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Abstract. The Escherization problem seeks a tiling for an input plane figure S
with a new tile figure 7" such that 7" is as close as possible to S. In this study,
we conduct an automatic generation of Escher-like “Metamorphosis”. More pre-
cisely, an input image is represented as a polygon and is divided into triangles,
which are related to those of a tile image. We produce tile images using an affine
transformation and introduce conditions for connecting those images. As a result
of experiments, we succeed in partly simulating Escher’s Metamorphosis and also
produce new Metamorphoses using color images.
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1 Introduction

In recent years, systems that use artificial intelligence (AI) to automatically generate
images and paintings, such as Midjourney and Stable Diffusion have been emerged.’
The outputs of those systems are so sophisticated that it is often difficult to distinguish
them from products by human artists. Currently, most of those systems generate images
based on keywords or text input by a user, and it is still challenging to automatically
generate works based on human creativity and imagination. An example of artwork that
is difficult for computer-based automatic generation is optical illusions. The works of
the Dutch graphic artist M. C. Escher [1] from the 20th century are a representative
example of such illusions, where structures that cannot be reproduced in three dimen-
sions are depicted in two dimensions. Escher is also known as an artist who pioneered
tiling art, with his Metamorphosis being a representative work in which a figure in a tile
continuously transforms to a different figure. 7iling refers to the operation of covering
a plane without gaps or overlaps using a finite set of flat shapes (tiles), also known as
plane filling or fessellation.

There have been several attempts to automatically generate tiling art using comput-
ers, and the problem of finding shapes that satisfy tiling while maintaining a similar
shape to the input figure is called the Escherization problem [2]. Several studies pro-
pose different solutions to the problem|[2, 4, 6-12], while few studies realize automatic
generation of Escher-like Metamorphosis that accompanies dynamic and continuous
changes of both tile shapes and images. It is worth noting that the state-of-the-art text to
image Al does not generate Escher-style Metamorphosis using a simple prompt. Fig. 1

3https://www.midjourney.com; https://stablediffusionweb.com
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Fig. 1: Output of Stable Diffusion

shows an output of Stable Diffusion with the simple prompt ‘Escher-style Metamor-
phosis’, which is quite different from the intended output. As such, it is challenging to
develop a system that can produce original Metamorphoses from input images.*

In this study, we develop an algorithm to automatically generate Escher-like Meta-
morphosis using tiling. The “Escher-like Metamorphosis™ targeted in this study is de-
fined as an image that gradually changes the tiling shape and pattern of one input image
into those of another input image. The goal of this study is to automatically generate
such images using an algorithm dedicated for Escher-style tiling problems. To achieve
this, an input image is represented as a polygon and is divided into triangles that are
related to those of a tile image. Tile images are generated using affine transformations,
and constraints are introduced to connect the two tile images. We attempt to reproduce
pattern changes in the original Metamorphosis by Escher, and also generate original
Escher-like Metamorphosis using color images. The rest of this paper is organized as
follows. Section 2 introduces the Escherization problem and related studies. Section
3 presents our approach to generating Escher-like Metamorphosis. Section 4 presents
experimental results and analyses. Section 5 summarizes the paper.

2 Escherization Problem

Given a closed plane figure S, the problem of finding a new plane figure 7" that satisfies
the following two conditions is called the Escherization [2]: (1) T is as close as pos-
sible to .S; and (2) copies of 1" fit together to form a tiling of the plane. S is called an
input shape or goal shape, and T is called a tiling shape. Several algorithms have been
proposed for the problem. Kaplan et al. [2] propose an algorithm using simulated an-
nealing to solve the problem for convex figures. It takes as input a goal shape and a set
of isohedral tiling® to search for an optimal tiling. Koizumi et al. [4] capture figures as
n-point polygons and evaluate the similarity of the shapes using the Procrustes distance
which is scale and rotation invariant [5]. They formulate the Escherization problem as
an eigenvalue problem and compute tiling for non-convex complicated figures. Imahori

4 Recently, some prompts generating tessellation using Midjourney are reported on the Web.
> A tiling whose features are repeated regularly over a plane and which is constructed from only
one tile fitted to itself in a number of different orientations is said to be isohedral [3].
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Fig. 2: Constraints for IH7 (4, 6])

etal. [6,7] improve [4] by resolving the sensitivity of selecting points in the goal poly-
gon, and propose an efficient algorithm for searching appropriate tile shapes. Ono et al.
[8] use the genetic algorithm for producing possible tiling. Sugihara [9] introduces an
algorithm that reproduces Escher’s transmutation ‘Sky and Water’ that smoothly trans-
forms a tile pattern into another one. Lin ez al. [10] introduce a system to create a variety
of Escher-like transmutations. Liu ez al. [11] develop an interactive system for children
to create Escher-like pattern evolution. Liu efal. [12] adapt Escher’s dual shape tiling
and perception effect to 3D manufacturing. These studies handle the Escher-style tiling
problem in various ways, but no study challenges producing Escher-like Metamorpho-
sis that accompanies dynamic and continuous changes of both tile shapes and images.

3 Automated Generation of Escher-like Metamorphosis

3.1 Mathematical Characterization for Tiling

We first overview the mathematical formulation of [4] on which our algorithm is based.
First, an input shape and a tile shape are represented by polygons with n points on the
boundary. Each n-point polygon is represented by a 2 X n matrix in which the i-th
column is the coordinates of the i-th vertex. Let I/ be a matrix representing an input
shape, and U a matrix representing a tile shape. By definition, U and W change by
the selection of the first vertex (called the start point). Then the goal is minimizing the
Procrustes distance d(U, W).% Next, constraint conditions are introduced for each type
of the isohedral tiling. There are 93 types of tiling in isohedral tiling, from IH1 to IH93
[3]. For instance, the shape of IH7 is a hexagon and all the points on one edge must
coincide with points on another edge by rotating the edge by 120° around the vertices
Py, Qo, and Ry that divide the hexagon into three equal parts (Fig. 2(a)).
The condition of tiling edges is represented by the following equations:

S(Pj—Py) = Pi—PFy, S(Q;—Qo) = Qi—Qo, S(R;—Ro) =R;—Ry (i=1,...,N)

where N(= n/6) is the number of points on the edge, S is the matrix representing
120° rotation, and P;, P/, Q;, Q}, R;, R, are points on edges. In addition to the above

S d(U, W) is defined as: d?(U, W) = 1 — LW IZ2det@W D) wopere | X [= | /or(X T X).

Ioziwi?
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(a)

Fig. 3: Tiling for Metamorphosis

conditions, the condition that the centroid of the tile must coincide with the one of
the input shape is introduced. Those conditions are represented as the linear equation
Awu = 0 where u is a vector representing the coordinates of the tile shape and A is a
coefficient matrix. The equation is further transformed to u = B¢ where B is a matrix
consisting of the orthonormal basis of Ker(A) (kernel of A) and ¢ is a parameter vector.
Finally, the problem of minimizing the Procrustes distance d(U, W) is characterized by

finding the maximum eigenvalue of BV B, which is computed by %, where V
is a matrix defined by vectors in W. In [4] the same number of points are assigned
to every tiling edge. Imahori et al. [6] relax the condition and propose a local search-
based method to find an appropriate assignment of points for an input polygon. It can
place points non-uniformly on the boundary of an input figure to form a polygon, and
different numbers of points can be assigned to tiling edges (Fig. 2(b)).

3.2 Tiling for Metamorphosis

To realize Escher-like Metamorphosis, we extend the algorithm of [4] and constraints
introduced by [6]. We use a tile shape in a hexagon that is the IH7 type in isohedral
tiling, since the tiling used by Escher in Metamorphosis I is IH7. So in what follows
we describe constraints specific to IH7. Let n be the number of points on the bound-
ary of an input shape. Then reference points are defined as (Py, Py, P3, Py, Ps, Ps)
= (x1, 22,3, 24,25, T¢) satisfying the conditions that (i) z; = 0 and ¢ < n, and
(ii) z; (2 < 4 < 5) is an even number such that 0 < z; < xg. We explore possible
arrangements of reference points that satisfy the constraint of IH7. For each such ref-
erence point, those that minimize the Procrustes distance are selected by changing the
start point.

We use color images as well as figures for tiling.” Tile images are obtained by fitting
the objects in the input image to a tile shape using an affine transformation. In [4] tiling

7" The word “figure’ is used for a drawing and ‘image’ is used for a graphic, but the distinction
is not strict.
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is done using a single shape. In Escher-like Metamorphosis, on the other hand, tile
shapes gradually change while tiling. Then we generate an intermediate tile between
the two input shapes, and a boundary tile that connects the boundary between different
tile shapes naturally. A pattern of Metamorphosis is generated in the following manner.
First, the plane for an output is divided into blocks (Fig. 3(a)), and tiling is done using
a single tile shape in the same block. The leftmost block represents the tiling of the first
input shape, the rightmost block represents the tiling of the second input shape, and the
in-between blocks are composed of intermediate shapes of tiling. The boundary of each
block is represented by black lines in Fig. 3(a) where one (blue) tile is located at each
odd row and two (red/yellow) tiles are located at each even row on the boundary. The
first input figure is then morphed into the second input figure via intermediate figures.
Fig. 3(b) illustrates the composition of different tile figures. In the figure, the first input
figure is represented as Ul, the second input figure as U2, the first intermediate figure
as U3, and the second intermediate figure as U4. The boundary figures between U1 and
U3 are UA1, UB1, UC1; the boundary figures between U3 and U4 are UA2, UB2, UC2;
and the boundary figures between U4 and U2 are UA3, UB3, and UC3.

3.3 Boundary constraints

Koizumi etal. [4] introduce constraints on IH7 such that all the points on the edge
overlap by rotating the figure by 120 degrees around the vertices. Under the constraint,
however, a boundary line is not always straight. In Fig. 4(a), a boundary line (short
white lines) moves to the left as it goes down. Such boundaries could be a cause for
producing gaps or overlap in tiling. To make a boundary line straight, we introduce an
additional condition. Consider the angle § formed by P; Py P5 on the top (blue) tile of
Fig. 4(b). Since IH7 is the tiling method by the 120° rotation, set # = 60° to make the
boundary straight (Fig. 4(c)). Next consider the ratio between the length of P, P, and
the length of P, P;5 (Fig. 4(d)). If the ratio is different between the left and right figures,
points on the boundary shape will not fit perfectly and a gap could be produced. To
avoid this, we set the ratio between P; P, and P,P;5 as a constant for all tile shapes.
This is done by fixing a : b in Fig. 4(e). The ratio is set to a : b = 2 : 1 to obtain a
tile shape closer to a regular hexagon (Fig. 4(f)). The constraint is represented as the
formula:

1
S(ps —pa) = 5(131 + p4)

where p1, p4 and ps are vectors representing Py, Py and Ps, respectively; and S is a
matrix for 60° rotation. ps — p4 represents a vector P, P5. The formula represents that
rotating the vector P, P5 in 60° coincides the midpoint of P; and P;.

3.4 Intermediate figures

The shape of an intermediate figure between two input figures is computed as follows.
First, weighting the two-dimensional matrices representing each figure by taking into
account the proportion of the figures, then adding them and dividing by the sum of the
weights. Fig. 5 shows an example of producing an intermediate figure (c) from two
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(a) P1

Fig. 4: Boundary constraints

(a) P1 (b)

P1 (e)
P2 P6 P2 P6
3
P3 P5 P P5
P4 P4

Fig. 5: Intermediate figure

input figures (a) and (b). In this study, two intermediate figures U3 and U4 (Fig. 3) are
considered, and the weight ratio of input figures 1 and 2 is set to 3:1 for U3 and 1:3 for
U4. Before adding the coordinate values, the size, the orientation, and the number of
points on each edge of the two figures are aligned. In Fig. 5, the size means the length
of P, P,, and the orientation means the angle of Py P;. Compare the number of points
on corresponding edges in two figures, and adjust the smaller number to match the lager
number using spline interpolation. When the number of points on an edge is changed,
the number of points on the corresponding edge in the input figure is also changed to
maintain the correspondence between the tile figure and the input figure.

3.5 Boundary figures

Three types of boundary figures UA, UB, and UC are considered as shown in Fig. 6(a).
UA has the point P1 on the top, and UB (resp. UC) has the point P1 on the left (resp.
right). Fig. 6(d) shows UA, which is obtained by joining the left half of the tile (b) and
the right half of the tile (c). To get the boundary figures UB and UC, first rotate the
figure (b) 120 degrees in counter-clockwise, and (c) in clockwise to locate P1 in the
corresponding place as in Fig. 6(e) and (f). Then, connect the lines between P3 and
P4 in Fig. 6(e) and P4 and PS5 in Fig. 6(f), replace them with the intermediate lines
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Fig. 6: Boundary figures

obtained by adding the coordinates of the two lines and dividing the sum by 2. The
resulting boundary figures UB and UC are shown in Fig. 6(g) and (h), respectively.

3.6 Generation of tile images

Next we present a method for fitting the objects in the input image to the shape of
tiles. An input image is represented as a polygon using contour points that are extracted
when computing tile images from input images. To transform an input shape to another
shape, the polygon of the object in an input image is divided into triangles. Applying
the same division to tile images, triangles of an input object are related to those of a tile
image. Then performing an affine transformation between the corresponding triangles,
we can convert triangles of an input object into those of a tile image. Applying this
transformation to all triangles, an input image is transformed to a tile image. We use
two methods for triangle division: centroid triangulation and Delaunay triangulation.
Centroid triangulation divides a polygon into triangles by connecting the centroid of
a polygon and two adjacent points on the boundary. Delaunay triangulation divides a
polygon in a way that the circumcircle of each triangle does not contain any other points
and the resulting triangles are as close to equilateral triangles as possible.
Algorithm 1 sketches a procedure for generating Metamorphosis.

4 Experimental Results

4.1 Comparing the effects of triangulation

We use the Jupyter Notebook, a web-based interactive computing platform, for im-
plementing the system. The triangle library is used for Delaunay triangulation, and
OpenCV libraries ‘cv2.getAffineTransform’ and ‘cv2.warpAffine’ are used for affine
transformation. First, we examine the results of centroid triangulation. In Fig. 7, two
different types of input images are shown. We use a lemon as an example of a sim-
ple figure, and a doll as an example of a complex figure. Fig. 7(a) and (d) represent
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Algorithm 1 Automatic Generation of Metamorphosis
Input: Input Images I; and I2; number n of points
Output: Metamorphosis-style image M
1: Extract the contours of I; and > using n points, and represent them by matrices W1 and Wa,
respectively.
2: Find the kernel KerA of A where A is a coefficient matrix representing constraints of TH7.
3: Compute the orthogonal bases B of KerA.
4: fori =1,2do
5:  for all the arrangement of reference points in W; do
6.
7
8

for all the arrangement of the start point in W; do
|B w2

Update mazx( AL ) — val;
: end for
9:  end for
10:  Using W; that constitutes val;, put U; :== BB W;.
11: end for

12: Compute intermediate figures: Us := (3 % U1 + Uz)/4 and Uy := (U1 + 3 * Uz) /4.
13: Compute boundary figures UA;, UB;, UC; (5 = 1,2, 3).

14: Transform an input image to a tile image using triangulation and affine transformation.
15: Embed those images into intermediate figures and boundary figures.

16: Construct M I using input images, intermediate images, and boundary images.

the results of centroid triangulation of input images. Fig. 7(b) and (e) represent tile
images obtained by the input images. Comparing the results, centroid triangulation is
done without overlapping in (b), which results in an almost successful output (c). By
contrast, centroid triangulation is overlapping in (e), then the object protrudes beyond
the contour in the output in (f).

Next, we examine the results of Delaunay triangulation in Fig. 8. When the number
of vertices increases in a lemon, parts of the vertices disappear on the edge (blue areas)
of (a) and (b). As a result, the output tile image has points that protrude beyond the
contour as in (c). By contrast, in a doll non-overlapping divisions are made as in (d)
and (e), which results in an almost successful output (f). In this way, two triangulation
methods are effectively used depending on an input shape and its number of vertices.

4.2 Generating Metamorphosis

Fig. 9 shows some Metamorphoses generated by the system. Fig. 9(a) is generated from
input images of a hexagon and a human figure using Delaunay triangulation with 120
vertices. Fig. 9(b) is generated from input images of a lemon and a banana using De-
launay triangulation with 120 vertices. Comparing the two images, (a) shows natural
transmutation of two input images without noticeable gaps or overlapping, while (b)
has some unnatural sharp edges or unnecessary gaps. Fig. 9(c) is generated from input
images of blueberries and bananas using centroid triangulation with 36 vertices. In this
example, the two input images have very different colors, which results in unnatural
color change in the output image. Since the color and pattern of tile images are ad-
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(a) Input image 1 (b) Tiling (c) Output

(d) Input image 2 (e) Tiling (f) Output

Fig. 7: Examples of centroid triangulation

B O

(a) Input image 1 (b) Tiling (c) Output

(d) Input image 2 (e) Tiling

Fig. 8: Examples of Delaunay triangulation

justed at their boundary, such unnatural color changes occur at the boundary even if the
number of intermediate shapes is increased.

Fig. 10 shows our original Metamorphoses: (a) banana and yellow car, (b) blueberry
and blue car, and (c) peony and rose. In Fig. 11 we use objects appearing in the art by
Escher as input images: (a) hexagon and lizard, (b) hexagon and bird, and (c) hexagon
and fish. All these figures use Delaunay triangulation with 36 vertices. In contrast to
Fig. 9(c), two input images have similar colors then the one smoothly transforms to the
other. When we use simple input images such as blueberries or hexagons, changes in
pattern or color are clearly visible within the object. On the other hand, when complex
input images such as bananas, cars, or flowers are used, changes in pattern or color
are less noticeable, resulting in more natural transmutation. In particular, with input
images that have similar patterns like in Fig. 11(c), the boundary of the change is hardly
noticeable.
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(b) Lemon and Banana

(c) Blueberry and Banana

Fig. 9: Examples of successful and unsuccessful Metamorphosis

5 Conclusion

In this study, we built a system that automatically generates morphing images capturing
the characteristics of Metamorphosis by applying the Escher-style tiling problem and
continuously changing the shape and pattern of tiling. Experimental results show that
the system successfully reproduces part of Escher’s Metamorphosis and produces orig-
inal Metamorphosis. The result would contributes to applications in tiling and graphic
design. In the current system, the quality of an output image depends on the number of
points on the contour and the selection of triangulation. In this regard, machine learning
techniques could be used for exploring appropriate settings of these parameters. There
is also room for improvement by using more versatile partitioning and modifying con-
straints so that the result is independent of the number of points. These improvements
remain as future challenges.
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(b) Blueberry and Blue Car

(c) Peony and Rose

Fig. 10: Original Metamorphoses
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