty U {in(x) V out(x) & | xEAr}
U {IN(x)&in(x), not out(x) | xEAr}
U { OUT(x)é not in(x), out(x) | xEAr}
U { UND(x)&in(x), out(x) | x€Ar}
Theorem

There is a 1-1 correspondence between the sets of labelled
arguments under the preferred semantics of AF and the
stable models of IT

Example ‘—/ .°

O
e Given AF=({a,b,c},{(a,b),(b,a),(b,c),(c,c)}), I1°,+ consists of
in(a)éout(b), in(b)¢&out(a), in(c)éout(b),out(c),
out(a)&in(b), out(b)&in(a), out(c)&in(b), out(c)&in(c),
&in(a), not out(b), <in(b), not out(a), <in(c), not out(b),
&in(c), not out(c), <out(a), notin(b), <out(b), notin(a),
&out(c), not in(b), not in(c), in(x) v out(x) & where x€{a,b,c}
IN(x)&in(x), not out(x), OUT(x)<not in(x), out(x),
UND(x)<&in(x), out(x) where x€{a,b,c}
e II', has 2 stable models
{ out(a), in(b), out(c), OUT(a), IN(b), OUT(c) }
{in(a), out(b), in(c), out(c), IN(a), OUT(b), UND(c) }
Then 2 sets {OUT(a), IN(b), OUT(c)} and {IN(a), OUT(b), UND(c)}
correspond to 2 sets of labelled arguments under the preferred
semantics of AF (of which the 15t one represents stable labelling).

Application: Query Answering

Theorem Let AF=(Ar,att). For any x€E Ar,

1. xislabelled in in some complete labelling of AF
iff TI5, U { < not in(x) } has a stable model.

2. xis labelled in in every complete labelling of AF
iff TI,, U {«& in(x) } has no stable model.

The result also holds by replacing in with out or und.

Similar results hold for HSAF, HGAF, and IT 4.

Application: Enforcement

The universal argumentation framework (UAF) is
(U, att,) where U is the set of all arguments in the
language and att, S U X U.

AF=(Ar, att) is defined as a sub-AF of the UAF s.t.

Ar& U and att= att, Nn(Ar X Ar).

B, is defined as B, ={ in(x), out(x), und(x) | x€ U }.
Given an enforcement set EC B, if one can construct
a new AF’ such that (i) AF =(Ar,att’) where Ar&Ar S U
and att’= att, N(Ar’ X Ar’), and (ii) AF has a complete
labelling L s.t. L(x)=0 for any 0(x) € E, then AF satisfies
the enforcement E (under the complete semantics).

Application: Enforcement

 An AF-program under the complete semantics for the
enforcement EHCAF is defined as
el1%4r = T1 40 \ {in(x)&, <out(x) | x€U \ Ar}

Theorem Given an enforcement set ECB,, AF =(Ar,att)
satisfies the enforcement E iff

el1°,; U{ & not 0(x) | 0(x) EE where 0 E{in, out, und} }
has a stable model.

Similar results hold for HSAF, HGAF, and IT 4.

Example (&= [¢
AF UAF
e Let UAF=({a,b,c,d}{(d,c),(c,b),(b,a)}) and AF=({a,b},{(b,a)}). Then
AF has the complete labelling {out(a),in(b)}. el1°,; consists of
in(a)é&out(b), in(b)é&out(c), in(c)éout(c), inteh<
out(a)<in(b), out(b)<in(c), out(c)<&in(d),
&in(a), not out(b), <in(b), not out(c), <in(c), not out(d),
&out(a), not in(b), <out(b), not in(c), <out(c), notin(d), <eutid);
in(x) v out(x) v und(x)é& where x€{a,b,c,d}
&in(x), out(x), < in(x), und(x), <out(x), und(x) where xE{a,b,c,d}
e Given E={in(a)}, EHCAF U{ & notin(a) } has the stable model
{in(a), out(b), in(c), out(d)}. Then AF satisfies the enforcement E,

i.e., to enforce in(a), AF is modified by introducing the new
argument c and the attack relation (c,b).

Application: Agreement

 Let AF; and AF, be two sub-AFs of the UAF. If AF; (resp. AF,) has a set
S (resp. T) of labelled arguments under a complete labelling such that
SNT#{}, then AF; and AF, can reach an agreement.

e Let ©HCAF be a program in which predicates in, out and und in HCAF
are renamed by in’, out’ and und’, respectively. Define
® = { agree(x)&in(x),in’(x) | x€E U }
U { agree(x)&out(x),out’(x) | x€EU}
U { agree(x)&und(x),und’ (x) | x€U }
U{ok&agree(x) | x€U} U{ ¬ ok }

Theorem AF; and AF, can reach an agreement iff HCAFl U ©HCAF2 Uo
has a stable model M. In this case, AF; and AF, agree on each argument

x s.t. agree(x) E M.
T Similar results hold for HSAF, HGAF, and TT% 4.

T+ The result is extended to agreement among more than 2 agents.

Final Remark

C S .
I1" 4 and 11”4 can be represented by semantically
. . . P
equivalent normal logic programs, while II" 4 cannot.

Thus, HPAF is in the class of LPs that are more expressive
and computationally expensive than others.

The proposed method is simple and uniform for different
AF semantics.

Several techniques developed in LP (e.g. equivalence issue,
optimisation, update, etc) are directly applied to
transformed AF-programs.

The result of this study implicates potential use of rich LP
techniques in AF (via AF-programs).

	Representing Argumentation Frameworks in Answer Set Programming
	Transformation from AF to LP�representational viewpoint
	Transformation from AF to LP�semantical viewpoint
	Transformation from AF to LP�transformational viewpoint
	Transformation from AF to LP�Existing Studies
	Preliminaries
	LP Rules for AF
	AF program under �complete semantics
	Example
	AF program under stable semantics
	Example
	AF program under �grounded semantics
	Example
	AF program under �preferred semantics
	Example
	Application: Query Answering
	Application: Enforcement
	Application: Enforcement
	Example
	Application: Agreement
	Final Remark

