New Generation Computing, 6 (1988) 249-258
OHMSHA, LTD. and Springer-Verlag

© OHMSHA, LTD. 1988

Partial Evaluation of Queries in Deductive Databases
Chiaki SAKAMA and Hidenori ITOH

Institute for New Generation Computer Technology,
Mita Kokusai Building 2IF,
1-4-28 Mita, Minato-ku, Tohyo, Japan.

Received 17 March 1988

Abstract This paper presents some applications of partial evalua-
tion method to a query optimization in deductive database. A Horn clause
transformation is used for the partial evaluation of a query in an intensional
database, and its application to multiple query processing is discussed. Three
strategies are presented for the compatible case, ordered case and crossed
case. In each case, partial evaluation is used to preprocess the intensional
database in order to obtain subqueries which direct access to an extensional
database.

Keywords: Partial Evaluation, Deductive Database, Query Optimization, Horn
Clause Transformation, Multiple Query Processing.

§1 Introduction
A deductive database usually consists of a large extensional database

(edb) and a comparatively small intensional database (idb). The edb is a set of
database relations which are explicitly stored, while the idb is a set of function
free Horn clauses which define virtual relations between tuples.

In such deductive database systems, a query is evaluated with an inference
system in the idb and with a relational database system in the edb. There are
known two methods to perform this evaluation: the interpretive method and the
compiled mothod.” The interpretive method evaluates a query tuple at a time in
the idh and edb until the query is wholly evaluated, while the compiled method
compiles a query wholly in advance in the idb and produces a set of subqueries
evaluable only in the edb. When there is a large extensional database, the
compiled approach is considered more effective since it partially evaluates a
query in the idb at first, then can reduce the access cost to the edb."™

Partial evaluation® of a program is considered as a specialization tech-
nique for runtime environment and is useful for various application in practice.
The compiled method in a deductive database is considered as an application of

250 C. Sakama and H. Itoh

a partial evaluation technique to a query optimization.

In this paper, some partial evaluation methods for the query optimization
is discussed. Section 2 presents the partial evaluation method for query process-
ing in deductive databases, and Section 3 discusses some application to multiple
query processing. Section 4 shows some experimental results of performance
evaluation.

§2 Partial Evaluation of a Query

Partial evaluation of a query in a deductive database is defined as a
transformation of the query in the idb. It is an unfolding of a query which
includes virtual relations defined in the idb into subqueries which includes only
database relations defined in the edb.

This process is represented as follows:

Qiav=7(idb, Q)

where @ denotes a query to be evaluated, r(idb, Q) denotes an unfolding
transformation of a query Q in the idb, and Q.4 presents the transformed result
which is the subquery for the edb.

After this transformation, Q. is evaluated in the edb:

Qidb,edb - E(edb,Qidb)

where e(edb, Qis») denotes the evaluation of Q.4 in the edb with relational
operations and Qias,eqs presents the result of the query evaluation in the idbh and
edb, which is a set of answer tuples for the query.

In such a partial evaluation, the problem happens when there is a
recursive clause in the idb. In such a case, unfolding transformation of a query
which includes recursion never terminates in database relations. A lot of
algorithms for a recusive query processing which assure termination condition
and answer completeness have been studied,” and in this paper, Horn Clause
Transformation (HCT') procedure® is used for treating such recursive queries.

The HCT procedure is as follows.

(1) Predicates defined in the edb are extensional predicates.

(2) Predicates which appear twice at first during the unfolding of a given
query are recursive predicates.

(3) Select all clauses in the idb whose head predicate is the same with a given
query or recursive predicates, then unfold their bodies until they contain
only extensional predicates or recursive predicates

In this way, the HCT procedure transforms an idb into the equivalent set of
clauses for a given query.

Example 2.1
Suppose the following idb.

Partial Evaluation of Queries in Deductive Databases 2517

p(X,Y)-q(X, Z),HZ,7Y).
q(X, Y) = s(X, Y).
qg(X, Y) - s(X, Z2), «(Z, Y).
X, Y)-ulX, Z), q(Y, Z).
WX, Y): - w(Y, X).

Using the HCT procedure, a query ? — p(a, Y) is partially evaluated in
the idb as:

pX,Y)-q(X, Z2),n(Z,7).
qg(X, Y) - s(X, Y).
q(X,Y)-s(X, Z), u(Z, W), g(Y, W).

These are the clauses which contain subqueries to be evaluated in the edb, where
g is a recursive predicate and r, s and u are extensional predicates.

After the transformation, the following relational commands are generat-
ed:

P2=m2(01=a(qN2=1 7)),
q:SU(SN2:1 Uu M2:2 q)

where 7z, &, M and U denote projection, selection, join and union, respectively.
And the subscript number denotes the position of arguments in relation. These
relational commands are executed iteratively by a relational database system and
terminated in the least fixed points. [

If a query contains some constants which give a condition of the alterna-
tive choice of clauses in an idb, then unnecessary expansion is avoided by
propagating binding information of the query to those clauses. In this case,
however, recursive clauses cannot be bound for the repeated usage in general.

§3 Multiple Query Processing

When there is a set of queries to be evaluated, however, it is inefficient to
evaluate each query independently in an idb. To minimize the cost of such
multiple query processing in deductive database, it is effective to perform
evaluation once that is common to some of the queries, and use the common
intermediate results to obtain answers for those queries. For example, it is
achieved in a non-procedural way by using a connection graph,” that is,
grouping a set of queries, exploiting the common subexpressions by some
heuristics, and generating a single plan to evaluate these queries.

In this section, application of the partial evaluation method to multiple
query processing is discussed. In all subsequent discussion, a query is assumed
to be composed of a single atom (atomic formula). That is, a query composed
of several atoms such as, ? — p(X, Y), g(Y, Z), is considered as a query 7 — r(X,
Y, Z) and a clause #(X, Y, Z) - p(X, Y), q(Y, Z).

252 C. Sakama and H. Itoh

3.1 Compatible Case
First, it is discussed the case where some queries are compatible.

Definition 3.1

(1) Queries which have the same predicate and the same number of argu-
ments are called compatible.

(2) For aquery Q, a query GQ which is compatible with Q but has different
variables in each argument is called general form for it. []

Example 3.1
For the compatible queries {p(a, Y), p(X, b)}, p(X, Y) is a general form for
them. []

Suppose a set of compatible queries, then by using their general form,
unfolding transformation for them is achieved once in an idb as follows:

Qz'db: T(ldb,GQ)

where Q is a set of compatible queries and GQ denotes their general form.
Then Q.4 is evaluated in an edb with the selection condition of the given
queries:

Qiav,ear = e(edb,00(Q:av))

where ¢, denotes a selection under the condition of Q, and Qus,cq» presents a
set of answer tuples for the compatible queries.

Example 3.2

Suppose a set of compatible queries: Q={p(a, Y), p(X, b)} for the idb in
Example 2.1. Then, GQ=p(X, Y) and it is partially evaluated in the idb just
the same as Example 2.1. The results are evaluated in the edb with the following
selection conditions, ¢i—avz=s p. [

When a set of queries contains a number of groups of compatible queries,
they are classified into maximal subsets of compatible queries at first, then each
general form is evaluated in an idb.

3.2 Ordered Case

Next, it is discussed the case where some queries are ordered.
Definition 3.2
A partial ordering over predicates is defined as follows.

(1) Suppose a clause ¢ in an idb. If a predicate p appears in the head of ¢ and
a predicate g appears in the body of ¢, then p is higher than ¢ (or q is
lower than p), and weitten p>gq.

(2) If p=q and g=p, then p~q. [

In the above definition, it was assumed that atoms with the same predi-

Partial Evaluation of Queries in Deductive Databases 253

cate are compatible.

Example 3.3
Suppose the following idb,

p(X7 Y) - Q(X’ Z)’ p(Z’ Y)
(X, Y) - rX, Z), s(Z, Y).
s(X,Y) - q(X, Y).

then p>g>r and g~s. [

Definition 3.3
Queries are called ordered iff they have some ordering over their predicates in

an idb. [

Example 3.4
Consider the set of queries Q={p(a, Y), q(X, b), s(X, Y)} for the idb in
Example 3.3. Then p(a, Y) and g(X, b) are ordered.]

In the following, the notation>is also used to denote the ordering over
queries, if there is no confusion.

When a set of queries contains such ordered queries, they should be
partially evaluated from the lower ones to the higher ones. It is because a higher
perdicate is defined by lower predicates in an idb, then unfolding of the higher
query can use the unfolded results of the lower queries. In this case, however, the
higher query requires whole evaluation of the lower predicates in general.

Example 3.5

Consider the ordered queries {p(X, Y), q(a, Y), q(X, b)}, where p(X, Y) :-
¢(X, Y) is in an idb. Then p(X, Y) requires the results of the evaluation of
g(X, Y), more than g(a, Y) or g(X, b). OO

Therefore, unfolding of the lower queries is performed using their general
form.

Suppose a set of ordered queries Q, and their general form GQ,(GQ;>
GQ:-1). Then they are unfolded stepwise as follows:

Qidb = klj 7(idb;, GQ:’)

where idb;= r(idb,_,,GQ;_,)U idb¥ (i>1), idb,=idb, and idb¥, denotes the
idb; -, except the clauses which have the same predicates with the results of the
z(idb;-,, GQ;_,) in the heads.

This presents GQ; is partially evaluated in the idb using the unfolded
lower GQ;-1, and the result is a union of each evaluation. (In case of GQ;_,
~ GQ,, either of them can be evaluated firstly.) After that, Q.qs is evaluated in
an edb with the selection conditions of the given queries.

254 C. Sakama and H. Itoh

Example 3.6
Suppose the following idb:

p(X,Y)-q(X, Z), n(Z, Y)
qg(X, Y) - s(X, Y)

(X, Y)-s(X, Z), t(Z, Y).
X, Y)-tX, Z),wZ, 7).
X, Y) - uwX, 2), q(Y, Z).

and a set of ordered queries, Q={p(a, Y), q(X, b), (X, c¢) } where p>r>gq.
Then g(X, Y) is unfolded in the idbh(=idb) at first:

g(X, Y):-s(X, Y).
q(X, Y)-s(X, Z), w(Z, W), q(Y, W).

and the idb is transformed into the following idb, with these evaluated results:

pX,Y)-q(X, Z2), rn(Z, 7).

q(X, Y) - s(X, Y)

q(X, Y) - s(X, Z), u(Z, W), q(Y, W).
X, Y)-uX, Z),wZ, Y)

X, Y) - ulX, Z2), q(Y, Z).

Secondly, #(X, Y) is unfolded in this idb.,.
X, Y)—uwX, W), qZ, W), W(Z, Y).

where g is a recursive predicate and is not unfolded.
Then the idb, is transformed into the following idb; with this result:

pX,Y)-q(X, Z), H(Z, 7).
qg(X, Y) - s(X, 7).
q(X, Y) - s(X, Z), u(Z, W), q(Y, W).
X, Y)-ulX, W), q(Z, W), (Z, Y).
X, Y)-uwX, Z2), q(Y, Z).

Finally, p(X, Y) is unfolded in this idbs.

X, Y)-q(X, 2Z), u(Z, W), g(L, W), v(L, Y).

Now the partially evaluated queries in the idb are obtained by the union
of these results.

X, Y)-q(X, Z), u(Z, W), q(L, W), v(L, Y).
(X, Y) - s(X, Y)

q(X, Y) - s(X, Z), u(Z, W), q(Y, W).

X, Y)-uX, W), qZ W), vZ, 7).

These results are evaluated in the edb with the following selection conditions,
Oi=ap, 0204 and op-cr. [

Partial Evaluation of Queries in Deductive Databases 255

3.3 Crossed Case
In the last place, it is discussed the case where some queries are crossed.

Definition 3.4
Queries are called crossed iff they have common subqueries. []

Example 3.7
Consider the queries {p(a, Y), g(a, Y)} for the following idb:

p(X,Y)—-r(X, V)
q(X, Y) - HX, Y)
rnX, Y):-s(X,Y)

then they are crossed since they have the common subquery #(a, Y). [

For these crossed queries, their common subqueries have only to be
evaluated once for them. To know that queries have common subqueries, the
ordering over predicate in an idb is used again. In the above example, the
ordering is defined as p>r>s and g=r=s then it is easily known that both
p(X, Y) and g(X, Y) have a common subquery »(X, Y). (s(X,Y) is also a
common subquery, but the first crossed one is considered.)

Suppose a set of crossed queries Q, and their common subqueries SubQ.
Then they are partially evaluated as follows:

Qidb = sz T(idb,sGQi)

where GQ; denotes the general form of the given queries and idb’ is the results
of the partial evaluation of SubQ in an idb. That is, idb’= z(idb, GSubQ)U
idb*, where GSubQ is a general form of SubQ and idb* denotes the idb except
the clauses which have the same predicates with the results of the r(idb, GSubQ)
in the heads.

This presents GQ; is partially evaluated in the idb using the unfolded
common subqueries GSubQ, and the result is a union of each evaluation. After
that, Qs is evaluated in an edbh with the selection conditions of the given
queries.

Example 3.8
Suppose the following idb:

p(X,Y) - X, Z), p(Z, Y).
p(X, Y):-r(X,Y)

X, Y) - rX, Z),s(Y, Z).
X, Y)-utX, Z),s(Z, Y)
H(X, Y)-s(X,Y) u(Y, X).

where p, g=r>t>s, u. For a set of crossed queries, Q={p(a, X), q(X, b)},
r(X, Y) is the common subquery of p(X, Y) and q(X, Y).

256 C. Sakama and H. Itoh
First, #(X, Y) is unfolded in the idb:
r(X’ Y) - S(X9 Z)’ u(Z’ X)7 S(Z7 Y)

and the idb is transformed into the following idb’ with this result.

pX,Y)-nrX, Z),p(Z, Y).
pX,Y)-rX,7Y)

q(X, Y) - X, Z), s(Y, Z2).
rX,Y)-s(X, Z), u(Z, X), s(Z, Y).
HX,Y)-s(X,Y), ulY, X).

Then p(X, Y) and ¢(X, Y) is unfolded in this idb’.

(X, Y)—=s(X, W), u(W, X), s(W, Z), p(Z, Y).
pX, Y)-s(X, Z2), u(Z, X), s(Z, Y).
q(X, Y) = s(X, W), u(W, X), s(W, Z), s(Y, Z).

These subqueries are evaluated in the edb with the following selection condi-
tions, i p, G2-6q. [J

Evaluation of crossed queries is achieved as an extension of ordered
queries, that is, in an ordered case, it is considered that common subqueries are
contained in a given set of queries.

§4 Performance Evaluation

The previous section presented some partial evaluation methods for
multiple query processing in deductive databases.

Compatible queries are unfolded once by their general form to avoid the
same unfolding in an idb. While ordered queries are unfolded incrementally
from the lower queries to higher queries to use the unfolded results of the lower
ones for the unfolding of higher ones. For crossed queries, their common
subqueries are unfolded at first, then those queries can share the common
intermediate results. In either case, queries are previously analyzed to plan for
efficient unfolding, then they are partially evaluated in an idbh. Moreover, when
there is given a set of queries which contains compatible queries, ordered queries
and crossed queries, it is possible to combine each method.

Now an experimental results of performance evaluation is presented. For
measurement, it is used a sample idb which consists of function free Horn
clauses, composed of binary relations without constants, and including linear
recursive clauses at the rate of 40% for all clauses. And each partial evaluator is
implemented in DEC-10 Prolog.

First, compiled execution time of HCT procedure is shown in Table 1. In
this idb, the search space grows nearly exponentially, so does the costs increase
with the depth.

Next, the performance improvement obtained by the strategies is present-

Partial Evaluation of Queries in Deductive Databases 257

Table 1 Execution time for HCT procedure.

depth 5 10 15
time (msec) 863 5224 12 647

ed. In this experiments, a set of queries which includes some compatible queries
and ordered queries is assumed. Figure 1 shows the comparison of the compiled
execution time. It is assumed five or ten queries which include three or six
compatible queries, respectively. Then two cases are compared; the rest of seven
or four queries are not ordered in one case, while they are ordered in the other
case. When queries are not ordered, they are evaluated independently, while
queries are ordered; they are evaluated incrementally as is mentioned in the
previous section.

(msec)
15000
B —_— GQ/Q=3/5 non-ordered
i -——= GQ/Q=6/10 non-ordered
1%
B /
10 000 |- ll
/
- /
B ordered
5000 |-
0 i ! | L | L L J
2 3 4 5 6 7 8 9 (depth)

Fig. 1 Comparison of performance evaluation.

Figure 1 shows that incremental evaluation becomes more effective in deeper
depth. A crossed case is basically the same with the ordered case, then the same
effect is expected.

258 C. Sakama and H. Itoh

§5 Conclusion

This paper presented an application of a partial evaluation method to
query processing in deductive databases. Three strategies for compatible case,
ordered case and crossed case can reduce the redundant unfolding transforma-
tion in an idb, then these partially evaluated queries are compiled into relational
operations and evaluated in an edb in the same manner of a single query.

Partial evaluation methods presented in this paper did not use the
binding information of variables, that is, which variables are bound or not by
given queries in an idb. In planning efficient computation, however, they are
often very useful.” For example, when an idb contains some constants which
give a condition of alternative choice of clauses, it is important to use the
binding information for avoiding unnecessary expansion. Further optimization
should be achieved according to the application program.

Acknowledgements

We would like to thank Yukihiro Morita, Nobuyoshi Miyazaki and
Toshiaki Takewaki for useful discussions and comments on an earlier draft of
this paper.

References

1) Bancilhon, F. and Ramakrishnan, R., “An Amateur’s Introduction to Recursive Query
Processing Strategies,” Proc. ACM SIGMOD 86, pp. 16-52, 1986.

2) Chakravathy, U. S. and Minker, J., “Multiple Query Processing in Deductive Databases
Using Query Graphs,” Proc. 12th Int. Conf. on VLDB, pp. 384-391, 1986.

3) Futamura, Y. “Partial Computation of Programs,” Lecture Notes in Computer Science,
Vol. 147, pp. 1-35, 1983.

4) Gallaire, H., Minker, J. and Nicolas, J. M., “Logic and Databases: A Deductive
Approach,” ACM Computing Surveys, Vol. 16, No. 2, pp. 153-185, 1984.

5) Miyazaki, N., Yokota, H. and Itoh, H., “Compiling Horn Clause Queries in Deductive
Databases: A Horn Clause Transformation Approach,” ICOT Technical Report, No.
183, 1986.

6) Reiter, R., “Deductive Question-Answering on Relational Data Bases,” in Logic and
Data Bases, Plenum Press, 1978.

7) Ullman, J. D., “Implementation of Logical Query Languages for Databases,” ACM
TODS, Vol. 10, No. 3, pp. 289-321, 1985.

8) Yokota, H., Kunifuji, S. et al., “An Enhanced Inference Mechanism for Generating
Relational Algebra Queries,” Proc. 3rd ACM PODS, pp. 229-238, 1984.

	img001.pdf
	img002.pdf
	img003.pdf
	img004.pdf
	img005.pdf
	img006.pdf
	img007.pdf
	img008.pdf
	img009.pdf
	img010.pdf

