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Abstract. Linear algebra is an ideal tool to redefine symbolic methods with the
goal to achieve better scalability. In solving the abductive Horn propositional
problem, the transpose of a program matrix has been exploited to develop an effi-
cient exhaustive method. While it is competitive with other symbolic methods,
there is much room for improvement in practice. In this paper, we propose to
optimize the linear algebraic method for abduction using partial evaluation. This
improvement considerably reduces the number of iterations in the main loop of
the previous algorithm. Therefore, it improves practical performance especially
with sparse representation in case there are multiple subgraphs of conjunctive
conditions that can be computed in advance. The positive effect of partial evalu-
ation has been confirmed using artificial benchmarks and real Failure Modes and
Effects Analysis (FMEA)-based datasets.
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1 Introduction

Abduction is a form of explanatory reasoning that has been used for Artificial Intelli-
gence (AI) in diagnosis and perception [15] as well as belief revision [4] and automated
planning [8]. Logic-based abduction is formulated as the search for a set of abducible
propositions that together with a background theory entails the observations while pre-
serving consistency [7]. Recently, abductive reasoning has gained interests in connect-
ing neural and symbolic reasoning [6] together with explainable AI [14,34].

Recently, several studies have been done to recognize the ability to use efficient
parallel algorithms in linear algebra for computing logic programming (LP). For exam-
ple, high-order tensors have been employed to support both deductive and inductive
inferences for a limited class of logic programs [24]. In [29], Sato presented the use of
first-order logic in vector spaces for Tarskian semantics, which demonstrates how ten-
sorization realizes efficient computation of Datalog. Using a linear algebraic method,
Sakama et al. explore relations between LP and tensor then propose algorithms for com-
putation of LP models [27,28]. In [23], Nguyen et al. have analyzed the sparsity level
of program matrices and proposed to employ sparse representation for scalable com-
putation. Following this direction, Nguyen et al. have also exploited the sparse matrix
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representation to propose an efficient linear algebraic approach to abduction that incor-
porates solving Minimal Hitting Sets (MHS) problems [22].

Partial evaluation was introduced to generate a compiler from an interpreter based
on the relationship between a formal description of the semantics of a programming
language and an actual compiler [9]. The idea was also studied intensively in [3]. Then,
Tamaki and Sato incorporated unfold and fold transformations in LP [33] as partial eval-
uation techniques, and Lloyd and Shepherdson have developed theoretical foundations
for partial evaluation in LP [19]. According to Lloyd and Shepherdson, partial evalua-
tion can be described as producing an equivalent logic program such that it should run
more efficiently than the original one for reasoning steps. Following this direction, the
idea of partial evaluation has been successfully employed to compute the least mod-
els of definite programs using linear algebraic computation [21]. Nguyen et al. have
reported a significant improvement in terms of reducing runtime on both artificial data
and real data (based on transitive closures of large network datasets) [21].

This paper aims at exploring the use of partial evaluation in abductive reasoning
with linear algebraic approaches. We first propose an improvement to the linear alge-
braic algorithm for solving Propositional Horn Clause Abduction Problem (PHCAP).
Then we present the efficiency of the method for solving PHCAP using the bench-
marks based on FMEA. The rest of this paper is organized as follows: Sect. 2 reviews
the background and some basic notions used in this paper; Sect. 3 presents the idea of
partial evaluation using the linear algebraic approach with a theoretical foundation for
correctness; Sect. 4 demonstrates experimental results using FMEA-based benchmarks;
Sect. 5 discusses related work; Sect. 6 gives final remarks and discusses potential future
works.

2 Preliminaries

We consider the language of propositional logicL that contains a finite set of proposi-
tional variables.

A Horn logic program is a finite set of rules of the form:

h ← b1 ∧·· ·∧bm (m ≥ 0) (1)

where h and bi are propositional variables in L . Given a program P, the set of all
propositional variables appearing in P is the Herbrand base of P (writtenBP).
In (1) the left-hand side of ← is called the head and the right-hand side is called the
body. A Horn logic program P is called singly defined (SD program, for short) if h1 �= h2
for any two different rules h1 ← B1 and h2 ← B2 in P where B1 and B2 are conjunctions
of atoms. That is, no two rules have the same head in an SD program. When P contains
more than one rule with the same head (h ← B1), . . . , (h ← Bn) (n > 1), replace them
with a set of new rules:

h ← b1 ∨ ·· · ∨bn (n> 1) (2)

b1 ← B1, · · · , bn ← Bn

where b1, . . . ,bn are new atoms such that bi �∈ BP (1 ≤ i ≤ n) and bi �= b j if i �= j.
For convenience, we refer to (1) as an And-rule and (2) as an Or-rule.
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Every Horn logic program P is transformed to Π = Q∪D such that Q is an SD
program and D is a set of Or-rules. The resulting Π is called a standardized program.
Therefore, a standardized program is a definite program such that there is no duplicate
head atom in it and every rule is in the form of either And-rule or Or-rule. Note that
the rule (2) is shorthand of n rules: h ← b1, . . ., h ← bn, so a standardized program
is considered a Horn logic program. Throughout the paper, a program means a stan-
dardized program unless stated otherwise. For each rule r of the form (1) or (2), define
head(r) = h and body(r) = {b1, . . . ,bm} (or body(r) = {b1, . . . ,bn}). A rule is called
a fact if body(r) = /0. A rule is called a constraint if head(r) is empty. A constraint
← b1 ∧·· ·∧bm is replaced with

⊥ ← b1 ∧·· ·∧bm

where⊥ is a symbol representing False. When there are multiple constraints, say (⊥ ←
B1), . . . ,(⊥ ← Bn), they are transformed to

⊥ ← ⊥1 ∨·· ·∨⊥n and ⊥i ← Bi (i= 1, . . . ,n)

where ⊥i �∈ BP is a new symbol. An interpretation I (⊆ BP) is a model of a program P
if {b1, . . . ,bm} ⊆ I implies h ∈ I for every rule (1) in P, and {b1, . . . ,bn}∩ I �= /0 implies
h ∈ I for every rule (2) in P. A model I is the least model of P (written LMP) if I ⊆ J for
any model J of P. We write P |= a when a ∈ LMP. For a set S= {a1, . . . ,an} of ground
atoms, we write P |= S if P |= a1 ∧·· ·∧an. A program P is consistent if P �|= ⊥.

Definition 1 Horn clause abduction: A Propositional Horn Clause Abduction Prob-
lem (PHCAP) consists of a tuple 〈 L ,H,O,P 〉, where H ⊆ L (called hypotheses or
abducibles), O ⊆ L (called observations), and P is a consistent Horn logic program.

A logic program P is associated with a dependency graph (V,E), where the nodes
V are the atoms of P and, for each rule from P, there are edges in E from the atoms
appearing in the body to the atom in the head. We refer to the node of an And-rule and
the node of an Or-rule as And-node and Or-node respectively. In this paper, we assume
a program P is acyclic [1] and in its standardized form. Without loss of generality, we
assume that any abducible atom h ∈ H does not appear in any head of the rule in P.
If there exist h ∈ H and a rule r : h ← body(r) ∈ P, we can replace r with r′ : h ←
body(r)∨ h′ in P and then replace h by h′ in H. If r is in the form (2), then r′ is an
Or-rule, and no need to further update r′. On the other hand, if r is in the form (1), then
we can update r′ to become an Or-rule by introducing an And-rule br ← body(r) in P
and then replace body(r) by br in r′.

Definition 2 Explanation of PHCAP: A set E ⊆ H is called a solution of a PHCAP
〈L ,H,O,P 〉 if P∪E �O and P∪E is consistent. E is also called an explanation ofO.
An explanation E of O is minimal if there is no explanation E ′ of O such that E ′ ⊂ E.

In this paper, the goal is to propose an algorithm finding the set E of all minimal expla-
nations E for a PHCAP 〈 L ,H,O,P 〉. Deciding if there is a solution of a PHCAP (or
E �= /0) is NP-complete [7,32]. That is proved by a transformation from a satisfiability
problem [10].
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In PHCAP, P is partitioned into PAnd - a set of And-rules of the form (1), and
POr - a set of Or-rules of the form (2). Given P, define head(P) = {head(r) | r ∈ P},
head(PAnd) = {head(r) | r ∈ PAnd}, and head(POr) = {head(r) | r ∈ POr}.

3 Linear Algebraic Abduction with Partial Evaluation

3.1 Linear Algebraic Computation of Abduction

We first review the method of encoding and computing explanation in vector spaces
that has been proposed in [22].

Definition 3. Matrix representation of standardized programs in PHCAP[22]: Let
〈 L ,H,O,P 〉 be a PHCAP such that P is a standardized program with L = {p1, . . .,
pn}. Then P is represented by a program matrix MP ∈ R

n×n (n = |L |) such that for
each element ai j (1 ≤ i, j ≤ n) in MP:

1. ai jk =
1
m (1 ≤ k ≤ m; 1 ≤ i, jk ≤ n) if pi ← p j1 ∧·· ·∧ p jm is in PAnd and m> 0;

2. ai jk = 1 (1 ≤ k ≤ l; 1 ≤ i, jk ≤ n) if pi ← p j1 ∨·· ·∨ p jl is in POr;
3. aii = 1 if pi ← is in PAnd or pi ∈ H;
4. ai j = 0, otherwise.

Compared with the program matrix definition in [28], Definition 3 has an update in the
condition 3 that we set 1 for all abducible atoms pi ∈ H. The program matrix is used to
compute deduction, while in abductive reasoning, we do it in reverse. We then exploit
the matrix for deduction to define a matrix that we can use for abductive reasoning.

Definition 4. Abductive matrix of PHCAP [22]: Suppose that a PHCAP has P with
its program matrix MP. The abductive matrix of P is the transpose of MP represented
as MP

T .

In our method, we distinguish And-rules andOr-rules and handle them separately. Thus,
it is crucial to have a simpler version of the abductive matrix for efficient computation.

Definition 5. Reduct abductive matrix of PHCAP:We can obtain a reduct abductive
matrix MP(Pr

And)
T from the abductive matrixMP

T by:

1. Removing all columns w.r.t. Or-rules in POr.
2. Setting 1 at the diagonal corresponding to all atoms which are heads of Or-rules.

We should note that this is a proper version of the previous definition in [22] that we will
explain in detail later in this section. The reduct abductive matrix is the key component
to define the partial evaluation method.

The goal of PHCAP is to find the set of minimal explanations E according to Defi-
nition 2. Therefore, we need to define a representation of explanations in vector spaces.

Definition 6. Vector representation of subsets in PHCAP[22]: Any subset s ⊆ L
can be represented by a vector v of the length |L | such that the i-th value v[i] = 1
(1 ≤ i ≤ |L |) iff the i-th atom pi of L is in s; otherwise v[i] = 0.
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Using Definition 6, we can represent any E ∈ E by a column vector E ∈ R
|L |×1. To

compute E, we define an explanation vector v ∈ R
|L |×1. We use the explanation vector

v to demonstrate linear algebraic computation of abduction to reach an explanation E
starting from an initial vector v = v(O) which is the observation vector (note that we
can use the notation O as a vector without the function notation v() as stated before).
At each computation step, we can interpret the meaning of the explanation vector v as:
in order to explain O, we have to explain all atoms vi such that v[i]> 0.
An answer of PHCAP is a vector satisfying the following condition:

Definition 7. Answer of a PHCAP[22]: The explanation vector v reaches an answer
E if v ⊆ H. This condition can be written in linear algebra as follows:

θ(v+H) ≤ θ(H) (3)

whereH is the shorthand of v(H)which is the hypotheses set/vector. θ is a thresholding
function mapping an element x of a vector/matrix to 0 if x< 1; otherwise map x to 1.

We here mention again Algorithm 1
in [22]. The main idea is built upon
the two 1-step abduction for PAnd

(line 5) and POr (line 19) based on
And-computable and Or-computable
conditions. Each 1-step abduction
applies on an explanation vector
starting from the observation vector
O until we reach an answer. During
the abduction process, the explana-
tion vector may ”grow” to an expla-
nation matrix, denoted by M, as Or-
rules create new possible branches.
Thus, we can abduce explanations by
computing matrix multiplication (for
And-computable matrices), and solv-
ing a corresponding MHS problem
(for Or-computable matrices). Fur-
ther detailed definitions and proofs of
the method are presented in [22].

Algorithm 1. Explanations finding in a vector space
Input: PHCAP consists of a tuple 〈 L ,H,O,P 〉
Output: Set of explanations E

1: Create an abductive matrix MP
T from P

2: Initialize the observation matrix M from O (obtained
directly from the observation vector O)

3: E= /0
4: while True do
5: M′ =MP

T ·M
6: M′ = consistent(M′)
7: v sum= sumcol(M′)< 1− ε
8: M′ =M′[v sum= False]
9: if M′ =M orM′ = /0 then
10: v ans= θ(M+H) ≤ θ(H)
11: E= E∪M[v ans= True]
12: return minimal(E)
13: do
14: v ans= θ(M′ +H) ≤ θ(H)
15: E= E∪M′[v ans= True]
16: M′ =M′[v ans= False]
17: M =M∪M′[not Or-computable]
18: M′ =M′[Or-computable]

19: M′ =
⋃

∀v∈M′

⋃

∀s∈MHS(S(v, POr ))

((
v\head(POr)

)∪ s

)

20: M′ = consistent(M′)
21: while M′ �= /0

Example 1. Consider a PHCAP
〈 L ,H,O,P 〉 such that:
L = {obs, e1, e2, e3, e4, e5, e6, H1, H2, H3}, O = {obs}, H = {H1, H2, H3}, and
P = {obs ← e1, e1 ← e2 ∧ e3, e2 ← e4 ∧ e5, e2 ← e5 ∧ e6, e3 ← e5, e4 ← H1, e5 ←
H2, e6 ← H3 }.
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1. The standardized program P′ = {obs ← e1, e1 ← e2 ∧ e3, e2 ← x1 ∨ x2, x1 ← e4 ∧
e5, x2 ← e5 ∧ e6, e3 ← e5, e4 ← H1, e5 ← H2, e6 ← H3 } is represented by the

abductive matrix:MT
P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. Iteration 1:
-M(1) = θ(MT

P ·M(0)), where M(0) =O:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

e1 1.00
e2
e3
e4
e5
e6
H1
H2
H3
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

e1
e2
e3
e4
e5
e6
H1
H2
H3
obs 1.00
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. Iteration 2:
-M(2) = θ(MT

P ·M(1))

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

e1
e2 0.50
e3 0.50
e4
e5
e6
H1
H2
H3
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

e1 1.00
e2
e3
e4
e5
e6
H1
H2
H3
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

- Solving MHS: { {x1, x2}, {e3} }. MHS solutions: { {e3, x1}, {e3, x2} } =M(3).
4. Iteration 3:

-M(4) = θ(MT
P ·M(3))

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

e1
e2
e3
e4 0.25
e5 0.75 0.75
e6 0.25
H1
H2
H3
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

e1
e2
e3 0.50 0.50
e4
e5
e6
H1
H2
H3
obs
x1 0.50
x2 0.50

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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5. Iteration 4:
-M(5) = θ(MT

P ·M(4))

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

e1
e2
e3
e4
e5
e6
H1 0.50
H2 0.50 0.50
H3 0.50
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1 1.00
e2 0.50
e3 0.50
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

e1
e2
e3
e4 0.50
e5 0.50 0.50
e6 0.50
H1
H2
H3
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6. The algorithm stops. Found minimal explanations: { {H1, H2}, {H2, H3} }.
In solving this problem, Algorithm 1 takes four iterations and a call to the MHS solver.
One can notice in Iteration 3 that e3, appearing in both explanation vectors of M(3), is
computed twice. Imagine if an e3-like node is repeated multiple times, then the com-
putation spending from the second time on is duplicated. To deal with this issue we
employ the idea of partial evaluation which is going to be discussed in the next section.

3.2 Partial Evaluation

Now, we define the formal method of partial evaluation in solving PHCAP by adapting
the definition of partial evaluation of definite programs in vector spaces in [21].

Definition 8 Partial evaluation in abduction: Let a PHCAP 〈 L ,H,O,P 〉 where P
is a standardized program. For any And-rule r = (h ← b1 ∧·· ·∧bm) in P,

– if body(r) contains an atom bi (1 ≤ i ≤ m) which is not the head of any rule in P,
then remove r.

– otherwise, for each atom bi ∈ body(r) (i= 1, . . . ,m), if there is an And-rule bi ← Bi

in P (where Bi is a conjunction of atoms), then replace each bi in body(r) by the
conjunction Bi.

The resulting rule is denoted by unfold(r). Define

peval(P) =
⋃

r∈PAnd
unfold(r) .

peval(P) is called partial evaluation of P.

Example 2 (continue Example 1) .
- Let P′ = {r1, ...,r9}
where:
r1 = (obs ← e1),
r2 = (e1 ← e2 ∧ e3),
r3 = (e2 ← x1 ∨ x2),
r4 = (x1 ← e4 ∧ e5),
r5 = (x2 ← e5 ∧ e6),
r6 = (e3 ← e5),
r7 = (e4 ← H1),
r8 = (e5 ← H2),
r9 = (e6 ← H3).

- Unfolding rules of P′
becomes:
unfold(r1) = (obs ← e2 ∧ e3),
unfold(r2) = (e1 ← e2 ∧ e5),
unfold(r3) = r3,
unfold(r4) = (x1 ← H1 ∧H2),
unfold(r5) = (x2 ← H2 ∧H3),
unfold(r6) = (e3 ← H2),
unfold(r7) = r7,
unfold(r8) = r8,
unfold(r9) = r9.

- Then peval(P′)
consists of:
obs ← e2 ∧ e3,
e1 ← e2 ∧ e5,
e2 ← x1 ∨ x2,
x1 ← H1 ∧H2,
x2 ← H2 ∧H3,
e3 ← H2,
e4 ← H1,
e5 ← H2,
e6 ← H3.
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We do not consider unfolding rules byOr-rules and unfoldingOr-rules, as in the deduc-
tion case considered in [21]. Obviously, peval(P) = peval(PAnd) and peval(P) is a stan-
dardized program. The reduct abductive matrix MP(Pr

And)
T is the representation of PAnd

as presented in Definition 5, therefore, we can base onMP(Pr
And)

T to build up the matrix
representation of peval(P).
Example 3 (continue Example 2) .
According to Definition 5 we have the reduct abductive matrix:

MP(P’
r
And )

T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1 1.00
e2 0.50
e3 0.50 a
e4 0.50
e5 1.00 0.50 0.50
e6 0.50
H1 1.00 1.00
H2 1.00 1.00
H3 1.00 1.00
obs
x1 1.00
x2 1.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1. peval(P′) can be obtained by computing the power of the reduct abductive matrix:
(
MP(P′r

And)
T
)2

,
(
MP(P′r

And)
T
)4

, ...
(
MP(P′r

And)
T
)2k

where k is the number of

peval steps. Here, we reach a fixpoint at k = 2.

(
MP(P’

r
And )

T
)4

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1
e2 0.50 1.00 0.50
e3
e4
e5
e6
H1 1.00 1.00 0.50
H2 0.50 1.00 1.00 1.00 0.50 0.50 0.50
H3 1.00 1.00 0.50
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We refer to this “stable” matrix as peval(P) and take it to solve the PHCAP.
2. Iteration 1:

-M(1) = θ(peval(P) ·M(0)), where M(0) =O

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

e1
e2 0.50
e3
e4
e5
e6
H1
H2 0.50
H3
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1
e2 0.50 1.00 0.50
e3
e4
e5
e6
H1 1.00 1.00 0.50
H2 0.50 1.00 1.00 1.00 0.50 0.50 0.50
H3 1.00 1.00 0.50
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

e1
e2
e3
e4
e5
e6
H1
H2
H3
obs 1.00
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

- SolvingMHS: { {x1, x2}, {H2} }. MHS solutions: { {H2, x2}, {H2, x1} }=M(2).
3. Iteration 2:

-M(3) = θ(peval(P) ·M(2))

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

e1
e2
e3
e4
e5
e6
H1 0.25
H2 0.75 0.75
H3 0.25
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 H1 H2 H3 obs x1 x2
e1
e2 0.50 1.00 0.50
e3
e4
e5
e6
H1 1.00 1.00 0.50
H2 0.50 1.00 1.00 1.00 0.50 0.50 0.50
H3 1.00 1.00 0.50
obs
x1
x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

e1
e2
e3
e4
e5
e6
H1
H2 0.50 0.50
H3
obs
x1 0.50
x2 0.50

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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4. The algorithm stops. Found minimal explanations: { {H1, H2}, {H2, H3} }.

As we can see in Example 3, partial evaluation precomputes all And-nodes and we can
just reuse their explanation vectors immediately. The number of iterations is reduced
from 4 in Example 1 to 2. Moreover, e3 is already precomputed to H2, so we do not
need to recompute it twice. Thus, the effect of partial evaluation remarkably boosts the
overall performance of Algorithm 1 by reducing the number of needed iterations and
also cutting down the cost of redundant computation.

Now let us formalize the partial evaluation step.

Proposition 1. Let 〈 L ,H,O,P 〉 be a PHCAP such that P is a standardized program.
Let MP(Pr

And)
T be the reduct abductive matrix of P, also let v0 be the vector representing

observation of the PHCAP.

Then θ
((

MP(Pr
And)

T
)2 · v0

)
= θ

(
MP(Pr

And)
T ·θ

(
MP(Pr

And)
T · v0

))

Proof. There are two different cases that we need to consider:

– In case v0 is an Or-computable vector, the matrix multiplication maintains all values
of atoms appearing in the heads of Or-rules byMP(Pr

And)
T ·v0 = v0. This is because

we set 1 at the diagonal of the reduct abductive matrix as in Definition 5.1

– Suppose that v0 is an And-computable vector. An atom is defined by a single rule
since P is a standardized program. Suppose that an atom pi (1≤ i≤ n) is defined by
1
m of q j and q j is defined by 1

l of rk inMP(Pr
And)

T . Then pi is defined by ( 1
m × 1

l ) of

rk via q j in MP(Pr
And)

T , which is computed by the matrix product
(
MP(Pr

And)
T
)2

.

This corresponds to the result of abductively unfolding a rule pi ← q1 ∧ ·· ·∧qm by

a rule q j ← r1 ∧ ·· ·∧ rl (1 ≤ j ≤ m) in P. θ(
(
MP(Pr

And)
T
)2

vvv0) then represents the

results of two consecutive steps of 1-step abduction in PAnd . And
((

MP(Pr
And)

T
)2 ·

v0
)
[i] ≥ 1 iffMP(Pr

And)
T ·θ

(
MP(Pr

And)
T · v0

)
[i] ≥ 1 for any 1 ≤ i ≤ n.

Hence, the result holds. ��
Partial evaluation has the effect of reducing deduction steps by unfolding rules in

advance. Proposition 1 realizes this effect by computing matrix products. Partial evalu-
ation is repeatedly performed as:

peval0(P) = P and pevalk(P) = peval(pevalk−1(P)) (k ≥ 1). (4)

The k-step partial evaluation has the effect of realizing 2k steps of deduction at once.
Multiplying an explanation vector and the peval matrix thus realizes an exponential
speed-up that has been demonstrated in Example 3.

Proposition 2. Partial evaluation realized in Proposition 1 has a fixpoint.

1 This behavior is unlike the behavior of the previous definition in [22] that we set 0 at the
diagonal that will eliminate all values of Or-rule head atoms in v0.



206 T. Nguyen et al.

Proof. Note that we assume a program is acyclic. As Algorithm 1 causes no change
to atoms in the head of Or-rules, one can create a corresponding standardized program
containing only And-rules. The resulting program, with only And-rules, is monotonic
so it has a fixpoint for every initial vector. Thus, partial evaluation has a fixpoint. ��

Accordingly, incorporating peval to Algorithm 1 is made easy by first finding the
reduct abductive matrix and then computing the power of that matrix until we reach
a fixpoint. Then we use the output vector to replace the abductive matrix in the Algo-
rithm 1 for computing explanations. The motivation behind this idea is to take advantage
of the recent advance in efficient linear algebra routines.

Intuitively speaking, non-zero elements in the reduct abductive matrix represent
conjuncts appearing in each rule. By computing the power of this matrix, we assume
all And-nodes are needed to explain the observation. Then we precompute the expla-
nations for all these nodes. However, the good effect of partial evaluation depends on
the graph structure of the PHCAP. If there are many And-nodes that just lead to “noth-
ing” or somehow these subgraphs of And-rules are not repeated at a certain number of
times. Then partial evaluation just does the same job as the normal approach but at a
higher cost with computing the power of a matrix. We will evaluate the benefit of partial
evaluation in the next section.

4 Experimental Results

In this section, we evaluate the efficiency of partial evaluation based on benchmark
datasets that are used in [16,17,22]. The characteristics of the benchmark datasets are
summarized below. Both dense and sparse formats are considered as the representation
of program matrices and abductive matrices in the partial evaluation method.

– Artificial samples I (166 problems): deeper but narrower graph structure.
– Artificial samples II (117 problems)2: deeper and wider graph structure, some prob-

lems involve solving a large number of medium-size MHS problems.
– FMEA samples (213 problems): shallower but wider graph structure, usually
involving a few (but) large-size MHS problems.

For further detailed statistics data, readers should follow the experimental setup in [22].
Additionally, to demonstrate the efficiency of partial evaluation, we do enhancing

the benchmark dataset based on the transitive closure problem: P = {path(X , Y ) ←
edge(X , Y ), path(X , Y ) ← edge(X , Z)∧ path(Z, Y )}. First, we generate a PHCAP
problem based on the transitive closure of the following single line graph: edge(1, 2),
edge(2, 3), edge(3, 4), edge(4, 5), edge(5, 6), edge(6, 7), edge(7, 8), edge(8, 9),
edge(9,10). Then we consider the observation to be path(1, 10), and look for the expla-
nation of it. Obviously, we have to include all the edges of this graph in the explanation
and the depth of the corresponding graph or And-rules is 10. Next, for each problem
instance of the original benchmark, we enumerate rules of the form e ← h, where h is
a hypothesis, and append the atom of the observation of the new PHCAP into this rule
with a probability of 20%. The resulting problem is expected to have the subgraph of

2 We excluded the unresolved problem phcap_140_5_5_5.atms.
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And-rules occur more frequently.
Similar to the experiment setup in [17,22], each method is conducted 10 times with

a limited runtime on each PHCAP problem to record the execution time and correctness
of the output. The time limit for each run is 20min, that is, if a solver cannot output the
correct output within this limit, 40min will be penalized to its execution time following
PAR-23 as used in SAT competitions [12]. Accordingly, for each problem instance, we
denote t as the effective solving time, tpeval as the time for the partial evaluation step,
and tp as the penalty time. Thus, t+ tp is the total running time. Partial evaluation time
tpeval and also the extra time for transforming to the standardized format are included
in t. We also report tpeval separately to give a better insight. All the execution times are
reported in Table 1 and Table 2.

The two parts of Table 3 and Table 4 compare the two methods in: the maximum
number of explanation vectors (max(|M|)), the maximum ηz (max(ηz(M))), and the
minimum sparsity min(sparsity(M)) for each explanation matrix. Finally, max iter is
the number of iterations of the main loop of each method, mhs calls is the number of
MHS problems, and |E| is the number of correct minimal explanations. For the methods
with partial evaluation, we report peval steps as the number of partial evaluation steps.

We refer to each method as Sparse matrix - peval, Sparse matrix, Dense matrix -
peval, and Dense matrix for the linear algebraic method in Algorithm 1 with a sparse
representation with partial evaluation, sparse representation without partial evaluation,
dense representation with partial evaluation, and dense representation without partial
evaluation respectively. Our code is implemented in Python 3.7 using Numpy and Scipy
for matrices representation and computation. We also exploit the MHS enumerator
provided by PySAT4 for large-size MHS problems. All the source code and bench-
mark datasets in this paper will be available on GitHub: https://github.com/nqtuan0192/
LinearAlgebraicComputationofAbduction. The computer we perform experiments has
the following configurations: CPU: Intel R© Xeon R© Bronze 3106 @1.70GHz; RAM:
64GB DDR3 @1333MHz; OS: Ubuntu 18.04 LTS 64bit.

4.1 Original Benchmark

Table 1. Detailed execution results for the original benchmark.

Datasets Artificial samples I (166 problems) Artificial samples II (117 problems) FMEA samples (213 problems)

#solved/ t+ tp tpeval #solved/ t+ tp tpeval #solved/ t+ tp tpevalAlgorithms
#fastest mean/std mean/std #fastest mean/std mean/std #fastest mean/std mean/std

1,660 4,243 514 1,170 29,438 124 2,130 49,481 84
Sparse matrix - peval

89 93 19 246 112 48 726 1,214 4

1,660 3,527 – 1,170 35,844 – 2,130 53,553 –
Sparse matrix

1,401 29 – 513 62 – 150 1,254 –

1,660 811,841 728,086 1,170 140,589 3,599 2,130 98,614 25
Dense matrix - peval

13 2,227 31,628 90 1,293 910 1,0007 2,950 3

1,660 27,569 – 1,170 205,279 – 2,130 131,734 –
Dense matrix

157 183 – 321 1,866 – 247 3,629 –

3 A PAR-2 score of a solver is defined as the sum of all runtimes for solved instances plus 2
times timeout for each unsolved instance.

4 https://github.com/pysathq/pysat.

https://github.com/nqtuan0192/LinearAlgebraicComputationofAbduction
https://github.com/nqtuan0192/LinearAlgebraicComputationofAbduction
https://github.com/pysathq/pysat
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Fig. 1. Effective runtime by the number of solved samples for the original benchmark.

Figure 1 and Table 1 demonstrate the runtime trend and execution time comparison on
the original benchmark, while Table 3 gives more detailed information about the spar-
sity analysis of the dataset in the benchmark. Overall, all algorithms can solve the entire
benchmark without any problems. The experiment setup is similar to [22] so readers
can compare the data reported in this section with other methods which were reported
in [22].

In Artificial samples I, Sparse matrix is the fastest algorithm with 1,401 #fastest
and it finishes the first with 3,527ms on average for each run. Sparse matrix - peval,
which stands at second place, is slightly slower with average 4,243ms for each run,
however, it only is the fastest algorithm in 89 problem instances. A similar trend that
the algorithm with partial evaluation is not faster than the original version can be seen
with the dense matrix format. In fact, Dense matrix - peval is considerably slow in this
sample with 811,841ms for each average run, multiple times slower than Dense matrix.
This could be explained by pointing out that the program matrix size in this dataset is
relatively large with mean is 2,372.36 as can be seen in the first part of Table 3. In this
case, matrix multiplication with the dense format is costly and is not preferable.

In Artificial samples II, Sparse matrix - peval is the fastest algorithm with only
29,438ms, while Sparse matrix takes 35,844ms for each run on average. However,
Sparse matrix has higher #fastest than Sparse matrix - peval that is because many prob-
lems in the samples are relatively small. In this dataset, the execution time of Dense
matrix - peval is significantly improved compared to that of Dense matrix with about
25%. In this dataset, the average abductive matrix size is not too large with mean is
451.90 while there are multiple branches being created as we see many mhs calls.
This condition is favorable for partial evaluation in precomputing multiple branches
in advance.

In FMEA samples, a similar trend that partial evaluation significantly improves the
original version can be seen in both Sparse matrix - peval and Dense matrix - peval.
Sparse matrix - peval again is the fastest algorithm with no doubt, it finishes each run
in only about 49,481ms. In spite of that fact, Dense matrix is the algorithm with the
highest #fastest - 1,007. This is because the graph structure of this dataset is shallower,
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so it produces less complicated matrices that we can consider it is more preferable for
dense computation.

4.2 Enhanced Benchmark

Figure 2 and Table 2 demonstrate the runtime trend and execution time comparison on
the original benchmark, while Table 4 gives more detailed information about sparsity
analysis of the dataset in the benchmark. Overall, the enhanced problems are more dif-
ficult than those in the original benchmarks as we see apparently all figures reported
in Fig. 2 are higher than that in Fig. 1. However, similar to the original benchmark, all
algorithms can solve the entire enhanced benchmark without any problems.

In the enhanced Artificial samples I, with enriched more subgraphs of And-rules,
now the fastest algorithm is Sparse matrix - peval with 12,140ms for each run on aver-
age. Interestingly, Sparse matrix is the one with the highest #fastest 1,389, although it
is not the algorithm that finishes first. Dense matrix - peval still cannot catch up with
Dense matrix even though the execution time of Dense matrix now is double what we
can see in the previous benchmark. That is because the matrix size is relatively large so
we need to increase the depth of embedded subgraphs to see a better effect of partial
evaluation with the dense matrix implementation.

In the enhanced Artificial samples II, Sparse matrix - peval again takes the first posi-
tion that it solves in 95,079ms only for the whole problem samples and being fastest in
254 problem instances. Sparse matrix again has the highest #fastest 516 but it slower
than Sparse matrix - peval more than 50% in solving the whole dataset. Dense matrix -
peval is also faster than Dense matrix by more than 50% although there are 323 prob-
lems in which Dense matrix is the fastest.

Table 2. Detailed execution results for the enhanced benchmark datasets.

Datasets Artificial samples I (166 problems) Artificial samples II (117 problems) FMEA samples (213 problems)

#solved/ t+ tp tpeval #solved/ t+ tp tpeval #solved/ t+ tp tpevalAlgorithms
#fastest mean/std mean/std #fastest mean/std mean/std #fastest mean/std mean/std

1,660 12,140 545 1,170 95,079 138 2,130 72,776 157
Sparse matrix - peval

116 124 15 254 616 4 384 1,103 5

1,660 16,163 – 1,170 147,444 – 2,130 74,861 –
Sparse matrix

1.389 209 – 516 1,508 – 553 526 –

1,660 869,922 799,965 1,170 380,033 4,483 2,130 81,837 103
Dense matrix - peval

5 2,434 58,500 77 2,228 688 436 1,005 10

1,660 70,365 – 1,170 613,422 – 2,130 95,996 –
Dense matrix

150 681 – 323 3,651 – 757 1,021 –
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Fig. 2. Effective runtime by the number of solved samples for the enhanced benchmark.

In the enhanced FMEA samples, Sparse matrix - peval once again outruns all other
algorithms with 72,776ms on average for solving the entire dataset. Surprisingly,Dense
matrix andDense matrix - peval catch up closely with sparse versions thatDense matrix
has highest #fastest with 757. In fact, the shape of the abductive matrices in this dataset
is relatively small, and computing these matrices of this size is usually well-optimized.
This also can benefit the partial evaluation as we can see Dense matrix - peval surpasses
Dense matrix by more than 12% which is a remarkable improvement.

Discussion: In summary, partial evaluation remarkably improves the linear algebraic
approach for abduction. The merit of partial evaluation is that it can be precomputed
before abduction steps. Further, once it is computed, we can reuse it repeatedly for
different abduction problems. The positive effect can be seen more clearly in case there
are multiple subgraphs of And-rules exist in the corresponding graph of the PHCAP. In
addition, partial evaluation especially boosts the method with sparse representation at a
more steady level than with the dense matrix format as reported data for tpeval in Table 1
and Table 2.
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5 Related Work

Propositional abduction has been solved using propositional satisfiability (SAT) tech-
niques in [13], in which a quantified MaxSAT is employed and implicit hitting sets are
computed. Another approach to abduction is based on the search for stable models of
a logic program [11]. In [25], Saikko et al. [25] have developed a technique to encode
the propositional abduction problem as disjunctive logic programming under answer
set semantics. Answer set programming has also been employed for first-order Horn
abduction in [31], in which all atoms are abduced and weighted abduction is employed.

In terms of linear algebraic computation, Sato et al. [30] developed an approximate
computation to abduce relations in Datalog [30], which is a new form of predicate inven-
tion in Inductive Logic Programming [20]. They did empirical experiments on linear
and recursive cases and indicated that the approach can successfully abduce base rela-
tions, but their method cannot compute explanations consisting of possible abducibles.

In this regard, Aspis et al. [2] [2] have proposed a linear algebraic transformation
for abduction by exploiting Sakama et al. [27]’s algebraic transformation. Aspis et al.
[2] have defined an explanatory operator based on a third-order tensor for comput-
ing abduction in Horn propositional programs that simulates deduction through Clark
completion for the abductive program [5]. The dimension explosion would arise, unfor-
tunately, and Aspis et al. [2] have not yet reported an empirical work. Aspis et al. [2]
propose encoding every single rule as a slice in a third-order tensor then they achieve
the growth naturally. Then, they only consider removing columns that are duplicated
or inconsistent with the program. According to our analysis, their current method has
some points that can be improved to avoid redundant computation. First, they can con-
sider merging all slices of And-rules into a single slice to limit the growth of the output
matrix. Second, they have to consider incorporating MHS-based elimination strategy,
otherwise, their method will waste a lot of computation and resources on explanations
that are not minimal.

Nguyen et al. has proposed partial evaluation for computing least models of defi-
nite programs [21]. Their method realizes exponential speed-up of fixpoint computation
using a program matrix in computing a long chain of And-rules. However, computing
the least fixpoint of a definite program is very fast with Sparse Matrix-Vector Multipli-
cation (SpMV) [23]. Therefore, the cost of computing the power of the program matrix
may only show benefit in a limited number of specific cases. Further, the possibility of
applying partial evaluation for model computation in normal logic programs is remain-
ing unanswered in Nguyen et al. ’s work [21].

In terms of partial evaluation, Lamma andMello has demonstrated that Assumption
based Truth Maintenance System (ATMS) can be considered as the unfolded version
of the logic program following bottom-up reasoning mechanism [18]. Our work, on the
other hand, could be considered as a linear algebraic version of top-down partial evalu-
ation for abductive programs. In [26], Sakama and Inoue have proposed abductive par-
tial deduction with the purpose to preserve the meanings of abductive logic programs
[26]. The main idea of this method is that it retains the original clauses together with
the unfolded clauses to reserve intermediate atoms which could be used as assumptions
[26]. This idea is incorporated in our method already because the matrix representation
simply stores every possible clause by nature.
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6 Conclusion

We have proposed to improve the linear algebraic approach for abduction by employ-
ing partial evaluation. Partial evaluation steps can be realized as the power of the
reduct abductive matrix in the language of linear algebra. Its significant enhancement
in terms of execution time has been demonstrated using artificial benchmarks and real
FMEA-based datasets with both dense and sparse representation, especially more with
the sparse format. The performance gain can be more impressive if there are multi-
ple repeated subgraphs of And-rules and even more significant if these subgraphs are
deeper and deeper. In this case, the benefit of precomputing these subgraphs outweighs
the cost of computing the power of the reduct abductive matrix which is considerably
expensive.

However, there are many other issues that need to be resolved in future research
to realize the full potential of partial evaluation in abduction. If there is a loop in the
program, the current method cannot reach a fixpoint. Handling loops and extending the
method to work on non-Horn clausal forms is our ongoing work. As we discussed, it
may depend on the possibility to derive consequences of clausal theories in a linear
algebraic way. Another challenging problem is knowing when to apply partial evalua-
tion and how deep we do unfolding before solving the problem. Even though repeated
partial evaluation finishes in finite steps, it is not necessary to perform until an end con-
cerning the cost of the matrix multiplication. An effective prediction of where to stop
without sacrificing too much time can significantly improve the overall performance of
the linear algebraic method. Moreover, incorporating some efficient pruning techniques
or knowing where to zero out in the abductive matrix is also a potential future topic.
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3. Beckman, L., Haraldson, A., Oskarsson, Ö., Sandewall, E.: A partial evaluator, and its use
as a programming tool. Artif. Intell. 7(4), 319–357 (1976). https://doi.org/10.1016/0004-
3702(76)90011-4

4. Boutilier, C., Beche, V.: Abduction as belief revision. Artif. Intell. 77(1), 43–94 (1995).
https://doi.org/10.1016/0004-3702(94)00025-V

5. Console, L., Dupré, D.T., Torasso, P.: On the relationship between abduction and deduction.
J. Logic Comput. 1(5), 661–690 (1991). https://doi.org/10.1093/logcom/1.5.661

6. Dai, W.Z., Xu, Q., Yu, Y., Zhou, Z.H.: Bridging machine learning and logical reasoning by
abductive learning. In: Proceedings of the 33rd International Conference on Neural Informa-
tion Processing Systems, Curran Associates Inc., Red Hook, NY, USA (2019)

7. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM (JACM) 42(1), 3–42
(1995). https://doi.org/10.1145/200836.200838

8. Eshghi, K.: Abductive planning with event calculus. In: ICLP/SLP, pp. 562–579 (1988)

https://doi.org/10.1007/BF03037168
https://doi.org/10.1007/BF03037168
https://doi.org/10.1016/0004-3702(76)90011-4
https://doi.org/10.1016/0004-3702(76)90011-4
https://doi.org/10.1016/0004-3702(94)00025-V
https://doi.org/10.1093/logcom/1.5.661
https://doi.org/10.1145/200836.200838


214 T. Nguyen et al.

9. Futamura, Y.: Partial evaluation of computation process-an approach to a compiler-
compiler. High.-Order Symbolic Comput. 12(4), 381–391 (1999). https://doi.org/10.1023/A:
1010095604496.This is an updated and revised version of the previous publication in “Sys-
tems, Computers, Control”, Volume 25, 1971, pages 45-50

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: a guide to the theory of NP-
completeness. Freeman, W.H. (1979). ISBN 0-7167-1044-7

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP,
vol. 88, pp. 1070–1080 (1988)

12. Heule, M.J., Järvisalo, M., Suda, M.: Sat competition 2018. J. Satisfiability Boolean Model.
Comput. 11(1), 133–154 (2019)

13. Ignatiev, A., Morgado, A., Marques-Silva, J.: Propositional abduction with implicit hitting
sets. In: ECAI 2016, Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1327–
1335. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-1327

14. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine
learning models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 1511–1519 (2019). https://doi.org/10.1609/aaai.v33i01.33011511

15. Josephson, J.R., Josephson, S.G.: Abductive Inference: Computation, Philosophy, Technol-
ogy. Cambridge University Press, Cambridge (1996)

16. Koitz-Hristov, R., Wotawa, F.: Applying algorithm selection to abductive diagnostic reason-
ing. Appl. Intell. 48(11), 3976–3994 (2018). https://doi.org/10.1007/s10489-018-1171-9

17. Koitz-Hristov, R., Wotawa, F.: Faster horn diagnosis - a performance comparison of abduc-
tive reasoning algorithms. Appl. Intell. 50(5), 1558–1572 (2020). https://doi.org/10.1007/
s10489-019-01575-5

18. Lamma, E., Mello, P.: A rationalisation of the ATMS in terms of partial evaluation. In:
Lau, K.K., Clement, T.P., (eds) Logic Program Synthesis and Transformation, pp. 118–131.
Springer, Cham (1993). https://doi.org/10.1007/978-1-4471-3560-9 9

19. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Logic Program.
11(3–4), 217–242 (1991). https://doi.org/10.1016/0743-1066(91)90027-M

20. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (1991).
https://doi.org/10.1007/BF03037089

21. Nguyen, H.D., Sakama, C., Sato, T., Inoue, K.: An efficient reasoning method on logic pro-
gramming using partial evaluation in vector spaces. J. Logic Comput. 31(5), 1298–1316
(2021). https://doi.org/10.1093/logcom/exab010

22. Nguyen, T.Q., Inoue, K., Sakama, C.: Linear algebraic computation of propositional Horn
abduction. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 240–247. IEEE (2021). https://doi.org/10.1109/ICTAI52525.2021.00040

23. Nguyen, T.Q., Inoue, K., Sakama, C.: Enhancing linear algebraic computation of logic pro-
grams using sparse representation. New Gener. Comput. 40(5), 1–30 (2021). https://doi.org/
10.1007/s00354-021-00142-2
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