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(ii) find a program R which has the set of answer sets such that AS(R) = AS(P1) ∩ AS(P2). A

program Q satisfying the condition (i) is called generous coordination of P1 and P2; and R satisfying

(ii) is called rigorous coordination of P1 and P2. Generous coordination retains all of the answer

sets of each program, but permits the introduction of additional answer sets of the other program.

By contrast, rigorous coordination forces each program to give up some answer sets, but the result

remains within the original answer sets for each program. Coordination provides a program that

reflects the meaning of two or more programs. We provide methods for constructing these two types

of coordination and address its application to logic-based multi-agent systems.
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1. INTRODUCTION

Logic programming provides a formal language for representing knowledge
and belief of an agent. The declarative semantics of a program is given by a
set of canonical models which represent belief sets of an agent. Our primary
interest in this article is: what is a suitable semantics of multiple programs,
and how to synthesize a program having such a collective semantics. Those
problems become especially important when an individual agent has a pro-
gram in multi-agent environments. In multi-agent systems, different agents
may have different sets of beliefs, and agents accommodate themselves to reach
acceptable agreements. We call the process of forming such agreements between
agents coordination. In multi-agent environments, individual agents are sup-
posed to have incomplete information and solve problems cooperatively. In logic
programming, incomplete information is represented in the framework of non-
monotonic logic programming or answer set programming [Lifschitz 2002]. We
then use answer set programming for representing and specifying agents.

In answer set programming, a problem is described by an extended disjunc-
tive program [Gelfond and Lifschitz 1991] and solutions are computed by an-
swer sets of the program. Answer sets represent sets of literals corresponding
to beliefs which can be built by a rational reasoner on the basis of a program
[Baral and Gelfond 1994]. Suppose an agent that has a knowledge base rep-
resented by an extended disjunctive program. An agent may have (conflicting)
alternative sets of beliefs, which are represented by multiple answer sets of a
program. Different agents have different collections of answer sets in general.
We then capture coordination between two agents as the problem of finding a
new program which has the meaning balanced between two programs. Con-
sider, for instance, a logic program P1 which has two answer sets S1 and S2;
and another logic program P2 which has two answer sets S2 and S3. Then, we
want to find a new program which is a result of coordination between P1 and
P2. In this article, we consider two different solutions: one is a program Q that
has three answer sets S1, S2, and S3; the other is a program R that has the
single answer set S2.

These two solutions provide different types of coordination—the first one
retains all of the original belief sets of each agent, but admits the introduction
of additional belief sets of the other agent. By contrast, the second one forces
each agent to give up some belief sets, but the result remains within the original
belief sets for each agent. These two types of coordination occur in real life. For
instance, suppose the following scenario: to decide the Academy Award of Best
Pictures, each member of the Academy nominates films. Now there are three
members—p1, p2, and p3, and each member can nominate at most two films:
p1 nominates f1 and f2, p2 nominates f2 and f3, and p3 nominates f2. At this
moment, three nominees f1, f2, and f3 are fixed. The situation is represented
by three programs:

P1 : f1 ; f2 ←,

P2 : f2 ; f3 ←,

P3 : f2 ←,
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where “;” represents disjunction. Here, P1 has two answer sets: { f1} and { f2};
P2 has two answer sets: { f2} and { f3}; P3 has the single answer set: { f2}.
The three nominees correspond to the answer sets: { f1}, { f2}, and { f3}. A
program having these three answer sets is the first type of coordination. Af-
ter final voting, the film f2 is supported by three members and becomes the
winner of the Award. The winner is represented by the answer set { f2}. A
program having this single answer set is the second type of coordination.
Thus, these two types of coordination happen in different situations, and it
is meaningful to develop computational logic for these coordinations between
agents.

The problem is then how to build a program that realizes such coordi-
nation. Formally, the problems considered in this article are described as
follows.

Given: two programs P1 and P2;
Find: (1) a program Q satisfying AS(Q) = AS(P1) ∪ AS(P2);

(2) a program R satisfying AS(R) = AS(P1) ∩ AS(P2),

where AS(P ) represents the set of answer sets of a program P . The program Q
satisfying (1) is called generous coordination of P1 and P2; and the program R
satisfying (2) is called rigorous coordination of P1 and P2. We develop methods
for computing these two types of coordination and investigate their properties.
Coordination among more than two programs is also obtained using operational
properties of each coordination.

From the viewpoint of answer set programming, the process of computing
coordination is considered as a program development under a specification that
requests a program reflecting the meanings of two or more programs. We show
that generous coordination merges consequences of credulous reasoning in two
programs, while restricts consequences of skeptical reasoning to those that are
common between two programs. By contrast, rigorous coordination reduces
credulous consequences, but increases skeptical consequences in general. The
problem of coordinating logic programs relates to the issue of program com-
position or merging. However, our goal is different from program composition
or merging. Program composition aims at obtaining the meaning of a program
by its component [Brogi 2004], while our purpose is to coordinate meanings
of different programs. Program merging has outcomes different from coordi-
nation in general. In the above example, generous coordination Q of P1 and
P2 has three answer sets { f1}, { f2}, and { f3}, and rigorous coordination R of
P1 and P2 has the single answer set { f2}. However, merging P1 ∪ P2 produces
two answer sets { f1, f3} and { f2}. We will argue the issue in more detail in
Section 7.

The rest of this article is organized as follows. Section 2 presents definitions
and terminologies used in this article. Section 3 introduces a framework of co-
ordination between logic programs. Section 4 provides methods for computing
coordination, and Section 5 addresses their properties. Section 6 exhibits var-
ious extensions in multi-agent coordination. Section 7 discusses related issues
and Section 8 summarizes this article.
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2. PRELIMINARIES

We suppose an agent that has a knowledge base represented with answer set
programming. An agent is then identified with its logic program and we use
those terms interchangeably throughout the article.

A program considered in this article is an extended disjunctive program
(EDP) which is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (n ≥ m ≥ l ≥ 0)

where each Li is a positive/negative literal, namely, A or ¬A for an atom A.
not is negation as failure (NAF), and not L is called an NAF-literal. A negative
literal represents negative information explicitly as in classical logic, while an
NAF-literal represents negative information implicitly under the closed world
assumption. The symbol “;” represents disjunction. The left-hand side of the rule
is the head, and the right-hand side is the body. For each rule r of the above
form, head(r), body+(r), body−(r), and not body−(r) denote the sets of (NAF-)
literals {L1, . . . , Ll }, {Ll+1, . . . , Lm}, {Lm+1, . . . , Ln}, and {not Lm+1, . . . , not Ln},
respectively. A disjunction of literals and a conjunction of (NAF-)literals in a
rule are identified with its corresponding sets of (NAF-)literals. A rule r is
often written as head(r) ← body+(r), not body−(r) or head(r) ← body(r) where
body(r) = body+(r) ∪ not body−(r). A rule r is disjunctive if head(r) contains
more than one literal. A rule r is an integrity constraint if head(r) = ∅; and r
is a fact if body(r) = ∅. A program P is NAF-free if body−(r) = ∅ for every rule
r in P . A program P with variables is semantically identified with its ground
instantiation, that is, the set of ground rules obtained from P by substituting
variables in P by elements of its Herbrand universe in every possible way.
Every program containing variables is then considered as a shorthand of its
ground instantiation, and this paper handles ground programs unless stated
otherwise.

The semantics of EDPs is given by the answer set semantics [Gelfond and
Lifschitz 1991]. Let Lit be the set of all ground literals in the language of a
program. A set S ⊆ Lit satisfies a ground rule r if body+(r) ⊆ S and body−(r) ∩
S = ∅ imply head(r) ∩ S 	= ∅. In particular, S satisfies a ground integrity
constraint r with head(r) = ∅ if either body+(r) 	⊆ S or body−(r) ∩ S 	= ∅. S
satisfies a ground program P if S satisfies every rule in P . When body+(r) ⊆ S
(respectively, head(r) ∩ S 	= ∅), it is also written as S |= body+(r) (respectively,
S |= head(r)).

Let P be an NAF-free EDP. Then, a set S ⊆ Lit is an answer set of P if S is
a minimal set such that

(1) S satisfies every rule from the ground instantiation of P ,

(2) S = Lit if S contains a pair of complementary literals L and ¬L.

Next, let P be any EDP and S ⊆ Lit. For every rule r in the ground instantiation
of P , the rule rS : head(r) ← body+(r) is included in the reduct P S if body−(r)∩
S = ∅. Then, S is an answer set of P if S is an answer set of P S . An EDP has
none, one, or multiple answer sets in general. The set of all answer sets of P
is written as AS(P ). An answer set is consistent if it is not Lit. A program P
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is consistent if it has a consistent answer set; otherwise, P is inconsistent. An
inconsistent program has either the single answer set Lit or no answer set. An
inconsistent program with the answer set Lit is called contradictory, while an
inconsistent program with no answer set is called incoherent.

A literal L is a consequence of skeptical reasoning (respectively, credulous
reasoning) in a program P if L is included in every (respectively, some) an-
swer set of P . The set of all (literal) consequences under skeptical (respec-
tively, credulous) reasoning in P is written as skp(P ) (respectively, crd(P )).
Note that, by the definition, skp(P ) = Lit and crd(P ) = ∅ if P is incoherent;
and skp(P ) = crd(P ) = Lit if P is contradictory. Clearly, skp(P ) ⊆ crd(P ) for
any consistent program P .

Two programs P1 and P2 are said to be AS-combinable if every set inAS(P1)∪
AS(P2) is minimal under set inclusion.

Example 2.1. Consider two programs:

P1 : p ; q ←,

p ← q,

q ← p,

P2 : p ← not q,

q ← not p,

where AS(P1) = {{p, q}} and AS(P2) = {{p}, {q}}. Then, crd(P1) = skp(P1) =
{ p, q }, crd(P2) = { p, q } and skp(P2) = ∅. P1 and P2 are not AS-combinable
because the set {p, q} is not minimal in AS(P1) ∪ AS(P2).

Technically, when two programs P1 and P2 are not AS-combinable, we can
make them AS-combinable by introducing the rule L ← not L for every L ∈ Lit
to each program. Here, Lit is the set of literals in the language of P1 ∪ P2, and
L is a newly introduced atom associated uniquely with each L. Let AS(P ) |Lit=
{ S ∩ Lit | S ∈ AS(P ) }. Then, the following property holds.

PROPOSITION 2.1. For two programs P1 and P2, put P ′
1 = P1 ∪ N and P ′

2 =
P2 ∪ N where N = { L ← not L | L ∈ Lit }. Then, P ′

1 and P ′
2 are AS-combinable

and AS(Pi) = AS(P ′
i ) |Lit (i = 1, 2).1

PROOF. When P1 and P2 are not AS-combinable, there are S ∈ AS(P1) and
T ∈ AS(P2) such that S ⊆ T . Correspondingly, there are S′ ∈ AS(P ′

1) and

T ′ ∈ AS(P ′
2) such that S′ = S ∪ { L | L 	∈ S } and T ′ = T ∪ { L | L 	∈ T }. By

S ⊆ T , there is a literal M ∈ T\S, which implies M ∈ T ′\S′ and M ∈ S′\T ′.
Thus, T ′ 	⊆ S′ and S′ 	⊆ T ′. Hence, P ′

1 and P ′
2 are AS-combinable. By S′∩Lit = S

and T ′ ∩ Lit = T , AS(Pi) = AS(P ′
i ) |Lit (i = 1, 2). Else when P1 and P2 are

AS-combinable, S 	⊆ T nor T 	⊆ S for any S ∈ AS(P1) and T ∈ AS(P2). This
implies S′ 	⊆ T ′ and T ′ 	⊆ S′.

1The second part of the proposition, that is, the 1-1 correspondence between the answer sets of Pi
and the answer sets of P ′

i , is also independently derived by Erdoğan and Lifschitz [2004, Proposi-

tion 3].
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Example 2.2. In the above example, put P ′
1 = P1 ∪ N and P ′

2 = P2 ∪ N
with

N : p ← not p,

q ← not q .

Then, AS(P ′
1) = {{p, q}} and AS(P ′

2) = {{p, q}, {p, q}}, so P ′
1 and P ′

2 are AS-
combinable.

3. COORDINATION BETWEEN PROGRAMS

In this section, we introduce two different types of coordination in answer set
programming. Throughout the paper, different programs are assumed to have
the same underlying language. This implies that every program has the same
set Lit of all ground literals in the language.

Definition 3.1. Let P1 and P2 be two programs. A program Q satisfying the
condition AS(Q) = AS(P1) ∪ AS(P2) is called generous coordination of P1 and
P2; a program R satisfying the condition AS(R) = AS(P1) ∩ AS(P2) is called
rigorous coordination of P1 and P2. AS(Q) (respectively, AS(R)) is called the
result of generous (respectively, rigorous) coordination.

The above program Q or R is also called a (generous or rigorous) coordinated
program (of P1 and P2).2 Generous coordination retains all of the answer sets of
each agent, but admits the introduction of additional answer sets of the other
agent. By contrast, rigorous coordination forces each agent to give up some
answer sets, but the result remains within the original answer sets for each
agent.

Technically, generous coordination requires two programs P1 and P2 to be AS-
combinable, since answer sets of Q are all minimal. So when we consider gener-
ous coordination between two programs, we assume them to be AS-combinable.
Generous coordination between programs that are not AS-combinable is possi-
ble by making them AS-combinable in advance using the program transforma-
tion presented in Section 2.

By Definition 3.1, generous coordination produces no answer set AS(Q) = ∅
when AS(P1) = AS(P2) = ∅. Similarly, rigorous coordination has no answer set
AS(R) = ∅ when either AS(P1) = ∅ or AS(P2) = ∅. In each case, the coordina-
tion result is trivial and uninteresting. Coordination is considered successful if
a coordinated program has an answer set.

Definition 3.2. Let Q be a generous coordinated program, and R a rigorous
coordinated program. We say that generous (respectively, rigorous) coordination
succeeds if AS(Q) 	= ∅ (respectively, AS(R) 	= ∅); otherwise, it fails.

Generous coordination succeeds when at least one program has an answer
set. By contrast, rigorous coordination succeeds only when two programs have a
common answer set. Even when generous/rigorous coordination succeeds, the
result becomes inconsistent if two programs are both contradictory, namely,

2We will often omit “of P1 and P2” when it is clear from the context.
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AS(Q) = AS(R) = {Lit} if AS(P1) = AS(P2) = {Lit}. A successful coordination
is consistent when original programs are consistent.

PROPOSITION 3.1. Given two consistent programs, generous/rigorous coordi-
nation succeeds iff the result of coordination is consistent.

PROOF. Let Q (respectively, R) be a generous (respectively, rigorous) co-
ordinated program of two consistent programs. Then, generous (respectively,
rigorous) coordination succeeds iff AS(Q) 	= ∅ (respectively, AS(R) 	= ∅) (Def-
inition 3.2) iff there is a consistent answer set S ∈ AS(Q) (respectively,
T ∈ AS(R)). Hence, the result follows.

Our primary interest is successful and consistent coordination, so that here-
after every program is assumed to be consistent unless stated otherwise. Note
that generous coordination may produce a collection of answer sets which con-
tradict with one another. But this does not cause any problem, since even a
single program may have a collection of conflicting answer sets. A collection of
answer sets represents (conflicting) alternative belief sets of each agent.

The next proposition presents relations between consequences of
credulous/skeptical reasoning in individual programs and those in coordinated
programs.

PROPOSITION 3.2. Let P1 and P2 be two consistent programs.

(1) If Q is a generous coordinated program,
(a) crd(Q) = crd(P1) ∪ crd(P2) ;
(b) skp(Q) = skp(P1) ∩ skp(P2) ;
(c) crd(Q) ⊇ crd(Pi) for i = 1, 2 ;
(d ) skp(Q) ⊆ skp(Pi) for i = 1, 2.

(2) If R is a rigorous coordinated program,
(a) crd(R) ⊆ crd(P1) ∪ crd(P2) ;
(b) skp(R) ⊇ skp(P1) ∪ skp(P2) ;
(c) crd(R) ⊆ crd(Pi) for i = 1, 2 ;
(d ) skp(R) ⊇ skp(Pi) for i = 1, 2.

PROOF

(1) (a) For any L ∈ Lit, L ∈ crd(Q)
iff ∃S ∈ AS(P1) ∪ AS(P2) such that L ∈ S
iff ∃S1 ∈ AS(P1) such that L ∈ S1, or ∃S2 ∈ AS(P2) such that L ∈ S2

iff L ∈ crd(P1) ∪ crd(P2).
(b) For any L ∈ Lit, L ∈ skp(Q)

iff ∀S ∈ AS(P1) ∪ AS(P2), L ∈ S
iff ∀S1 ∈ AS(P1), L ∈ S1; and ∀S2 ∈ AS(P2), L ∈ S2

iff L ∈ skp(P1) ∩ skp(P2).
The results of (c) and (d) hold by (a) and (b), respectively.
(2) (a) For any L ∈ Lit, L ∈ crd(R)

iff ∃S ∈ AS(P1) ∩ AS(P2) such that L ∈ S
only if ∃S1 ∈ AS(P1) such that L ∈ S1, and ∃S2 ∈ AS(P2) such that L ∈ S2

iff L ∈ crd(P1) ∪ crd(P2).
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(b) For any L ∈ Lit, L ∈ skp(R)
iff ∀S ∈ AS(P1) ∩ AS(P2), L ∈ S
if ∀S1 ∈ AS(P1), L ∈ S1; or ∀S2 ∈ AS(P2), L ∈ S2

iff L ∈ skp(P1) ∪ skp(P2).
The results of (c) and (d) hold by (a) and (b), respectively.

Example 3.1. Let AS(P1) = {{a, b, c}, {b, c, d }} and AS(P2) = {{b, c, d },
{c, e}}, where crd(P1) = { a, b, c, d }, skp(P1) = { b, c }, crd(P2) = { b, c, d , e },
and skp(P2) = { c }. A generous coordinated program Q has the answer sets
AS(Q) = {{a, b, c}, {b, c, d }, {c, e}} where crd(Q) = { a, b, c, d , e } and skp(Q) =
{c}. A rigorous coordinated program R has the answer sets AS(R) = {{b, c, d }}
where crd(R) = skp(R) = { b, c, d }. The above relations are verified for these
sets.

Generous coordination merges credulous consequences of P1 and P2, while
restricts skeptical consequences to those that are common between two pro-
grams. As a result, it increases credulous consequences and decreases skeptical
consequences. This reflects the situation that accepting opinions of the other
agent increases alternative choices while weakening the original argument of
each agent. By contrast, rigorous coordination reduces credulous consequences,
but increases skeptical consequences in general. This reflects the situation that
excluding opinions of the other agent costs abandoning some of one’s alternative
beliefs, which results in strengthening some original argument of each agent.

Definition 3.3. For two programs P1 and P2, let Q be a generous coordi-
nated program, and R a rigorous coordinated program. When AS(Q) = AS(P1)
(respectively, AS(R) = AS(P1)), P1 dominates P2 under generous (respectively,
rigorous) coordination.

When P2 dominates P1 under generous coordination, we can easily have a
generous coordinated program as Q = P2. Similarly, when P1 dominates P2

under rigorous coordination, a rigorous coordinated program becomes R = P1.

PROPOSITION 3.3. Let P1 and P2 be two programs. WhenAS(P1) ⊆ AS(P2), P2

dominates P1 under generous coordination, and P1 dominates P2 under rigorous
coordination.

PROOF. When AS(P1) ⊆ AS(P2), AS(P1) ∪ AS(P2) = AS(P2) and AS(P1) ∩
AS(P2) = AS(P1). So P2 dominates P1 under generous coordination, and P1

dominates P2 under rigorous coordination.

In cases where one agent dominates the other one, or when coordination fails,
the results of coordination are trivial and uninteresting. Then, the problem of
interest is the cases when AS(P1) 	⊆ AS(P2) and AS(P2) 	⊆ AS(P1) for comput-
ing generous/rigorous coordination; and AS(P1) ∩ AS(P2) 	= ∅ for computing
rigorous coordination. In the next section, we present methods for computing
these coordinated programs.
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4. COMPUTING COORDINATION

4.1 Computing Generous Coordination

We first present a method of computing generous coordination between two
programs.

Definition 4.1. Given two programs P1 and P2,

P1 ⊕ P2 = { head(r1) ; head(r2) ← body∗(r1), body∗(r2) | r1 ∈ P1, r2 ∈ P2 } ,

where head(r1) ; head(r2) is the disjunction of head(r1) and head(r2), and

body∗(r1) = body(r1)\{ not L | L ∈ T for some T ∈ AS(P2) and

L 	∈ S for any S ∈ AS(P1) },
body∗(r2) = body(r2)\{ not L | L ∈ S for some S ∈ AS(P1) and

L 	∈ T for any T ∈ AS(P2) }.
In P1 ⊕ P2, each rule is obtained by disjunctively (respectively, conjunctively)

combining heads (respectively, bodies) of rules from P1 and P2. In combining
bodies, every NAF-literal not L such that L ∈ T for some T ∈ AS(P2) and
L 	∈ S for any S ∈ AS(P1) is dropped from body∗(r1), because the existence
of such literals may prevent the derivation of some literal in head(r2) after
combination.

Example 4.1. Consider two programs:

P1 : p ← not q,

q ← not p,

P2 : ¬p ← not p,

where AS(P1) = {{p}, {q}} and AS(P2) = {{¬p}}. Then, P1 ⊕ P2 becomes

p ; ¬p ← not q,

q ; ¬p ← not p.

Note that not p from the rule of P2 is dropped in the first rule of P1 ⊕ P2 because
of the existence of {p} in AS(P1).

By the definition, P1 ⊕ P2 requires computation of all answer sets of P1 and
P2, which generally takes exponential time in the size of programs. However,
if AS(P1) and AS(P2) are computed by an answer set solver and given as an
input, the additional cost for computing P1 ⊕ P2 is O(|P1| × |P2| × |AS(P1)| ×
|AS(P2)|), where |P | represents the number of rules in P and |AS(P )| represents
the number of answer sets in P . Note that if both P1 and P2 are NAF-free,
body∗(ri) = body(ri). In this case, P1 ⊕ P2 is obtained in time O(|P1| × |P2|)
without computing answer sets of P1 and P2.

The program P1 ⊕ P2 generally contains useless or redundant literals/rules,
and the following program transformations are helpful to simplify the program.

—(elimination of tautologies: TAUT)
Delete a rule r from a program if head(r) ∩ body+(r) 	= ∅.
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—(elimination of contradictions: CONTRA)
Delete a rule r from a program if body+(r) ∩ body−(r) 	= ∅.

—(elimination of non-minimal rules: NONMIN)
Delete a rule r from a program if there is another rule r ′ in the program such
that head(r ′) ⊆ head(r), body+(r ′) ⊆ body+(r) and body−(r ′) ⊆ body−(r).

—(merging duplicated literals: DUPL)
A disjunction (L; L) appearing in head(r) is merged into L, and a conjunc-
tion (L, L) or (not L, not L) appearing in body(r) is merged into L or not L,
respectively.

These program transformations all preserve the answer sets of an EDP
[Brass and Dix 1997].

Example 4.2. Given two programs:

P1 : p ← q,

r ←,

P2 : p ← not q,

q ← r,

P1 ⊕ P2 becomes

p ; p ← q, not q,

p ; q ← q, r,

p ; r ← not q,

r ; q ← r.

The first rule is deleted by CONTRA, the second rule and the fourth rule are
deleted by TAUT. After such elimination, the resulting program contains the
third rule only.

Now we show that P1 ⊕ P2 realizes generous coordination of P1 and P2.

LEMMA 4.1. Let P1 and P2 be two NAF-free consistent AS-combinable pro-
grams. Then, S is an answer set of P1 ⊕ P2 iff S is an answer set of either P1 or
P2.

PROOF. Let S be an answer set of P1. Then, S satisfies every rule
head(r1) ← body(r1) in P1, thereby satisfies every rule head(r1); head(r2) ←
body(r1), body(r2) in P1⊕ P2. (Note: body∗(ri) = body(ri) for NAF-free programs.)
To see that S is an answer set of P1 ⊕ P2, suppose that there is a set T ⊂ S
which satisfies every rule in P1 ⊕ P2. Since S is an answer set of P1, T is
not an answer set of P1. So, there is a rule r ′

1 in P1 which is not satisfied
by T . For this rule, T 	|= head(r ′

1) and T |= body(r ′
1) hold. Then, for any rule

head(r ′
1); head(r2) ← body(r ′

1), body(r2) in P1⊕P2, T |= head(r2) or T 	|= body(r2).
Since every rule in P2 is combined with r ′

1, it holds that T |= head(r2) or
T 	|= body(r2) for every r2 in P2. Then, T satisfies P2. As P2 is consistent, it
has an answer set T ′ ⊆ T . This contradicts the assumption that P1 and P2 are
AS-combinable, namely, T ′ 	⊂ S. Hence, S is an answer set of P1 ⊕ P2. The case
that S is an answer set of P2 is proved in the same manner.
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Conversely, let S be an answer set of P1 ⊕ P2. Then, S satisfies every rule
head(r1); head(r2) ← body(r1), body(r2) in P1 ⊕ P2. Then S |= body(r1), body(r2)
implies S |= head(r1); head(r2). (i) If S 	|= head(r1) for some rule r1 ∈ P1, S |=
head(r2) for any r2 ∈ P2. In this case, S |= body(r2) implies S |= head(r2) for any
r2 ∈ P2, so that S satisfies every rule in P2. (ii) Else if S 	|= head(r2) for some
rule r2 ∈ P2, S |= head(r1) for any r1 ∈ P1. In this case, S |= body(r1) implies
S |= head(r1) for any r1 ∈ P1, so that S satisfies every rule in P1. (iii) Else if
S |= head(r1) for any r1 ∈ P1 and S |= head(r2) for any r2 ∈ P2, S satisfies
both P1 and P2. Thus, in every case S satisfies either P1 or P2. Suppose that
S satisfies P1 but it is not an answer set of P1. Then, there is an answer set
T of P1 such that T ⊂ S. By the if-part, T becomes an answer set of P1 ⊕ P2.
This contradicts the assumption that S is an answer set of P1 ⊕ P2. Similar
argument is done when S satisfies P2.

THEOREM 4.2. Let P1 and P2 be two consistent AS-combinable programs.
Then, AS(P1 ⊕ P2) = AS(P1) ∪ AS(P2).

PROOF. Let S ∈ AS(P1). Then, S is an answer set of P S
1 , so that S is

an answer set of P S
1 ⊕ P T

2 for any T ∈ AS(P2) (Lemma 4.1). (Note: as P1

and P2 are AS-combinable, the reducts P S
1 and P T

2 are also AS-combinable.)
To prove S ∈ AS(P1 ⊕ P2), we compare P S

1 ⊕ P T
2 and (P1 ⊕ P2)S . First, for

any rule head(r1); head(r2) ← body+(r1), body+(r2) in P S
1 ⊕ P T

2 , it holds that

body−(r1) ∩ S = body−(r2) ∩ T = ∅. Next, for any rule head(r1); head(r2) ←
body∗(r1), body∗(r2) in P1 ⊕ P2, head(r1); head(r2) ← body+(r1), body+(r2) is in
(P1 ⊕ P2)S iff body−

∗ (r1) ∩ S = body−
∗ (r2) ∩ S = ∅. By body−

∗ (r1) ⊆ body−(r1), it
holds that body−

∗ (r1)∩S ⊆ body−(r1)∩S. When body∗(r2) contains an NAF-literal
not L with L ∈ S, there is T ∈ AS(P2) such that L ∈ T (Definition 4.1). Thus, ev-
ery literal included in body−

∗ (r2)∩ S is also included in T . Then, body−
∗ (r2)∩ S =

body−
∗ (r2) ∩ S ∩ T holds. Since body−

∗ (r2) ∩ S ∩ T ⊆ body−
∗ (r2) ∩ T , it holds that

body−
∗ (r2)∩ S ⊆ body−

∗ (r2)∩T ⊆ body−(r2)∩T . By body−
∗ (r1)∩ S ⊆ body−(r1)∩ S

and body−
∗ (r2) ∩ S ⊆ body−(r2) ∩ T , it holds that P S

1 ⊕ P T
2 ⊆ (P1 ⊕ P2)S . Sup-

pose any rule head(r1); head(r2) ← body+(r1), body+(r2) in (P1⊕P2)S\(P S
1 ⊕P T

2 ).

Since S satisfies any rule r1 in P1, (i) S∩head(r1) 	= ∅ or (ii) body+(r1) 	⊆ S or (iii)
body−(r1)∩ S 	= ∅. In case of (i), S ∩head(r1) 	= ∅ implies S |= head(r1); head(r2).
In case of (ii), body+(r1) 	⊆ S implies S 	|= body+(r1), body+(r2). In case of (iii),
body−(r1) ∩ S 	= ∅ implies body−

∗ (r1) ∩ S = (body−(r1)\{ L | L ∈ T for some T ∈
AS(P2) and L 	∈ S for any S ∈ AS(P1) }) ∩ S 	= ∅. Thus, in cases of
(i) and (ii), a rule head(r1); head(r2) ← body+(r1), body+(r2) is included in
(P1 ⊕ P2)S\(P S

1 ⊕ P T
2 ), and S satisfies the rule. In case of (iii), the rule is not

included in the reduct (P1 ⊕ P2)S . Hence, the answer set S of P S
1 ⊕ P T

2 satisfies
every rule in (P1 ⊕ P2)S\(P S

1 ⊕ P T
2 ). By P S

1 ⊕ P T
2 ⊆ (P1 ⊕ P2)S , S becomes an

answer set of (P1 ⊕ P2)S and S ∈ AS(P1 ⊕ P2). The case of S ∈ AS(P2) is proved
in the same manner.

Conversely, let U ∈ AS(P1 ⊕ P2). Then, U is an answer set of (P1 ⊕ P2)U .
Put P ′

i = { head(ri) ← body+
∗ (ri) | head(r1); head(r2) ← body+

∗ (r1), body+
∗ (r2) ∈

(P1 ⊕ P2)U } for i = 1, 2. Then, (P1 ⊕ P2)U = P ′
1 ⊕ P ′

2. So U is an answer set of
P ′

1 ⊕ P ′
2, and that U is an answer set of either P ′

1 or P ′
2 (by Lemma 4.1). Suppose
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U ∈ AS(P ′
1). Let P1∗ = { head(r1) ← body∗(r1) | r1 ∈ P1 } where body−

∗ (r1) =
body−(r1)\V with V = { L | L ∈ T for some T ∈ AS(P2) and L 	∈ S for any S ∈
AS(P1) }. Then, P ′

1 = PU
1∗ . Thus, U is an answer of P ′

1 iff U is an answer set of
PU

1∗ . Since any literal in V is included in no answer set of P1, removing V from

body−(r1) does not affect the construction of answer sets of P1. Hence, U is an
answer set of P1∗ iff U is an answer set of P1. Similarly, U ∈ AS(P ′

2) implies
U ∈ AS(P2). Therefore, U is an answer set of either P1 or P2, and the result
holds.

Example 4.3. In Example 4.1, AS(P1 ⊕ P2) = {{p}, {q}, {¬p}}, thereby
AS(P1 ⊕ P2) = AS(P1) ∪ AS(P2).

Note that in Theorem 4.2, P1 and P2 must be AS-combinable because every
set in AS(P1 ⊕ P2) is minimal under set inclusion. However, the result can
be applied to non-AS-combinable programs P1 and P2 by making them AS-
combinable using the program transformation presented in Section 2.

4.2 Computing Rigorous Coordination

Next we present a method of computing rigorous coordination between two
programs.

Definition 4.2. Given two programs P1 and P2 such that AS(P1) ∩
AS(P2) 	= ∅,

P1 ⊗ P2 =
⋃

S∈AS(P1)∩AS(P2)

R(P1, S) ∪ R(P2, S),

where

R(P, S) = { head(r∗) ← body(r), not body−(r∗) | r ∈ P and rS ∈ P S }
with

head(r∗) = head(r) ∩ S,

not body−(r∗) = { not L | L ∈ head(r)\S }.
When AS(P1) ∩ AS(P2) = ∅, define P1 ⊗ P2 = { p ← not p } for any atom p.

Intuitively, the program P1 ⊗ P2 is a collection of rules which may be used
for constructing answer sets that are common between P1 and P2. In R(P, S)
every literal in head(r) which does not contribute to the construction of the
answer set S is shifted to the body as NAF-literals. Note that a set T of lit-
erals satisfies r ∈ P iff T satisfies r ′ ∈ R(P, S) for any S. This explains
the need of introducing not body−(r∗) to the body of every rule in R(P, S).
When AS(P1) ∩ AS(P2) = ∅, P1 ⊗ P2 has no answer set by the definition.
P1 ⊗ P2 may contain redundant rules, which are eliminated using program
transformations given in Section 4.1. For notational convenience, we often
abuse notation and write head(r∗) ← body(r), not body−(r∗) in R(P, S) as
head(r) ∩ S ← body(r), not (head(r)\S).
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Example 4.4. Consider two programs:

P1 : p ← not q, not r,

q ← not p, not r,

r ← not p, not q,

P2 : p ; q ; ¬r ← not r,

where AS(P1) = {{p}, {q}, {r}} and AS(P2) = {{p}, {q}, {¬r}}. By AS(P1) ∩
AS(P2) = {{p}, {q}}, P1 ⊗ P2 becomes

p ← not q, not r,

q ← not p, not r,

p ← not r, not q, not ¬r,

q ← not r, not p, not ¬r.

Here, the third and the fourth rules can be eliminated by NONMIN.

As the case of generous coordination, P1 ⊗ P2 generally requires exponential
computation of all answer sets of P1 and P2. When AS(P1) and AS(P2) are given
as an input, however, P1 ⊗ P2 is computed in time O((|P1| + |P2|) × |AS(P1) ∩
AS(P2)|) where |AS(P1) ∩ AS(P2)| represents the number of answer sets in
AS(P1) ∩ AS(P2).

Now we show that P1 ⊗ P2 realizes rigorous coordination of P1 and P2.

LEMMA 4.3. Let P be a consistent program. Then, S is an answer set of P iff
S is an answer set of R(P, S).

PROOF. S is an answer set of P iff S is an answer set of P S iff S is a minimal
set such that body+(r) ⊆ S implies head(r) ∩ S 	= ∅ for any rule head(r) ←
body+(r) in P S (∗). By the definition of R(P, S), the rule head(r) ← body+(r) is
in P S iff the corresponding rule head(r)∩ S ← body+(r) is in R(P, S)S (because
body−(r) ∩ S = ∅ and (head(r)\S) ∩ S = ∅). Hence, the statement (∗) holds iff
S is a minimal set such that body+(r) ⊆ S implies head(r) ∩ S 	= ∅ for any rule
head(r) ∩ S ← body+(r) in R(P, S)S iff S is a minimal set which satisfies every
rule head(r) ∩ S ← body+(r) in R(P, S)S iff S is an answer set of R(P, S).

THEOREM 4.4. Let P1 and P2 be two consistent programs. Then, AS(P1 ⊗
P2) = AS(P1) ∩ AS(P2).

PROOF. Let S ∈ AS(P1) ∩ AS(P2). Then, S satisfies every rule head(r) ←
body(r) in P1 and P2, so that S satisfies corresponding each rule head(r)∩ T ←
body(r), not (head(r)\T ) in R(P1, T ) ∪ R(P2, T ) for any T ∈ AS(P1) ∩ AS(P2).
Thus, S satisfies P1 ⊗ P2. Suppose that S is not an answer set of P1 ⊗ P2. Then,
there is a set U ⊂ S which satisfies every rule in (P1 ⊗ P2)S . In this case, U
satisfies R(P1, S)S . By Lemma 4.3, however, S ∈ AS(P1) implies that S is a
minimal set which satisfies R(P1, S)S . Contradiction. Hence, S is an answer
set of P1 ⊗ P2.

Conversely, let S ∈ AS(P1 ⊗ P2). Then, S is a minimal set which satisfies
every rule head(r)∩T ← body(r), not (head(r)\T ) in R(P1, T )∪R(P2, T ) for any
T ∈ AS(P1) ∩ AS(P2). By Lemma 4.3, T is also a minimal set which satisfies
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both R(P1, T ) and R(P2, T ), so that there is a literal L ∈ S\T and a literal
M ∈ T\S. However, every rule in R(P1, T )∪ R(P2, T ) has the head head(r)∩T ,
so that no literal L ∈ S\T is included in the head. Thus, L is not included in
the answer set S, thereby S\T = ∅. As both T and S are minimal, T\S = ∅.
Hence, T = S and S ∈ AS(P1) ∩ AS(P2).

Example 4.5. In Example 4.4, AS(P1 ⊗ P2) = {{p}, {q}}, thereby AS(P1 ⊗
P2) = AS(P1) ∩ AS(P2).

5. PROPERTIES

5.1 Operational Properties

The operations ⊕ and ⊗ have the following properties.

PROPOSITION 5.1. Let P1, P2, and P3 be programs. Then,

(1) P1 ⊕ P2 = P2 ⊕ P1 and (P1 ⊕ P2) ⊕ P3 = P1 ⊕ (P2 ⊕ P3);
(2) P1 ⊗ P2 = P2 ⊗ P1 and (P1 ⊗ P2) ⊗ P3 = P1 ⊗ (P2 ⊗ P3).

PROOF. The commutative law is straightforward, so we show the associative
law.

(1) (P1 ⊕ P2) ⊕ P3 contains rules of the form:

head(r1); head(r2); head(r3) ← body∗∗(r1), body∗∗(r2), body∗(r3).

Here, body∗∗(r1) = (body(r1)\D1)\D2 where D1 = { not L | L ∈ T for some
T ∈ AS(P2) and L 	∈ S for any S ∈ AS(P1) } and D2 = { not M | M ∈ U for
some U ∈ AS(P3) and M 	∈ V for any V ∈ AS(P1) ∪AS(P2) }. Now, it holds that
D2 = D3\D4 where D3 = { not M | M ∈ U for some U ∈ AS(P3) and M 	∈ V
for any V ∈ AS(P1) } and D4 = { not M | M ∈ U for some U ∈ AS(P3) and
M 	∈ V for any V ∈ AS(P1) and M ∈ for some W ∈ AS(P2) }. Since D4 ⊆ D1,
body∗∗(r1) = (body(r1)\D1)\D2 = (body(r1)\D1)\(D3\D4) = body(r1)\(D1 ∪ D3).
Thus, body∗∗(r1) = body(r1)\{ not L | L ∈ T for some T ∈ AS(P2) ∪ AS(P3)
and L 	∈ S for any S ∈ AS(P1) }. Similarly, body∗∗(r2) = body(r2)\{ not L |
L ∈ T for some T ∈ AS(P1) ∪ AS(P3) and L 	∈ S for any S ∈ AS(P2) }, and
body∗(r3) = body(r3)\{ not L | L ∈ for some T ∈ AS(P1) ∪ AS(P2) and L 	∈ S for
any S ∈ AS(P3) }. It is verified that P1 ⊕ (P2 ⊕ P3) consists of the same rules by
replacing r1 with r2, r2 with r3, and r3 with r1 in the above proof.

(2) When AS(P1) ∩ AS(P2) ∩ AS(P3) = ∅, the result holds by putting (P1 ⊗
P2) ⊗ P3 = P1 ⊗ (P2 ⊗ P3) = { p ← not p } for some atom p. Let AS(P1) ∩
AS(P2) ∩ AS(P3) 	= ∅. Suppose a rule head(ri) ∩ S ← body(ri), not (head(ri)\S)
in P1 ⊗ P2 where ri ∈ Pi (i = 1, 2) and S ∈ AS(P1) ∩ AS(P2). Then, for every
T ∈ AS(P1) ∩ AS(P2) ∩ AS(P3), (P1 ⊗ P2) ⊗ P3 consists of rules

ui = (head(ri) ∩ S) ∩ T ← body(ri), not (head(ri)\S), not ((head(ri) ∩ S)\T )

(i = 1, 2) where uT
i ∈ (P1 ⊗ P2)T ; and rules

head(r3) ∩ T ← body(r3), not (head(r3)\T )
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where r3 ∈ P3 and rT
3 ∈ P T

3 . For every rule ui, if T = S, ui is equivalent
to head(ri) ∩ T ← body(ri), not (head(ri)\T ). Else, if T 	= S, there are liter-
als L, M ∈ Lit such that L ∈ S\T and M ∈ T\S. (a) When M ∈ head(ri),
M ∈ head(ri)\S. Them, uT

i is not included in (P1 ⊗ P2)T . (b) Else when
M 	∈ head(ri) and L ∈ head(ri), head(ri) ∩ S ∩ T = head(ri) ∩ T . As head(ri)\
S = (head(ri)\S)\T , (head(ri)\S) ∪ ((head(ri) ∩ S)\T ) = head(ri)\T . Hence,
ui is equivalent to head(ri) ∩ T ← body(ri), not (head(ri)\T ). (c) Else when
M 	∈ head(ri) and L 	∈ head(ri), head(ri) ∩ S ∩ T = head(ri) ∩ T and (head(ri)\
S) ∪ ((head(ri) ∩ S)\T ) = head(ri)\T . Then, ui is equivalent to head(ri) ∩ T ←
body(ri), not (head(ri)\T ). Hence, (P1 ⊗ P2) ⊗ P3 consists of rules:

head(ri) ∩ T ← body(ri), not (head(ri)\T ) (i = 1, 2, 3)

for T ∈ AS(P1) ∩ AS(P2) ∩ AS(P2). Similarly, it is shown that P1 ⊗ (P2 ⊗ P3)
consists of the same set of rules. Therefore, the result holds.

Thus, ⊕ and ⊗ are both commutative and associative. Moreover, ⊕ is also
idempotent, P ⊕ P = P if NONMIN and DUPL are applied to P ⊕ P and P . By
contrast, ⊗ is not idempotent, but the relation AS(P ⊗ P ) = AS(P ) holds.

By Proposition 5.1, when generous/rigorous coordination is done among more
than two agents, the order of computing coordination does not affect the final
outcome. Two types of coordination are mixed among agents. In this case, the
absorption laws and the distribution laws do not hold in general, that is:

P1 ⊕ (P1 ⊗ P2) 	= P1 and P1 ⊗ (P1 ⊕ P2) 	= P1;

P1 ⊕ (P2 ⊗ P3) 	= (P1 ⊕ P2) ⊗ (P1 ⊕ P3) and

P1 ⊗ (P2 ⊕ P3) 	= (P1 ⊗ P2) ⊕ (P1 ⊗ P3).

Note that programs are generally different, but the following relations hold by
the definitions:

AS(P1 ⊕ (P1 ⊗ P2)) = AS(P1 ⊗ (P1 ⊕ P2)) = AS(P1),

AS(P1 ⊕ (P2 ⊗ P3)) = AS((P1 ⊕ P2) ⊗ (P1 ⊕ P3)),

AS(P1 ⊗ (P2 ⊕ P3)) = AS((P1 ⊗ P2) ⊕ (P1 ⊗ P3)).

Given two programs P1 and P2, suppose programs P ′
1 and P ′

2 such that
AS(P1) = AS(P ′

1) andAS(P2) = AS(P ′
2). Then, by Theorems 4.2 and 4.4, it holds

that AS(P1 ⊕ P2) = AS(P ′
1 ⊕ P ′

2) and AS(P1 ⊗ P2) = AS(P ′
1 ⊗ P ′

2). This means
that when the original programs are transformed to semantically equivalent
programs, such transformations do not change the results of generous/rigorous
coordination. In this case, however, coordinated programs P1 ⊕ P2 and P ′

1 ⊕ P ′
2

(or P1 ⊗ P2 and P ′
1 ⊗ P ′

2) have different syntax in general.

5.2 Syntactic Properties

In Section 4, we provided methods for constructing programs that reflect the
meaning of generous/rigorous coordination. One may wonder the need of creat-
ing coordinated programs (P1⊕P2 or P1⊗P2), given the results (AS(P1)∪AS(P2)
or AS(P1) ∩ AS(P2)) of coordination. To explain the reason, consider the
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programs:

P1 : sweet ← strawberry,

strawberry ←,

P2 : red ← strawberry,

strawberry ←,

where AS(P1) = {{sweet, strawberry}} and AS(P2) = {{red, strawberry}}. The
result of rigorous coordination is AS(P1) ∩AS(P2) = ∅, and the result of gener-
ous coordination is AS(P1) ∪AS(P2) = {{sweet, strawberry}, {red, strawberry}}.
As rigorous coordination fails, we consider generous coordination. A generous
coordinated program P1 ⊕ P2 becomes

sweet ; red ← strawberry,

strawberry ←,

after eliminating duplicated literals and redundant rules. The benefit of having
the coordinated program P1 ⊕ P2, in addition to the result AS(P1) ∪ AS(P2),
is explained as follows. A simple result of coordination, { sweet, strawberry }
or { red, strawberry }, does not bring information on which the coordination is
ground. The agent P1 does not know why P2 has the belief set { red, strawberry }.
When an agent accepts different belief sets of another agent as a result of co-
ordination, information on which the belief sets are ground would be helpful
to understand the mental state of another agent. The program P1 ⊕ P2 rep-
resents background knowledge which accounts for the result of coordination.
Generally, a program—a collection of rules, contains more information than
its answer set—a collection of literals. In multi-agent environments, a coor-
dinated program serves as a social knowledge base consented among agents.
Agents would act and make decisions in a society based on a coordinated pro-
gram. This explains the reason of constructing a coordinated program, even
after obtaining the result of coordination.

When a set of answer sets is given, however, it is not difficult to construct
a program which has exactly those answer sets. Given a set of answer sets
{S1, . . . , Sm}, first compute the disjunctive normal form: S1 ∨· · ·∨ Sm, then con-
vert it into the conjunctive normal form: R1 ∧ · · · ∧ Rn. Since these are logically
equivalent transformations, the set of facts {R1, . . . , Rn} has the answer sets
{S1, . . . , Sm}. This technique is also used for computing coordination between
programs. For instance, to get a generous coordinated program which has the
answer sets AS(P1) ∪ AS(P2) in the above example, taking the DNF of each
answer set produces

(sweet ∧ strawberry) ∨ (red ∧ strawberry).

Converting it into the CNF, it becomes

(sweet ∨ red) ∧ strawberry.

As a result, the set of facts

Q : sweet ; red ←,

strawberry ←
is a program which realizes generous coordination of P1 and P2.
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Two programs P1 ⊕ P2 and Q have the same meaning but have different
syntax. Then, a question is: which one is more preferable as a coordinated
program? An agent may concede in the process of coordination, but the outcome
of coordination would be more acceptable if the original information of the
agent is reflected to the maximal extent. A desirable property for coordinated
programs is that it should inherit as much information as possible from the
original programs. Comparing P1 ⊕ P2 and Q , sweetness/redness of strawberry,
which is included in P1 or P2, is kept in P1 ⊕ P2, while no connection between
sweetness/redness and strawberry is represented in Q . Thus, in this example,
P1 ⊕ P2 is considered preferable to Q .

This intuition is rephrased as follows: when there exist different candidates
for coordination between two programs, a program which is syntactically closer
to the original ones is preferred. Then, a question is how to measure such
“syntactical closeness” between programs? Our solution here is comparing de-
pendency relations between literals. We prefer a coordinated program which
inherits dependency relations from the original programs as much as possible.
In the above example, P1 ⊕ P2 is considered preferable to Q as a coordinated
program, since a dependency relation between sweet/red and strawberry is kept
in P1 ⊕ P2 but lost in Q . The reason why we consider dependency relations as
a measure of “syntactical closeness” between programs is explained as follows.
A logic program is a set of inference rules which represent relations between
causes and effects, or conditions and conclusions. If an agent has a belief of
causal relations between events, the agent would retain the belief after coor-
dination as far as there is no reason to discard it. So we consider that in the
process of coordination it is meaningful to inherit dependency relations in the
original programs as much as possible. In what follows, we formalize this idea.

A (literal) dependency graph of a program P is a directed graph in which

each node represents a ground literal and there is a directed positive edge
+−→

(respectively, negative edge
−−→) from L1 to L2 iff there is a ground rule in P

such that L1 appears in the head and L2 (respectively, not L2) appears in the
body of the rule.3 We say that L1 positively depends on L2 (respectively, L1

negatively depends on L2) if L1
+−→ L2 (respectively, L1

−−→ L2). Let (L1, L2)
(respectively, (L1, not L2)) be a pair of ground (NAF-)literals such that L1 pos-
itively (respectively, negatively) depends on L2 in the dependency graph of a
program. Let δ(P ) be the collection of such pairs in the dependency graph of P .
Then, a condition for selecting preferable coordination is provided as follows.

Definition 5.1. Given two programs P1 and P2, suppose two different pro-
grams P3 and P4 for candidates of coordination. Then, P3 is preferable to P4

if

�(δ(P3), δ(P1) ∪ δ(P2)) ⊂ �(δ(P4), δ(P1) ∪ δ(P2)),

where �(S, T ) represents the symmetric difference between two sets S and T ,
namely, (S\T ) ∪ (T\S).

3A literal dependency graph for EDPs is also introduced in Ben-Eliyahu and Dechter [1994], but

it does not consider negative edges.
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The above relation represents that P3 retains dependency relations in P1

and P2 more than P4 does.

Example 5.1. Applying to the introductory example of this section, it be-
comes

δ(P1) = {(sweet, strawberry)},
δ(P2) = {(red, strawberry)},
δ(Q) = ∅,

δ(P1 ⊕ P2) = {(sweet, strawberry), (red, strawberry)}.
Then, �(δ(P1⊕P2), δ(P1)∪δ(P2)) ⊂ �(δ(Q), δ(P1)∪δ(P2)), so P1⊕P2 is preferable
to Q .

Generally, given two sets AS(P1) and AS(P2), their generous/rigorous coor-
dination can be computed by a series of DNF–CNF conversion. The resulting
program is, however, always a set of facts, so that dependency relations in the
original programs are completely lost. Dependency relations in P1⊕P2 or P1⊗P2

have the following properties.

PROPOSITION 5.2. Let P1 and P2 be two programs. For literals L1, L2 ∈ Lit,

(1) (L1, L2) ∈ δ(P1) ∪ δ(P2) implies (L1, L2) ∈ δ(P1 ⊕ P2) ;

(2) (L1, L2) ∈ δ(P1 ⊗ P2) implies (L1, L2) ∈ δ(P1) ∪ δ(P2).

PROOF

(1) For every rule head(ri) ← body(ri) in Pi (i = 1, 2), there is a rule
head(r1) ; head(r2) ← body∗(r1), body∗(r2) in P1 ⊕ P2. Then, the result holds
by body+

∗ (ri) = body+(ri).
(2) For every rule head(r) ∩ S ← body(r), not (head(r)\S) in R(Pi, S) (i =

1, 2), there is a rule head(r) ← body(r) in Pi. Hence, the result holds.

By Proposition 5.2, generous coordination keeps positive dependency rela-
tions in the original programs, but negative dependency relations in the orig-
inal programs may be lost in P1 ⊕ P2 due to the reduction of NAF-literals in
body∗(ri). By contrast, rigorous coordination may eliminate positive/negative
dependency relations in the original programs, but it does not introduce new
positive dependency relations to P1 ⊗ P2.

Example 5.2. Consider the programs P1 and P2 in Example 4.4. The rela-
tions (r, not p) and (r, not q) in δ(P1) and (¬r, not r) in δ(P2) are eliminated in
δ(P1 ⊗ P2), while new relations (p, not ¬r) and (q, not ¬r) are produced.

In the above example, the eliminated relations do not contribute to the con-
struction of answer sets in P1 ⊗ P2. The newly introduced relations can be
eliminated after applying NONMIN to the program P1 ⊗ P2 in this example.
Computationally, the DNF–CNF conversion requires exponential computation
in general, while P1 ⊕ P2 and P1 ⊗ P2 are computed in polynomial time, given
the collections of answer sets of two programs. Thus, the proposed coordinated
programs have both representational and computational advantages over the
DNF–CNF conversion.
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Note that we do not claim here that the proposed coordinated programs pro-
vide the best solution. We compared our program construction with the DNF–
CNF conversion, since it is the simplest way to realize coordination. We used
dependency relations for measuring syntactical closeness between programs.
However, dependency relations in the original programs are artificially kept by
introducing extra rules. In the “strawberry” example, adding the rules

sweet ← sweet, strawberry,

red ← red, strawberry,

to the DNF–CNF conversion program Q keeps the dependencies (sweet,
strawberry) and (red, strawberry). In the end, the symmetric difference between
this program and the original programs will be the same as the symmetric dif-
ference between P1 ⊕ P2 and the original programs.4 Introducing those tautolo-
gies keeps dependencies in the original programs, however, the transformation
introduces additional new dependencies: (sweet, sweet) and (red, red), which are
not in the original program. Moreover, those introduced rules are semantically
meaningless and redundant, which are against the consideration of program
simplification.

It is worth noting that equivalence-preserving program transformations are
often useful to make coordinated programs close to the original programs.

Example 5.3. Consider two programs:

P1 : p ← not q,

P2 : q ← not p.

Then, P1 ⊕ P2 becomes

p ; q ←
and �(δ(P1 ⊕ P2), δ(P1)∪δ(P2)) = { (p, not q), (q, not p) }. Thus, negative depen-
dency relations in the original programs are lost in the generous coordinated
program. However, P1 ⊕ P2 is transformed to the semantically equivalent pro-
gram tr1(P1 ⊕ P2) = P1 ∪ P2 by shifting disjuncts in the head of a rule to the
body as NAF-literals in every possible way but leaving one in the head. More
precisely, shifting transforms a disjunctive rule L1 ; · · · ; Lk ← Body into k non-
disjunctive rules: Li ← Body, not L1, . . . , not Li−1, not Li+1, . . . , not Lk (i =
1, . . . , k). Negative dependency relations lost in generous coordination are pos-
sibly revived by applying the shifting transformation tr1. In this example, it
becomes �(δ(tr1(P1 ⊕ P2)), δ(P1) ∪ δ(P2)) = ∅. Thus, tr1(P1 ⊕ P2) is preferable
to P1 ⊕ P2. The shifting transformation is applicable to any head-cycle-free
disjunctive program containing no positive cycle through disjuncts appear-
ing in the head of a disjunctive rule, and preserves the answer set semantics
[Ben-Eliyahu and Dechter 1994].

Next, consider two programs:

P3 : p ; q ←,

P4 : p ; r ← .

4This transformation is suggested by a reviewer.
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Then, P3 ⊗ P4 becomes

p ← not q,

p ← not r,

and �(δ(P3 ⊗ P4), δ(P3) ∪ δ(P4)) = { (p, not q), (p, not r) }. Thus, new nega-
tive dependency relations are introduced in the rigorous coordinated pro-
gram. However, P3 ⊗ P4 is transformed to the semantically equivalent pro-
gram tr2(P3 ⊗ P4) = { p ← } by reducing every NAF-literal not L such
that L appears in the head of no rule. After the transformation, it becomes
�(δ(tr2(P3 ⊗ P4)), δ(P3) ∪ δ(P4)) = ∅. Thus, tr2(P3 ⊗ P4) is preferable to P3 ⊗ P4.
The reduction tr2 of NAF-literals, called positive reduction, preserves the an-
swer sets of any EDP [Brass and Dix 1997].

6. APPLICATION

Generous or rigorous coordination collects answer sets of multiple programs
by taking union/intersection in a simple manner. In multi-agent environments,
however, some strategies or preferences are taken into account to select appro-
priate outcomes. In this section, we consider variants of coordination methods
in multi-agent environments.

6.1 Coordination by Majority

When there are more than two agents, it is often the case that the majority
principle is taken into account.

Example 5.1. John, Lucy and Mary are planning to go to a restaurant to-
gether. John wants to have an Asian food—Chinese or Indian or Japanese. Lucy
likes Indian or French, and Mary likes Japanese or Italian. Three persons’ pref-
erences are encoded as P1, P2, and P3, respectively:

P1 : ch ; in ; ja ←,

P2 : in ; fr ←,

P3 : ja ; it ←,

where AS(P1) = { {ch}, {in}, {ja} }, AS(P2) = { {in}, {fr} }, and AS(P3) = { {ja},
{it} }. Rigorous coordination P1 ⊗ P2 ⊗ P3 produces no solution, while generous
coordination P1 ⊕ P2 ⊕ P3 have five candidates. Then, they decided to reduce
candidates based on the majority principle. As there is no restaurant that is
supported by all three persons, they agreed to select restaurants supported by
two persons. Consequently, {in} and {ja} are selected as candidates.

The majority principle is used in our daily life when there is no solution
supported by every agent, but there is one supported by a good number of
agents. Thus, majority-based coordination is considered useful in practice and
it is computed by combining generous/rigorous coordination. When there are n
agents, we introduce k-supported coordination which selects answer sets that
are common among k(≤ n) or more agents.
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Definition 6.1. Let P1, . . . , Pn be n programs. Then, k-supported coordina-
tion (0 < k ≤ n) (among P1, . . . , Pn) is defined as a program �k such that

AS(�k) = { S | S ∈ AS(P ′
1) ∩ · · · ∩ AS(P ′

k) }
where { P ′

1, . . . , P ′
k } ⊆ { P1, . . . , Pn} and P ′

i 	= P ′
j for i 	= j .

The program �k has answer sets that are supported by at least k different
agents. In particular, �k coincides with rigorous coordination when k = n.
The majority-based coordination is considered as a special case of k-supported
coordination where k is a maximal number such that AS(�k) 	= ∅.

THEOREM 6.1. Let P1, . . . , Pn be n consistent AS-combinable programs. Then,
k-supported coordination (0 < k ≤ n) is computed as

�k = R1 ⊕ · · · ⊕ R(n
k),

where Ri (1 ≤ i ≤ (n
k

)
) is any rigorous coordination among k-combinations of

programs from P1, . . . , Pn and Ri 	= R j for i 	= j .

PROOF. As P1, . . . , Pn are consistent and AS-combinable, R1, . . . , R(n
k) are

also consistent and AS-combinable. Then, S ∈ AS(�k)
iff S ∈ AS(P ′

1) ∩ · · · ∩ AS(P ′
k) for { P ′

1, . . . , P ′
k } ⊆ {P1, . . . , Pn} and P ′

i 	= P ′
j for

i 	= j
iff S ∈ AS(P ′

1 ⊗ · · · ⊗ P ′
k) for { P ′

1, . . . , P ′
k } ⊆ {P1, . . . , Pn} and P ′

i 	= P ′
j for i 	= j

(Theorem 4.4)
iff S ∈ AS(R j ) for some 1 ≤ j ≤ (n

k

)

iff S ∈ AS(R1 ⊕ · · · ⊕ R(n
k)) (Theorem 4.2).

Example 6.2. In Example 5.1, 2-supported coordination among P1, P2, and
P3 is computed as follows. First, rigorous coordinations between 2-combinations
of programs become:5

P1 ⊗ P2 : in ← not ch, not ja,

in ← not fr,

P2 ⊗ P3 : in ← not in,

P3 ⊗ P1 : ja ← not ch, not in,

ja ← not it.

Next, generous coordination among these three programs becomes:

(P1 ⊗ P2) ⊕ (P2 ⊗ P3) ⊕ (P3 ⊗ P1) :

in ; ja ← not ch,

in ; ja ← not fr, not it,

after simplification. The resulting program has two answer sets {in} and {ja}.

5Here, “in” in P2 ⊗ P3 can be any atom.
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6.2 Permissible Coordination

In multi-agent coordination, individual agents often concede one another to
reach an agreement. However, an agent may have strong belief that cannot be
abandoned and weak belief that can be given up. In another situation, it may
happen that one agent is stronger in decision making or more reliable than
other agents. In this case, information from particular agents is preferred to
information from other ones. To formulate these situations, some preference is
taken into account to select information in the process of coordination.

Example 6.3. A company is deciding methods for advertising a new prod-
uct. A sales person P1 considers that making CM for TV is most effective. In
addition, there is a choice between putting an ad either in newspapers or on
the Internet.

P1 : np ; net ←,

tv ← .

On the other hand, the sales manager P2 considers an option of putting an ad
in either newspapers or magazines. If putting an ad in magazines, another way
is making CM for TV. Due to the limited budget, however, putting an ad in
newspapers leaves no room for making CM for TV. In this case, putting an ad
on the Internet is considered.

P2 : tv ← mag,

net ← np,

← tv, np,

np ; mag ← .

Now two programs have the answer sets: AS(P1) = {{tv, np}, {tv, net}} and
AS(P2) = {{tv, mag}, {net, np}}. In this situation, rigorous coordination brings
no solution, namely, P1 ⊗ P2 = ∅. Then, two persons collect candidates for solu-
tions by generous coordination: P1⊕P2 = {{tv, np}, {tv, net}, {tv, mag}, {net, np}}.
The sales manager first discards {tv, np} as it does not satisfy the integrity con-
straint of P2. The sales person has a strong belief that making CM for TV
is most effective, so {net, np} is unsatisfactory for him/her. The manager then
takes his/her opinion into account and discards {net, np}. At this stage, there
are two candidates for solutions: {tv, net} or {tv, mag}.

In the above example, answer sets are selected according to several prefer-
ence criteria. First, the sales manager is in a position higher than the sales
person, so that answer sets of P1 which do not satisfy the integrity constraint
of P2 are discarded. Second, the sales person has a strong belief which cannot
be abandoned, so that an answer set of P2 which does not reflect the belief
is eliminated. Such preference conditions are useful to reduce candidates for
solutions and to reach final outcome acceptable to each agent.

In rigorous coordination, every answer set included in P1 ⊗ P2 satisfies both
P1 and P2. In generous coordination, however, an answer set included in P1⊕ P2

satisfies either P1 or P2, but does not always satisfy both of them. Generous
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coordination introduces answer sets of other agents, but an agent would be
unwilling to accept some of which do not satisfy its strong beliefs. To retain
strong beliefs of each agent, we introduce permissible conditions to generous
coordination.

Given a program P , a set PR of persistent rules is defined as a subset of
P . Intuitively, PR is the set of rules that should be satisfied in the result of
generous coordination. In this setting, permissible coordination is defined as
follows.

Definition 6.2. Let P1 and P2 be two AS-combinable programs, and PR1

and PR2 their persistent rules, respectively. A program P1 ⊕P P2 is called a
permissible coordination of P1 and P2 if it satisfies the condition

AS(P1 ⊕P P2) = { S | S ∈ AS(P1) ∪ AS(P2) and S satisfies PR1 ∪ PR2}.
By the definition, every answer set in the result of permissible coordination

satisfies persistent rules of each agent. The permissible coordination reduces
to generous coordination when PR1 ∪ PR2 = ∅.

Given two AS-combinable programs, permissible coordination is computed
by introducing every rule in PR1 ∪ PR2 as an integrity constraint to P1 ⊕ P2.
Given a program P , let

IC(P ) = { ← body(r), not head(r) | r ∈ P }
where not head(r) is the conjunction of NAF-literals { not L1, . . . , not Ll } for
head(r) = { L1, . . . , Ll }.

LEMMA 6.2 (LIFSCHITZ 1996, PROPOSITION 5.1). Let P be a program and IC a
set of integrity constraints. Then, S is an answer set of P satisfying every con-
straint in IC iff S is an answer set of P ∪ IC.

THEOREM 6.3. Let P1 and P2 be two consistent AS-combinable programs.
Then, AS(P1 ⊕P P2) = AS((P1 ⊕ P2) ∪ IC(PR1) ∪ IC(PR2)).

PROOF. By Definition 6.2 and the result of Theorem 4.2, S ∈ AS(P1 ⊕P P2)
iff S is an answer set of P1 ⊕ P2 and satisfies PR1 ∪PR2 iff S is an answer set of
P1 ⊕ P2 and satisfies IC(PR1)∪IC(PR2) iff S ∈ AS((P1 ⊕ P2)∪IC(PR1)∪IC(PR2))
(Lemma 6.2).

Example 6.4. Consider two programs P1 and P2 in Example 6.3 where
PR1 = { tv ← } and P B2 = { ← tv, np }. Then, (P1 ⊕ P2) ∪ IC(PR1) ∪ IC(PR2)
becomes

tv ← mag,

np ; net ; mag ←,

tv ; net ← np,

tv ; np ; mag ←,

← not tv,

← tv, np,

after simplification. The program has two answer sets {tv, net} and {tv, mag}.
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7. RELATED WORK

7.1 Combining Logic Programs

The problem of combining logic programs has been studied by several re-
searchers in different contexts. Baral et al. [1991] introduce algorithms for com-
bining multiple logic programs by enforcing satisfaction of integrity constraints.
For instance, suppose two programs:

P1 : p(x) ← not q(x),

q(b) ← r(b),

q(a) ←,

P2 : r(a) ←,

together with the integrity constraints:

IC : ← p(a), r(a),

← q(a), r(a).

They combine P1 and P2 and produce a new program which satisfies IC as
follows:

P3 : p(x) ← not q(x), x 	= a,

q(b) ← r(b),

q(a) ; r(a) ← .

By contrast, (P1 ∪ IC) ⊕ P2 in our framework becomes6

p(x) ; r(a) ← not q(x),

q(b) ; r(a) ← r(b),

q(a) ; r(a) ←,

after eliminating tautologies. Comparing two results, the program P3 has two
answer sets {p(b), q(a)} and {p(b), r(a)}, while (P1 ∪ IC) ⊕ P2 has two answer
sets: {p(b), q(a)} and {r(a)}. Thus, the answer sets of P3 do not coincide with
those of the original programs. Indeed, they request that every answer set of a
resulting program to be a subset of an answer set of P1 ∪ P2. This is in contrast
to our approach where we request the result of coordination to keep (part of)
the answer sets of the original programs. Another important difference is that
the algorithms in Baral et al. [1991] are not applicable to unstratified logic
programs, while our method is applied to every extended disjunctive program.

The problem of program composition has been studied by several researchers
(see Bugliesi et al. [1994] and Brogi [2004] for excellent surveys). It combines
different programs into one. The problem is then how to provide the meaning of
a program in terms of those components. In the presence of negation as failure,
Brogi et al. [1999] introduce three meta-level operations for composing normal
logic programs: union, intersection, and restriction. The union simply puts two

6Here IC is included in P1 as we handle integrity constraints as a part of a program. The first rule

in P1 is identified with its ground instantiation.
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programs together, and the intersection combines two programs by merging a
pair of rules with unifiable heads. For instance, given two programs:

P1 : likes(x, y) ← not bitter( y),

hates(x, y) ← sour( y);

P2 : likes(Bob, y) ← sour( y),

the program P1 ∩ P2 consists of the single rule:

likes(Bob, y) ← not bitter( y), sour( y).

The restriction allows one to filter out some rules from a program. They employ
Fitting’s 3-valued fixpoint semantics and show how one can compute the seman-
tics of the composed program in terms of the original programs. In the context
of normal open logic programs, Verbaeten et al. [1997] introduce a variant of
the well-founded semantics, and identify conditions for two programs P1 and
P2 to satisfy the equality Mod(P1 ∪ P2) = Mod(P1) ∩ Mod(P2) where Mod(P ) is
the set of models of P . Etalle and Teusink [1996] consider three-valued comple-
tion semantics for program composition as the union of normal open programs.
Comparing these studies with ours, both program operations and underlying
semantics are different from ours. Moreover, the goal of program composition
is to compute the meaning of the whole program in terms of its subprograms.
By contrast, our goal is to construct a program which has a balanced mean-
ing among different programs, and we do not regard the original program as a
subprogram of the coordinated program.

7.2 Merging

Combination of propositional theories has been studied under the names
of merging [Konieczny and Pino-Pérez 1998] or arbitration [Liberatore and
Schaerf 1998]. The goal of these research is to provide a new theory which is
consistent and preserves as much information as possible from their sources.
When two programs P1 and P2 do not contradict each other, merging results in
P1 ∪ P2. In this regard, merging is different from coordination presented in this
paper. For instance, two programs P1 = { p ← } and P2 = { q ← } are merged
into P3 = { p ← , q ← }, while generous coordination of P1 and P2 becomes
P1 ⊕ P2 = { p ; q ← }. Thus, in contrast to generous coordination, merging does
not preserve answer sets of the original programs. In merging, beliefs of dif-
ferent agents are mixed together as far as they are consistent, which makes it
difficult to distinguish the original beliefs of individual agents after merging.
For instance, suppose that an agent has the program P4 = { p ; q ← } and new
information P1 = { p ← } arrives. If P4 and P1 are merged, the result becomes
P5 = { p ← } after eliminating the non-minimal rule in P4. Later, it turns out
that the fact p in P1 does not hold. At this stage, the agent cannot recover
the original information included in P4 from P5 alone. By contrast, if generous
coordination is done, it becomes P4 ⊕ P1 = P4 and the original information
in P4 is kept. If there is a good reason to rely on P1, we can use permissible
coordination to prefer P1 over P4. In this example, by putting persistent rules
as PR1 = P1, it becomes P4 ⊕P P1 = { p ; q ←, ← not p } which has the single
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answer set {p}. Note here that the original information in P4 is still kept in
P4 ⊕P P1.

Program merging is effective when each agent possesses partial informa-
tion and problem solving is performed cooperatively. For instance, suppose
P5 = { p ← q, r, q ← } and P6 = { p ← q, r, r ← }. Then, P5 and P6 cannot
infer p individually, but P5 ∪ P6 can infer p. Our coordination framework is in-
tended to coordinate different belief sets of individual agents, and does not pro-
duce new facts inferred cooperatively. In this example, generous coordination
becomes P5 ⊕ P6 = { p ← q, r, q ; r ← }, which does not infer p. In this respect,
coordination is more cautious than merging in cooperative reasoning. However,
it is worth noting that simple merging does not always produce acceptable con-
clusions for individual agents in nonmonotonic logic programs. Consider the
following example from Gelfond and Lifschitz [1991]. A brave driver crosses
railway tracks in the absence of information on an approaching train:

cross ← not train.

On the other hand, a careful driver crosses railway tracks in the presence of
information on no approaching train:

cross ← ¬ train.

In this example, two rules should not be simply merged because they represent
incompatible beliefs of different agents. In fact, simply merging these two
programs produces the single solution {cross}, which is a “brave” solution
and would be unacceptable for the careful driver. In our framework, rigorous
coordination produces no solution, and generous coordination produces two
candidates {cross} and ∅.7 The example shows that merging nonmonotonic
theories does not always produce a consensus among agents, even though
they do not contradict one another. When information from different sources
conflicts one another, merging employs information supported by the majority
of the sources [Konieczny and Pino-Pérez 1998]. Coordination based on the
majority principle is also realized as presented in Section 6.1, but the result is
basically different from merging as presented above.

7.3 Coordination

Some studies propose multi-agent coordination in logic programming.
Buccafurri and Gottlob [2002] introduce a framework of compromise logic pro-
grams, which aims at reaching common conclusions and compromises among
logic programming agents. Given a collection of programs T = {Q1, . . . , Qn},
the joint fixpoint JFP(T ) is defined as JFP(T ) = FP(Q1) ∩ · · · ∩ FP(Qn) where
FP(Qi) is the set of all fixpoints of Qi. Then, the joint fixpoint semantics of T is
defined as the set of minimal elements in JFP(T ). The joint fixpoint semantics
is different from our coordination semantics. For instance, when two programs
P1 = { p ← } and P2 = ∅ are given, their joint fixpoint semantics becomes ∅.
Interestingly, however, if a tautology p ← p is added to P2, the joint fixpoint

7Precisely, these two programs are not AS-combinable. Using the transformation in Section 2,

however, the second program has the answer set containing cross.
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semantics turns to {p}. Thus, in their framework a rule p ← p has a special
meaning that “if p is required by another agent, let it be”. With this reading,
however, P1 = { p ← } and P3 = { p ← p, q ← } have the joint fixpoint seman-
tics ∅, that is, P3 does not tolerate p when another irrelevant fact q exists in
the program. By contrast, rigorous coordination results in P1 ⊗ P3 = ∅. If each
agent can tolerate accepting belief sets of the other agent, generous coordina-
tion produces P1 ⊕ P3 = {{p}, {q}}.

Ciampolini et al. [2003] propose a multi-agent system ALIAS in which each
agent has two different knowledge bases written in logic programming. An
abductive knowledge base expresses an agent’s internal knowledge which is
used to achieve the agent’s goal. A behavior knowledge base describes desired
actions and interactions of the agent with its environment. In particular, two
different types of coordination—collaboration and competition, are realized
in its behavioral part. A query specifies behavior of agents to achieve goals,
and ALIAS solves problems by interacting two knowledge bases. Coordination
in ALIAS is thus procedurally given, which is different from our declarative
approach in this article.

De Vos and Vermeir [2004] introduce a system of logic programming agents
LPAS. In this system, each agent is represented by an ordered choice logic
program that has a hierarchical structure expressing preferences among pro-
grams. Agents communicate through unidirectional channels and update their
own answer sets by incoming information. An agent can defeat incoming infor-
mation that does not fit its own belief by attaching a higher preference to its
own program. The semantics of LPAS is given by an evolutionary fixpoint which
is the outcome of communication. A principal difference with our approach is
that in LPAS an answer set of one agent changes by incoming information from
other agents. This is in contrast to the coordination framework in this article
that does not change answer sets of each agent. Our framework has no hier-
archical structure over programs, but it can handle preference relations over
information as in Section 6.2.

Meyer et al. [2004] introduce a logical framework for negotiating agents.
They introduce two different modes of negotiation: concession and adaptation.
They characterize such negotiation by rational postulates and provide meth-
ods for constructing outcomes. In their framework each agent is represented
by classical propositional theories, so that those postulates are not generally
applied to nonmonotonic theories. In this sense, coordination considered in this
article is beside the subject of those postulates. Moreover, their negotiation out-
come coincides with the result of merging when two propositional theories are
consistent with each other. This is different from our coordinated programs as
discussed in Section 7.2. Foo et al. [2005] introduce a theory of multi-agent ne-
gotiation in answer set programming. Starting from the initial agreement set
S∩T for an answer set S of an agent and an answer set T of another agent, each
agent extends this set to reflect its own demand while keeping consistency with
demand of the other agent. When two answer sets S and T do not contradict
each other, their algorithm just returns the union S ∪ T as the trivial deal. In
the “cross-train” example, the algorithm returns { cross } as the solution, which
would be unacceptable as stated above.
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Sakama and Inoue [2005] propose a method of combining answer sets of dif-
ferent programs. Given two programs P1 and P2, they build a program Q satisfy-
ing AS(Q) = min(AS(P1)�AS(P2)) where AS(P1)�AS(P2) = { S � T | for S ∈
AS(P1) and T ∈ AS(P2), S � T = S ∪ T if S ∪ T is consistent; otherwise, S �
T = Lit } and min(X ) = { Y ∈ X | ¬∃Z ∈ X such that Z ⊂ Y }. The pro-
gram Q satisfying the above condition is called a composition of P1 and P2.
The result of composition combines answer sets of two programs, and extends
some answer sets of one program with additional information of another pro-
gram. Compared with the present work, program composition combines an-
swer sets of each program, and it does not preserve answer sets of the original
programs. Moreover, Sakama and Inoue [2006] build a program Q such that
AS(Q) = min({S ∩ T | S ∈ AS(P1) and T ∈ AS(P2) }), and a program R such
that AS(R) = max({S ∩ T | S ∈ AS(P1) and T ∈ AS(P2) }). The program
Q is called minimal consensus, and the program R is called maximal consen-
sus. Minimal/maximal consensus extracts common beliefs that are included in
an answer set of every program, and characterizes minimal/maximal agree-
ments among multiple agents. Coordination, composition, and consensus are
all intended to formalize different types of social behaviors of multiple agents
in logic programming. A recent study [Inoue and Sakama 2006] reveals that
those theories have close relations to a theory of generalization in answer set
programming.

8. CONCLUSION

This article has studied methods of coordinating multiple logic programs. Two
different types of coordination have been introduced and their computational
methods have been provided. The majority principle and preference mecha-
nisms were also incorporated to select appropriate outcomes in multi-agent
coordination. The proposed theory provides a declarative semantics for coordi-
nating logical agents, which is different from program composition or merging.

In multi-agent systems, coordination could be performed in different ways.
In one way, agents have their own knowledge bases and exchange their answer
sets. In this case, every agent can share coordination outcomes. In another way,
there is a master agent who coordinates answer sets of slave agents. In this case,
the master agent has coordination outcomes which are not necessarily shared
by slave agents. In both cases, a program having a coordinated semantics serves
as a social knowledge base consented among agents.

From the viewpoint of answer set programming, the process of computing
coordination is considered as a program development under a specification that
requests a program reflecting the meanings of two or more programs. Our co-
ordination methods are implemented on top of the existing answer set solvers
like DLV [Eiter et al. 2000]. Given two programs as an input, their answer sets
are computed by DLV. Once answer sets are computed, a coordinated program
is constructed in polynomial time with respect to the number of rules and the
number of answer sets of input programs. The computation would be infeasi-
ble when a program possesses an exponential number of answer sets. The same
problem, however, arises in computing answer sets by answer set solvers. The
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present paper handles ground programs only, so that the output coordinated
programs are ground, even when the input programs contain variables. In this
respect, further extension is necessary to produce coordinated programs with
variables.

There is still room for improvement in computing coordinated programs. For
instance, it is hard or even impossible to construct coordinated programs with-
out computing answer sets of the original programs in general. However, it
might be possible to characterize some special (but not trivial) programs that
have simple coordinated programs without computing all answer sets of the
original programs. Approximation techniques would be useful in practice, es-
pecially in computing the coordination by majority (Section 6.1) which requires
combination of coordinated programs. The coordination method proposed in
this paper is a step on understanding social behaviors of multiple agents by
means of computational logic, and much work remains to be done. In future
work, we will refine our framework and also investigate other types of coor-
dination and collaboration as well as their characterization in computational
logic.
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