On the Issue of Argumentation and Informedness

Martin Caminada

Cardiff University

Chiaki Sakama

Wakayama University

Research Questions Formal Argumentation

- What arguments to accept? (Dung, 1995) (Baroni, Caminada & Giacomin, 2011)
- How to come to a common position? (Caminada & Pigozzi, 2011) (Awad, 2015)
- How much do positions differ? (Booth et al, 2012)
- Who knows more?
 THIS PRESENTATION

Who Knows More

- Straightforward if agent reasoning is based on classical logic: Ag_i ≤ Ag_i iff Cn(KB_i) ⊆ Cn(KB_j) Cn: deductive closure
- More complex for nonmonotonic reasoning: what if Ag_i knows that an inference of Ag_j is inapplicable? Ag_i \leq Ag_i may not imply $Cn(KB_i) \subseteq Cn(KB_i)$
- Still, the issue of "who knows more" is an important one.
 - How to assess expertise?
 - How to choose an advisor/consultant?
 - How to assess quality, if the product is information?

Philosophical Background

- knowledge: justified true belief
- modal logic (S4): true belief
- what we are interested in: justified belief

We believe that formal argumentation theory can give an account of justified belief which we shall refer to as "informedness"

Argumentation Preliminaries

AF = (Ar, att): argumentation framework Ar: set of arguments, att: set of attack relations

$$AF_1 \subseteq AF_2 \triangleq Ar_1 \subseteq Ar_2 \land att_1 = att_2 \cap (Ar_1 \times Ar_1)$$

Labelling: $L : Ar \rightarrow \{ in, out, undec \} \}$

Complete Labelling:

- if in then all attackers out
- if out then there is an attacker in
- if undec then not all attackers out and no attacker in

Example

AF₁=({A,B,C,D},{(A,B),(B,C),(C,D)})

$AF_2 = ({A,B,C}, {(A,B), (B,C)})$

Argument-Based Informedness

UAF = (Ar_{UAF}, att_{UAF}) : universal AF For each agent Ag_i: AF_i \sqsubseteq UAF

When Ag_i and Ag_j both have access to arguments A and B they agree on whether A attacks B

We want to define an informedness relation \leq s.t. 1) If $AF_i \sqsubseteq AF_j$ then $AF_i \leq AF_j$ (subgraph refinement) 2) $AF_i \leq AF_i$ (reflexivity) 3) If $AF_i \leq AF_i$ and $AF_i \leq AF_k$ then $AF_i \leq AF_k$ (transitivity)

Informedness Based on Upstream

upstream(A): all "ancestors" of A (including A itself) e.g. $A \leftarrow B \leftarrow C$ upstream(A)={A,B,C}

 \leq^{A}_{us} : informedness based on upstream (w.r.t. argument A)

 $AF_i \leq A_{us} AF_i$ def upstream_{AFi}(A) \subseteq upstream_{AFi}(A)

Satisfies all the three postulates: 1) If $AF_i \sqsubseteq AF_j$ then $AF_i \leq^A_{us} AF_j$ 2) $AF_i \leq^A_{us} AF_i$ 3) If $AF_i \leq^A_{us} AF_j$ and $AF_j \leq^A_{us} AF_k$ then $AF_i \leq^A_{us} AF_k$

Informedness Based on Upstream

status of A: how A is labelled by the complete labelling(s)

Merging $(AF_1 \sqcup AF_2)$: put AF₁ and AF₂ together, including any attacks between them

 \leq^{A}_{ms} : informedness based on status in merged AF (w.r.t. A)

 $AF_i \leq A_{ms} AF_i \stackrel{\text{def}}{=}$

- either AF_i and AF_j disagree about the status of A and AF_i AF_i agrees with AF_i, or
- AF_i and AF_j agree about the status of A, and for each disagreeing AF_k: if AF_i \u2264 AF_k agrees, then AF_i \u2264 AF_k agrees

So far, so good...

violates transitivity: $AF_{I} \leq A_{ms}AF_{II}$ and $AF_{II} \leq A_{ms}AF_{III}$ but $AF_{I} \leq A_{ms}AF_{III}$

violates subgraph refinement: $AF_{I} \sqsubseteq AF_{II}$ but $AF_{I} \Leftarrow^{A}_{ms}AF_{II}$

argument discussion game: a protocol for uttering arguments; the ability to win coincides with argumentation semantics

 \leq^{A}_{ds} : informedness based on discussion (w.r.t. A)

$AF_i \leq A_{ds} AF_i \stackrel{\text{def}}{=}$

- either AF_i and AF_j disagree about the status of A and Ag_j wins the discussion
- AF_i and AF_j agree about the status of A, and for each disagreeing AF_k: if Ag_i can win from Ag_k then Ag_i can also win from Ag_k

So far, so good...

More complex examples can present problems...

violates transitivity: $AF_{III} \leq A_{ds}AF_{II}$ and $AF_{II} \leq A_{ds}AF_{I}$ but $AF_{III} \leq A_{ds}AF_{I}$

 Ag_{II} can carry on to win the discussion, even after he understands he's wrong!

Roundup

- *result:* the three informedness relations are independent from each other; none is subsumed by another
- challenge: find an informedness relation that satisfies the three postulates and also performs well on the examples
- What's the best strategy to assess who's best informed? (without having access to the UAF)
- What's the best strategy to appear to be more informed than one really is?