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Abstract. The paper introduces the notion of an epistemic argumentation frame-
work (EAF) as a means to integrate the beliefs of a reasoner with argumentation.
Intuitively, an EAF encodes the beliefs of an agent who reasons about arguments.
Formally, an EAF is a pair of an argumentation framework and an epistemic con-
straint. The semantics of the EAF is defined by the notion of an ω-epistemic
labelling set, where ω is complete, stable, grounded, or preferred, which is a
set of ω-labellings that collectively satisfies the epistemic constraint of the EAF.
The paper shows how EAF can represent different views of reasoners on the
same argumentation framework. It also includes representing preferences in EAF
and multi-agent argumentation. Finally, the paper discusses the complexity of the
problem of determining whether or not an ω-epistemic labelling set exists.
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1 Introduction

Rational agents often claim that they make their decision based on their knowledge and
beliefs when facing alternative and conflicting choices. Consider two examples:
• On January 15, 2019, British Prime Minister’s Theresa May suffered a humiliating

defeat in the vote on the Brexit deal; 432 Members of Parliament (MPs) voted
against the deal while 202 were for it.3 The MPs who voted against the deal believe
that the deal is bad for Britain. Those who voted for the deal believe that the deal is
the best that Britain can get.

• In the US presidential election, a voter selects one candidate from a set of candi-
dates (often only two candidates). Everyone claims that he/she has made the “right
choice.”

In each scenario above, an agent (an MP or a voter) listens to various arguments,
which either support or reject a potential decision, and then opts for one among
the possibilities, which he/she believes is the right choice. In each situation, the ar-
guments supporting/against a choice, their counter-arguments, etc. can be easily en-
coded in an abstract argumentation framework (AF) introduced in [12]. For instance,
AF = ({(a)ccept, (r)eject}, {(a, r), (r, a)}), having two arguments mutually attack-
ing each other, represents (in its most condensed form) the AF that the MPs have for

3 “Brexit vote”, Jan. 15th, 2019. washingtonpost.com
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making their choice about the Brexit’s deal. Given arguments made by each agent in
each scenario, an argumentation semantics of the corresponding AF provides the result
of rational reasoning. The stable semantics of the above AF supports two alternative
choices, while the ground semantics of the AF supports “no decision”. As such, it would
likely result in the unanimous choice by all agents who participate in argumentation and
claim that they are rational.

The above discussion raises the question “how to express an agent’s opinion for sup-
porting an argument among conflicting arguments in the outcome of an AF?” Arguably,
there are two possibilities: the agent modifies the AF so that the new AF supports his/her
choice or the agent is simply biased towards his/her conclusion. In the first case, nothing
other than the agent’s beliefs could influence his/her choice of arguments and/or attacks
that lead to the new AF, which ultimately leads to his/her conclusion. In this approach,
a modified AF represents objective evidences and subjective beliefs indistinguishably.
If one merges objective evidences (normally invariant) and subjective beliefs (possibly
variant) in a single AF, however, it must be revised whenever an agent changes its own
belief. Moreover, it would become hard to distinguish subjective beliefs from objective
evidences in a personally customized AF. In this respect, it is desirable to have a mech-
anism that can distinguishably represent subjective beliefs (or biases) of agents as well
as objective evidences as an AF.

In the second case, biases, reflecting beliefs of agents, could be viewed as agents’
preferences. Furthermore, there is a huge amount of literature in AF on dealing with
preferences in argumentation. It is therefore instructive to consider whether previously
developed approaches to dealing with preferences would be sufficient to capture biases.
In most approaches in abstract AF, the key idea is to extend an AF with a syntactic
component that records the preferences such as a preference relation among arguments
or an attack relation between arguments and attacks, and then define a new semantics
for this extended AF (detailed discussion is in Section 4). Approaches to dealing with
preferences have thus far only considered biases/preferences between arguments (e.g.,
prefer an argument over another one) or preferences between arguments and attacks.
However, it is difficult to apply those approaches to represent preferences in a compli-
cated situation. Suppose the following scenario: a person, who goes to a restaurant, has
a preference on the combination of food and drink: white wine for fish and red wine
for meat. However, the person wants no red wine other than French one, so he/she will
take white wine for meat if French red wine is unavailable. It is hard to specify such
conditional preference using preference relations among individual arguments. Then
we represent preferences as a formula over epistemic literals.

In this paper, we propose an approach to incorporate agents’ beliefs into an argu-
mentation framework (AF). Specifically, we propose an extension of AF, called epis-
temic argumentation framework (EAF). EAF introduces the third component to an AF,
an epistemic constraint, that represents the belief of an agent given an AF. We study
formal properties of EAF and show that it can be used in representing preferences
and decision making in multiagent environments. We also investigate computational
complexity and discuss related issues. The rest of the paper is organized as follows.
Section 2 reviews basic notions of argumentation frameworks used in this paper. Sec-
tion 3 introduces epistemic argumentation frameworks and addresses its applications.
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Section 4 discusses related issues and Section 5 concludes the paper. Due to space limit,
we omit proofs of propositions, which will be provided in the full paper.

2 Argumentation Framework

This paper uses (abstract) argumentation frameworks introduced by [12].
An argumentation framework (AF) is a pair (Ar, att) where Ar is a (finite) set of

arguments and att ⊆ Ar × Ar. We write a → b (say, a attacks b) iff (a, b) ∈ att. We
say that a indirectly attacks b if there is a finite sequence x0, ..., x2n+1 (n ≥ 1) such
that a = x0 and b = x2n+1 and for each 0 ≤ i ≤ 2n, (xi, xi+1) ∈ att.

For the semantics of AFs, we use the labelling-based semantics [10]. A labelling
of (Ar, att) is a (total) function L : Ar → { in, out, und }. When L(a) = in (resp.
L(a) = out or L(a) = und) for an argument a ∈ Ar, it is written as in(a) (resp.
out(a) or und(a)). In this case, the argument a is said to be accepted (resp. rejected
or undecided) in L. Given AF = (Ar, att) and a labelling L, define in(L) = {x |
L(x) = in for x ∈ Ar }, out(L) = {x | L(x) = out for x ∈ Ar }, and und(L) =
{x | L(x) = und for x ∈ Ar }. A labelling L of (Ar, att) is also represented as a set
S(L) = {λ(x) | L(x) = λ for x ∈ Ar }. We say that λ(x) represents the justification
state of x ∈ Ar.

A labelling L of AF = (Ar, att) is a complete labelling if for each argument
a ∈ Ar, it holds that:

• L(a) = in iff L(b) = out for every b ∈ Ar such that (b, a) ∈ att.
• L(a) = out iff L(b) = in for at least one b ∈ Ar such that (b, a) ∈ att.
• L(a) = und, otherwise.

Let L be a complete labelling of AF . Then,

• L is a stable labelling iff und(L) = ∅.
• L is a grounded labelling iff in(L) ⊆ in(L′) for any complete labelling L′ of AF .
• L is a preferred labelling iff there is no complete labelling L′ of AF such that
in(L) ⊂ in(L′).

We often abbreviate complete, stable, grounded, and preferred labelling as co, st, gr,
and pr, respectively.

3 Epistemic Argumentation Framework

3.1 Epistemic Labelling Set

Given AF = (Ar, att), define AAF = { in(a), out(a), und(a) | a ∈ Ar }. An epis-
temic atom overAF is of the form Kφ or Mφ where φ is a propositional formula over
AAF . An epistemic literal is an epistemic atom or its negation. An epistemic formula
(over AAF ) is a propositional formula constructed over epistemic literals together with
⊤ (true) and ⊥ (false). Intuitively, Kφ (resp. Mφ) states that the agent believes that φ
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is true (resp. possibly true).4 We will use epistemic formulas to represent the epistemic
side of an agent given an AF.

Let φ be a propositional formula over AAF and L be a labelling over AF . Then
S(L) is considered an interpretation of φ. We say that φ is true in L, denoted by L |= φ,
if φ is interpreted to be true under S(L).

Definition 1 (satisfaction) A set SL of labellings satisfies an epistemic formula φ,
denoted by SL |= φ, if one of the following conditions holds:

(i) φ = ⊤,
(ii) φ = K ψ and L |= ψ for every L ∈ SL,
(iii) φ = M ψ and L |= ψ for some L ∈ SL,
(iv) φ = ¬ψ and SL ̸|= ψ,
(v) φ = φ1 ∧ φ2 and (SL |= φ1 and SL |= φ2),
(vi) φ = φ1 ∨ φ2 and (SL |= φ1 or SL |= φ2).

An epistemic formula φ is consistent if there exists a (non-empty) set SL of labellings
such that SL |= φ; otherwise, φ is inconsistent. Some basic properties are addressed.

Proposition 1 Let SL be a set of labellings. For any propositional formula φ and ψ
over AAF ,

(i) SL |= ¬M φ iff SL |= K ¬φ,
(ii) SL |= ¬K φ iff SL |= M ¬φ,
(iii) SL |= M (φ ∨ ψ) iff SL |= M φ ∨M ψ,
(iv) SL |= K (φ ∧ ψ) iff SL |= K φ ∧K ψ.

Definition 2 (epistemic argumentation framework) An epistemic argumentation
framework (EAF) is a triple (Ar, att, φ) where AF = (Ar, att) is an argumentation
framework and φ is an epistemic formula (called an epistemic constraint).

Intuitively, an EAF (Ar, att, φ) represents the view of an agent who, given AF =
(Ar, att), believes that φ is true. So, an EAF consists of two different types of informa-
tion: an objective evidence AF and a subjective belief φ of an agent. We also refer to
an EAF by (AF,φ) whenever it is clear from the context what AF refers to.

Example 1 In the introductory example, consider an AF with the set of argu-
ments { (f)ish, (m)eat, (w)hite, (r)ed, (u)navailable } and the set of attacks
{(f,m), (m, f), (w, r), (r, w), (r, u), (u, r) }.

-�• •
f m -� -�• • •

w r u

Then, some EAFs are defined as follows:

• EAF1 = (AF, Min(r)) represents the view of an agent who believes that r is
possibly accepted.

4 By the meaning, it might be better to write Bφ rather than K φ, but we use K because we
implement it using epistemic logic programs in which K and M are used (see Section 5).
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• EAF2 = (AF, Kin(w) ∨Kin(r)) represents the view of an agent who believes
that either w or r should be accepted.

• EAF3=(AF, K(in(m)∧¬in(u) → in(r))∧K(in(f)→ in(w))) represents the
view of an agent whose belief is given by the statement: “if m is accepted and u
is unaccepted, then r should be accepted; and if f is accepted then w should be
accepted.”

Next we define the semantics of an EAF.

Definition 3 (epistemic labelling set) Let EAF = (AF,φ) and ω ∈ {co, st, gr, pr}. A
set SL of labellings is an ω-epistemic labelling set of (AF,φ) if (i) each L ∈ SL is an
ω-labelling of AF , and (ii) SL is a ⊆-maximal set of ω-labellings of AF that satisfies
φ. An EAF possibly has multiple ω-epistemic labelling sets.

Intuitively, an ω-epistemic labelling set is a collection of ω-labellings that reflects
the belief of an agent. In particular, EAF = (AF,⊤) has the unique ω-epistemic la-
belling set that coincides with the set of ω-labellings of AF . In what follows, we as-
sume ω ∈ {co, st, gr, pr} unless stated otherwise. By definition, EAF always has an
ω-epistemic labelling set (possibly as an empty set).

Proposition 2 EAF = (AF,⊥) has the ω-epistemic labelling set ∅.

Our primary interest is an EAF that has non-empty ω-epistemic labelling sets.

Example 2 Consider the EAFs of Example 1 under the stable semantics. First, AF in
the EAFs has four stable labellings:

L1 = { in(f), out(m), out(w), in(r), out(u) },
L2 = { out(f), in(m), out(w), in(r), out(u) },
L3 = { in(f), out(m), in(w), out(r), in(u) },
L4 = { out(f), in(m), in(w), out(r), in(u) }.

This impliesEAF1 has a unique stable epistemic labelling set {L1, L2, L3, L4};EAF2

has two stable epistemic labelling sets {L1, L2} and {L3, L4}; and EAF3 has a unique
stable epistemic labelling set {L2, L3, L4}. Suppose that it turns that French red wine
is unavailable. The situation is represented by

EAF4 = (AF, K(in(m) ∧ ¬in(u)→in(r)) ∧ K(in(f)→in(w)) ∧ Kin(u) ).

Then EAF4 has a unique stable epistemic labelling set {L3, L4}.

As shown in the above example, EAF can represent belief change of an agent by
revising an epistemic constraint without modifying AF. The revised EAF then produces
new epistemic labelling sets that reflect new belief states of an agent. In Example 2,
EAF4 introduces an additional constraint Kin(u) to EAF3, which results in eliminat-
ing L2 from the stable epistemic labelling set of EAF3. For two epistemic formulas φ1

and φ2, we say that φ1 is stronger than φ2 if φ1 |= φ2 (in the sense of classical logic).
Introducing a stronger constraint to EAF eliminates elements of SL in general.
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Proposition 3 Let EAF1 = (AF,φ1) and EAF2 = (AF,φ2) be two EAFs such that
φ1 is stronger than φ2. Then, for each ω-epistemic labelling set SL1 of EAF1 there
exists some ω-epistemic labelling set SL2 of EAF2 such that SL1 ⊆ SL2.

In argumentation frameworks, stable, grounded, or preferred labellings are complete
labellings. In epistemic argumentation frameworks, a similar result holds.

Proposition 4 Let (AF,φ) be an EAF. If a non-empty set SL of labellings is a stable,
grounded, or preferred epistemic labelling set of (AF,φ), then L ∈ SL is an element
of a complete epistemic labelling set of (AF,φ).

We next consider a sufficient condition for the uniqueness of ω-epistemic labelling
sets.

Lemma 5 Let φ be a conjunction of epistemic literals over AAF . If two sets of la-
bellings SL1 and SL2 satisfy φ (i.e., SL1 |= φ and SL2 |= φ), then SL1 ∪ SL2 |= φ.

Using the lemma, we can prove the next result.

Proposition 6 Let (AF,φ) be an EAF such that φ is a conjunction of epistemic literals.
Then (AF,φ) has a unique ω-epistemic labelling set.

Assume that φ is a DNF in which each disjunct is a conjunction of epistemic literals.
Due to Proposition 1, we can assume that each disjunct in φ is of the form Kψ0∧Mψ1∧
· · · ∧Mψn

5 where ψi (0 ≤ i ≤ n) is a propositional formula over AAF , which will be
denoted by EC(ψ0;ψ1, . . . , ψn). We can prove:

Lemma 7 Let SL be a set of labellings such that SL |= EC(ψ0;ψ1, . . . , ψn). Then,
for each i = 1, . . . , n, there exists some L ∈ SL such that L |= ψ0 ∧ ψi.

Proposition 8 Let φ =
∨k
j=1EC(ψj ;ψ

j
1, . . . , ψ

j
nj
) (k ≥ 1) be an epistemic formula.

Then, EAF=(AF,φ) has a non-empty ω-epistemic labelling set if there exists an in-
teger j (1 ≤ j ≤ k) such that for each 1 ≤ i ≤ nj , AF has an ω-labelling L and
L |= ψj ∧ ψji .

Each AF semantics imposes some specific condition on every argument, e.g., the
stable semantics allows no argument to be undecided, while the grounded seman-
tics keeps controversial arguments undecided. EAF is useful for selecting intended la-
bellings from the set of all possible labellings.

Example 3 Consider the AF in Example 1. Since the availability of French
red wine is unknown before visiting a restaurant, an agent wants to keep the
argument u undecided. The situation is specified as the epistemic constraint
φ = Kund(u). Then (AF,φ) has the single preferred epistemic labelling set
{{in(f), out(m), und(w), und(r), und(u)}, {out(f), in(m), und(w), und(r), und(u)}}.

5 ¬M ψ (resp. ¬K ψ) is converted to K ¬ψ (resp. M ¬ψ), and K ψ1 ∧K ψ2 is converted to
K (ψ1 ∧ ψ2).
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3.2 Representing Preference

Preference among arguments can be specified in EAF as follows. Let ⪰ be a pre-order
(i.e., reflexive and transitive) relation over Ar × Ar such that (x, y) ∈⪰ implies that x
indirectly attacks y or vice versa. x ⪰ y means that an argument x is at least as preferred
as y. We write x ≻ y if x ⪰ y and y ̸⪰ x.

Definition 4 (preference over arguments) Given AF = (Ar, att) and a preorder re-
lation ⪰⊆ Ar ×Ar, define EAF = (AF,φA) where

φA =
∧
x≻y

K(in(y) ⊃ in(x)).

Intuitively speaking, φA represents that an argument x should be accepted whenever
another argument y of lower preference is accepted. Note that the preference is specified
as x ≻ y but not as x ⪰ y in φA. When both x ⪰ y and y ⪰ x exist, there is no reason
to prefer one of them. In this case, the conjunct involved x and y in φA is ⊤.

Proposition 9 Let EAF = (AF,φA) be an EAF defined as above. Then, for any ω-
epistemic labelling set SL of EAF , there is no L ∈ SL such that in(x) ̸∈ L and
in(y) ∈ L for any x ≻ y.

Example 4 Consider AF = ({a, r}, {(a, r), (r, a)}) with r ≻ a. Then EAF =
(AF,φA) with φA = K(in(a) ⊃ in(r)) has the unique stable epistemic la-
belling set {{in(r), out(a)}}, and the unique complete epistemic labelling set
{{in(r), out(a)}, {und(r), und(a)}}.

In Example 4, the complete epistemic labelling set contains {und(r), und(a)}. This
can be eliminated by introducing the constraint φA = K(in(a) ∨ und(a) ⊃ in(r)).

Preference over arguments is generalized to preference over justification states of
arguments as follows. A pre-order relation ⊒ over justification states of arguments is a
collection of elements of the form λ(x) ⊒ µ(y) where λ, µ ∈ {in, out, und}, meaning
that λ(x) is at least as preferred as µ(y) for arguments x and y. We write λ(x) = µ(y)
if λ(x) ⊒ µ(y) and µ(y) ̸⊒ λ(x).

Definition 5 (preference over justification states) Given AF = (Ar, att) and a pre-
order relation ⊒⊆ AAF ×AAF , define EAF = (AF,φJ) where

φJ =
∧

λ(x)=µ(y)

K (µ(y) ⊃ λ(x)).

φJ states that if the justification state λ(x) is preferred to µ(y) for x, y ∈ Ar, then
L |= µ(x) implies L |= λ(x) for any L ∈ SL where SL is any ω-epistemic labelling
set of EAF .

By definition, Def. 4 is considered a special case of Def. 5 with µ = λ = in.

Proposition 10 Let EAF = (AF,φJ) be an EAF defined as above. Then, for any
ω-epistemic labelling set SL of EAF , there is no L ∈ SL such that λ(x) ̸∈ L and
µ(y) ∈ L for any λ(x) = µ(y). In particular, µ(y) ̸∈ L for any L ∈ SL if x = y.
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Example 5 Suppose that in Example 4, an MP prefers keeping the decision unde-
cided if possible. This is represented by == {(und(x), in(x)), (und(x), out(x)) | x ∈
{a, r}} which is translated to φJ =

∧
x∈{a,r} K (in(x) ⊃ und(x)) ∧ K (out(x) ⊃

und(x)). Then EAF = (AF,φJ) has the unique complete epistemic labelling set
{{und(r), und(a)}}. Furthermore, ∅ is the stable epistemic labelling set, since there
is no choice to make a and r undecided.

In this way, EAF enables us to specify preference over not only arguments but also
justification states of arguments. Furthermore, it could also be useful to introduce pref-
erences among epistemic formulas. For instance, we could write K λ(x) > K µ(x) for
some argument x to indicate that we prefer SL1 over SL2 whenever SL1 |= K λ(x)
and SL2 |= Kµ(x) for two arbitrary ω-epistemic labelling sets SL1 and SL2. We leave
such extensions for future work.

3.3 Multiple Agents

Suppose that two agents share AF = ({a, r}, {(a, r), (r, a)}). If they have the same
belief represented by the epistemic constraint φ = Kin(a), the EAF (AF,φ) has the
single epistemic complete labelling set {{in(a), out(r)}} and the agents agree on ac-
cepting a. On the other hand, if two agents have conflicting beliefs φ1 = Kin(a) and
φ2 = ¬Kin(a) respectively, then they do not agree on accepting a or r. In this section,
we assume multiple agents who share the same AF while having different beliefs in
general. The situation is represented by the collection of EAFs (AF,φi) (1 ≤ i ≤ n).
First, we define two different types of agreements.

Definition 6 (agreement) Let AF = (Ar, att) and EAF1 = (AF,φ1), . . . , EAFn =
(AF,φn) (n ≥ 1). Then EAF1, . . . , EAFn credulously agree on λ(a) for a ∈
Ar where λ ∈ {in, out, und } under ω-epistemic labelling if each EAFi (i =
1, . . . , n) has an ω-epistemic labelling set SLi such that SLi |= Mλ(a). In contrast,
EAF1, . . . , EAFn skeptically agree on λ(a) under ω-epistemic labelling if for any
ω-epistemic labelling set SLi of EAFi (i = 1, . . . , n) SLi |= Kλ(a).

The above definition characterizes two different situations (credulous or skeptical)
in which agents reach an agreement on λ(a). For simplicity reasons, Def.6 assumes
that different agents employ the same ω-epistemic labelling, but the definition is easily
extended to a case in which agents employ different ω-labellings.

Proposition 11 Let AF = (Ar, att) and EAF1 = (AF,φ1), . . . , EAFn = (AF,φn)
(n ≥ 1). Then, EAF1, . . . , EAFn skeptically agree on λ(a) for a ∈ Ar under ω-
epistemic labelling iff EAFi and EAF ′

i = (AF,φi ∧K λ(a)) (i = 1, . . . , n) have the
same ω-epistemic labelling sets.

Proposition 12 Let AF = (Ar, att) and EAF1 = (AF,φ1), . . . , EAFn = (AF,φn)
(n ≥ 1). IfEAF1, . . . , EAFn credulously agree on λ(a) for a ∈ Ar under ω-epistemic
labelling, then (AF,φ1 ∨ · · · ∨ φn) has an ω-epistemic labelling set SL such that
SL |= Mλ(a). Conversely, if (AF,φ1 ∧ · · · ∧ φn) has an ω-epistemic labelling set
SL such that SL |= Mλ(a), then EAF1, . . . , EAFn credulously agree on λ(a) under
ω-epistemic labelling.
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Algorithm 1: Existence(EAF, ω)

Input: ω, EAF = (AF,φ).
Output: true if EAF has a (non-empty) ω-epistemic labelling set; false otherwise.

1 Convert to DNF: φ = ∨k
j=1EC(ψj ;ψ

j
1, . . . , ψ

j
nj
)

2 where EC(ψ;ψ1, . . . , ψk) = Kψ ∧
∧k

i=1 Mψi

3 for j = 1 to k do
4 num labelling := 0
5 for i = 1 to nj do
6 if D(ω,AF, ψj ∧ ψj

i ) = true then
7 num labelling := num labelling + 1

8 if num labelling = nj then return true

9 return false

We next show that EAF can be used for formalizing majority voting. In the presence
of EAFi = (AF,φi) (1 ≤ i ≤ n), define:

Mω
ψ = { i | EAFi has an ω-epistemic labelling set SL s.t. SL |= M ψ },

Nω
ψ = { i | for each ω-epistemic labelling set SL ofEAFi, SL |= K ψ }.

Definition 7 (majority voting) Let AF=(Ar, att) and EAFi = (AF,φi) for (1 ≤
i ≤ n). For a ∈ Ar, λ(a) is credulously (resp. skeptically) adopted by majority voting
under ω-epistemic labelling iff the cardinality of the set Mω

λ(a) (resp. Nω
λ(a)) is greater

than the cardinality of the set Mω
µ(a) (resp. Nω

µ(a)) where λ, µ ∈ {in, out, und} and
λ ̸= µ.

When |Mω
λ(a)|=n (resp. |Nω

λ(a)|=n) in Def. 7,EAF1, . . .,EAFn credulously (resp.
skeptically) agree on λ(a).

Example 6 Consider AF = ({a, r}, {(a, r), (r, a)}) and three EAFs: EAF1 =
(AF, K in(a)), EAF2 = (AF, ¬M und(a)), and EAF3 = (AF, K und(a)). Then
in(a) is credulously adopted by majority voting under the complete epistemic labelling,
while it is not skeptically adopted.

3.4 Complexity

We assume that the readers are familiar with the well-known notations in compu-
tational complexity (e.g., P-c, NP-c, coNP-c, etc.). Let ω ∈ {gr, st, co, pr} and
EAF = (AF,φ). Due to Proposition 8, we can check for the existence of a non-empty
ω-epistemic labelling set using Algorithm 1, assuming the existence of a procedure
D(ω,AF, ψ) that determines the existence of an ω-labelling L of AF such that L |= ψ.

In essence, Algorithm 1 shows that checking whether EAF has a non-empty ω-
epistemic labelling set can be reduced to checking whether a labelling L ofAF satisfies
a formula over AAF . In line 1 we assume that φ has at most k disjuncts, and each
contains at most p conjuncts, where p and k are polynomial in the size of the AF and
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refer to φ as a (k, p)-DNF.6 Under this assumption, Algorithm 1 will call D(ω,AF, ψ)
at most k × p times. Consider the following decision problem:

Exists
(k,p)
ω : Given an AF = (Ar, att) and a (k, p)-DNF epistemic formula φ

over AAF , does (AF,φ) have a non-empty ω-epistemic labelling set?

The above discussion gives us the next result.

Proposition 13 Exists
(k,p)
ω is P-c for ω = gr and NP-c for ω ∈ {co, st, pr}.

The proof of the above results relies on the following facts: (i) the grounded labelling
of AF can be computed in polynomial time and is unique; and given a labelling L and
a propositional formula ψ over AAF , (ii) checking whether there exists an ω-labelling
satisfying a formula is NP-c for ω ∈ {st, co, pr} (by the result Credσ in [13, Table 1]
or in [14]); (iii) checking whether a given labelling L satisfies a propositional formula
over AAF is polynomial.

4 Related Work

EAF could be viewed as an approach to limiting the set of extensions (or labellings) of
an argumentation framework for semantical consideration and this is similar, at least in
the spirit, to argumentation with preferences and probabilistic argumentation. By intro-
ducing epistemic constraints, it is similar to works focusing on a reasoner’s belief. The
key difference between EAF and the other approaches can be summarized as follows.

Constrained argumentation frameworks (CAF) proposed in [11] are syntactically
similar to EAF. Both are of the form ⟨A,R,C ⟩ where (A,R) is an AF and C is a
propositional formula (over A) in a CAF whilst it is an epistemic formula (over AAF )
in an EAF. The key distinction between CAF and EAF lies in the use of the constraint.
In CAF, C is imposed on extensions of the AF leading to a new set of extensions of
the original AF. In contrast, φ does not change the labellings of the original AF in
an EAF (AF,φ). Another extension of Dung’s AF is abstract dialectical framework
(ADF) [9] where each argument has an associated acceptance condition expressed by
a propositional formula over the existing arguments. In EAF individual arguments do
not have acceptance conditions, while epistemic constraints specify beliefs concerning
which arguments are to be (un)accepted in the final outcome.

Probabilistic argumentation as proposed in [16,17] focuses on the uncertainty of
arguments rather than reasoners’ beliefs. This approach represents the beliefs of agents
by a probability assignment to arguments [16] or an epistemic labelling [17]. It pro-
vides methods for computing epistemic extensions of an AF which contain arguments
with probability greater than a certain threshold or assigning labels to arguments in ac-
cordance to the probability of the labelling, i.e., it merges an objective evidence and
subjective beliefs in a single framework, which is in contrast to our approach. More-
over, it differs from EAFs significantly as its extensions might not correspond to any

6 The DNF of a formula φ might have exponential number of disjuncts in general, however, it
would be a rare case that belief of an agent is expressed by an exponential formula.
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type of extensions of the original AF. On the other hand, there would be a connection
between probabilistic argumentation and EAF. For instance, we consider that for each
EAF = (AF,φ) and ω, there would exist a probabilistic distribution P with respect to
AF with the property that x is believed wrt P (P (x) > 0.5)) then in(x) is skeptically
entailed by every ω-labelling set of EAF . We believe that the inverse could be true as
well. We leave the precise formulation and proof of this interesting problem for future
work. Recent work in this direction has introduced epistemic attack semantics that con-
siders extended probability distribution, which assigns degrees of belief to arguments
and attacks [22] which is then further investigated in dynamic setting [18]. Whether
formulas in EAF could sufficiently model this type of extension is an open question
that we intend to pursuit as well.

Argumentation with preferences or priorities has been studied extensively in recent
years. Preference over arguments is introduced as a preorder relation over arguments
in [2,3,4,19], while a new attack relation that ranges from arguments to attacks is used
in [20]. Our representation of preferences is close to the approach employing a pre-
order but there are differences from them. For instance, given AF = ({a, b}, {(a, b)})
with the preference a ⪯ b, Kaci and van der Torre [19] provide its semantics by ex-
tensions of AF1 = ({a, b}, {}), and Amgoud and Vesic [3] convert AF to AF2 =
({a, b}, {(b, a)}). As such, the structure of the original argumentation graph is changed,
and as a result, extensions of the preference-based AF are not extensions selected from
those of AF. Wakaki [23] introduces preference-based AF (PAF) which, as we do, se-
lects extensions based on preference relation over arguments. Our representation of
preference in EAF is different from PAF in the sense that EAF can represent preference
over not only arguments but justification states. Value-based argumentation framework
(VAF) [6] represents preference in AF by assigning values to arguments. In VAF accept-
able arguments may change depending on the order of values. Arguments acceptable
irrespective of any value order are called objectively acceptable and those acceptable
for some order are called subjectively acceptable. In EAF justification states of argu-
ments change depending on epistemic constraints, so the effect of epistemic constraints
in EAF is similar to the effect of value in VAF. On the other hand, VAF may pro-
duce extensions that are not those of the original AF, while EAF produces labellings
that are also labellings of the original AF. Airiau et al. [1] consider the problem such
that given a profile of argumentation frameworks (AF1, . . . , AFn), one for each agent,
can this profile be explained in terms of a single master argumentation framework, an
association of arguments with values, and a profile of preference orders over values
(⪰1, . . . ,⪰n), one for each agent? Their approach represents individual views of a
common AF by preference orders over values, which is in contrast with our approach
in which individual views are encoded by epistemic formulas over arguments. Visser
et al. [24] introduce an epistemic argumentation framework for reasoning about pref-
erences with uncertain information. They provide languages and inference schemes for
instantiated AFs, which is in contrast with our framework for abstract argumentation.

Schwarzentruber et al. [21] introduce a logical framework for reasoning about ar-
guments owned by agents and their knowledge about other agents’ arguments. They
introduce epistemic logics to represent belief state of agents in dialogues and define
Kripke semantics. For instance, they represent that “an agent 1 believes that there ex-
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ists an argument about global warming (gw) owned by an agent 2” by the formula:
B1(⟨U ⟩(gw ∧ ownedby(2))). Our approach is different from theirs in two ways: first
EAF is an extension of AF and we do not use modal logic based on Kripke structures.
Second, our primary interest in this paper is to represent an agent’s own beliefs, and we
do not consider reasoning about beliefs of other agents. Finally, we note that an EAF
realizes meta-level reasoning about arguments in abstract argumentation frameworks.
In this sense, it could be viewed as a kind of meta-level arguments discussed in [7].

5 Conclusion and Future Work

An epistemic argumentation framework introduces belief of agents to argumentation
frameworks. A unique feature of EAF is that it can represent arguments and attacks
as objective evidence in AF, while at the same time, it can encode subjective beliefs
of individual agents by epistemic constraints over the outcome. By separating objective
knowledge and subjective beliefs, individual agents could produce different conclusions
based on their biases toward a common AF. Such a situation happens, for instance, in a
court case where jurors share the same open AF while could reach different conclusions
based on their biases. Moreover, the separation has an advantage that an individual agent
can easily revise his/her belief without changing the structure of an AF.

This paper addresses declarative aspects of EAFs. From the procedural viewpoint,
a system for computing epistemic labelling sets is built on top of answer set solvers
[8]. More precisely, suppose an EAF (AF,φ) where φ is a CNF φ = ψ1 ∧ · · · ∧ ψn
in which ψi (1 ≤ i ≤ n) is a disjunction of simple epistemic literals of the form
Eλ(x) or E¬λ(x) where E ∈ {M,K} and λ∈{in, out, und}. In this case, the EAF
is transformed to an epistemic logic program [15] Π and ω-epistemic labelling sets are
computed by world views of Π . We will address the issue in the full paper.

In this paper, we focus on representing an agent’s own belief in EAFs. On the other
hand, EAF could be extended to reasoning about beliefs of other agents and representing
an agent’s own belief based on beliefs of other agents. This type of belief contains a
constraint such that “K1in(a) ⊃ M2in(a)” (if an agent 1 supports the acceptance of an
argument a then an agent 2 would not argue against it). EAF is used for characterizing
several problems in argumentation. For instance, the enforcement [5] of an argument a
in AF is captured as finding an EAF (AF ′,M in(a)) having a non-empty ω-epistemic
labelling set whereAF ′ is an expansion ofAF . We introduce EAF for complete, stable,
grounded, or preferred semantics, but the framework is extended to other semantics such
as semi-stable, stage, ideal, etc. Those issues are left for future work.
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