
Computing Logic Programming Semantics

in Linear Algebra

Hien D. Nguyen
1
, Chiaki Sakama

2
, Taisuke Sato

3
, Katsumi Inoue

4

1University of Informatics Technology, VNU-HCM, Vietnam

2Wakayama University, Japan
3AI Research Center AIST, Japan

4National Institute of Informatics (NII), Japan

hiennd@uit.edu.vn, sakama@sys.wakayama-u.ac.jp, satou.taisuke@aist.go.jp, inoue@nii.ac.jp

Abstract. Logic programming is a logic-based programming paradigm, and

provides languages for declarative problem solving and symbolic reasoning. In

this paper, we develop new algorithms for computing logic programming se-

mantics in linear algebra. We first introduce an algorithm for computing the

least model of a definite logic program using matrices. Next, we introduce an

algorithm for computing stable models of a normal logic program. We also de-

velop optimization techniques for speeding-up those algorithms. Finally, the

complexity of them is analyzed and tested in practice.

Keywords. logic programming, linear algebra, definite program, normal pro-

gram.

1 Introduction

Logic programming provides languages for declarative problem solving and symbolic

reasoning, yet symbolic computation often suffers from the difficulty to make it scal-

able. On the other hand, linear algebra is the core of many applications of scientific

computation and has been equipped with several scalable techniques. However, line-

ar algebra has not been used for knowledge representation, since it only handles num-

bers and does not manipulate symbols. Then, it has recently been recognized that the

integration of linear algebraic computation and symbolic computation is one of the

promising and challenging topics in AI [1]. Such integration has potential to make

symbolic reasoning scalable to real-life datasets. There are some studies for realizing

logical reasoning using linear algebra.

In [2], Sato translates the rules of a Datalog program into a set of matrix equations.

Based on this, the least model of a Datalog program is computed by solving the ma-

trix equations. Yang, et al. [3] consider learning representations of entities and rela-

tions in knowledge bases using the neural-embedding approach. This method is ap-

plied for mining Horn clauses from relational facts represented in a vector space.
Real Logic [6] is a framework where learning from numerical data and logical reason-

ing are integrated using first order logic syntax. Logic tensor networks (LTN) are one

of the modern methods for reasoning and learning from the concrete data as real logic.

This method has been applied to semantic image interpretation [7].
Logic programming can be represented based on multilinear algebra. In [4, 5], the

authors used multilinear maps and tensors to represent predicates, relations, and logi-

cal atoms of a predicate calculus. Lin [11] introduces linear algebraic computation of

mailto:hiennd@uit.edu.vn
mailto:sakama@sys.wakayama-u.ac.jp
mailto:satou.taisuke@aist.go.jp
mailto:inoue@nii.ac.jp

2

SAT for clausal theories. Besides that, Horn, disjunctive and normal logic programs

are also represented by algebraic manipulation of tensors in [8]. The study builds a

new theory of logic programming, while implementation and evaluation are left open.

In this paper, we first refine the framework of [8] and present algorithms for find-

ing the least model [9] of a definite program and stable models [12] of a normal pro-

gram. Some optimization techniques for speeding-up these algorithms are studied.

These methods are developed based on the structure of matrices representing logic

programs. The complexity of proposed algorithms is evaluated and tested in practice.

The next section presents an algorithm for computing the least model of a definite

program and an improved method for this algorithm. Section 3 presents an algorithm

for finding stable models of a normal program and its improvement. Section 4 shows

experimental results by testing in practice. The last section concludes the paper. Due

to space limit, we omit some proofs of propositions and theorems.

2 Definite Programs

We consider a language L that contains a finite set of propositional variables and the

logical connectives , ,  and ←. Given a logic program P, the set of all proposi-

tional variables appearing in P is the Herband base of P, denoted BP.

2.1 Preliminaries

A definite program is a finite set of rules of the form:

1 ... (0)mh b b m    (1)

where h and bi are propositional variables. A rule r is called d-rule iff r has the form:

1 ... (0)mh b b m    (2)

where h, bi are propositional variables. A d-program is a finite set of rules that are

either (1) or (2). Note that the rule (2) is a shorthand of m rules: h  b1,…, h  bm, so

a d-program is also a definite program. Given a rule r as (1) or (2), define head(r) = h

and body(r) = {b1,…, bm}. In particular, the rule is a fact if body(r) = .

 A set I  BP is an interpretation of P. An interpretation I is a model of a d-program

P if {b1,…, bm} I implies h  I for every rule (1) in P, and {b1,…,bm}  I   im-

plies h  I for every rule (2) in P. A model I is the least model of P if I  J for any

model J of P. The TP - operator is a mapping : 2 2P PB B

PT  which is defined as:

1 1

1 1

() { | ... and { ,..., } }

 { | ... and { ,..., } }.

P m m

n n

T I h h b b P b b I

h h b b P b b I

      

     

The powers of TP are defined as:  1 0() () and ()k k

P P P PT I T T I T I I   (k  0).

Given I  BP, there is a fixpoint 1() () (0)n n

P PT I T I n   . For a definite program

P, the fixpoint ()n

PT  coincides with the least model of P [9].

2.2 SD-program

We first consider a subclass of definite programs, called SD-programs.

Definition 2.1: (SD-program) A definite program P is called singly defined (or SD-

program) if head(r1)  head(r2) for any two rules r1 and r2 in P (r1  r2).

3

Definition 2.2 [8]: (interpretation vector) Let P be a definite program and BP =

{p1,…, pn}. Then an interpretation I of P is represented by a vector v = (a1, . . . , an)
T

where each element ai represents the truth value of the proposition pi such that ai = 1

if pi  I (1 ≤ i ≤ n); otherwise, ai = 0. We write rowi(v) = pi. Given v = (a1,…, an)
T


n
, v[i] is the i

th
 element of v (1≤ i ≤ n) and v[1…k] is a vector (a1,…, ak)

T
k

 (k  n).

Definition 2.3: (matrix representation of a SD-program)
1
 Let P be an SD-program

and BP = {p1,…, pn}. Then P is represented by a matrix MP  nn
 such that for each

element aij (1 ≤ i, j ≤ n) in MP:

1

1
1. (1 ; 1 ,) if ... is in .

k mij k i j ja k m i j n p p p P
m

       

2. aii = 1 if pi  is in P.

3. aij = 0, otherwise.

MP is called a program matrix. We write rowi(MP)= pi and colj(MP) = pj (1 ≤ i, j ≤ n).

By the condition of an SD-program, there is at most one rule r  P such that

head(r) = p for each p  BP. Then no two rules are encoded in a single row of MP.

Definition 2.4: (initial vector) Let P be a definite program and BP = {p1,…, pn}. Then

the initial vector is an interpretation vo = (a1, . . . , an)
T
 such that ai = 1 if rowi(vo) = pi

and a fact pi  is in P (1 ≤ i ≤ n); otherwise, ai = 0.

Definition 2.5 [8]: (thresholding function) Given a vector v = (a1,…, an)
T
  n

,

define (v) = (a1’,…, an’)
T
 where ai’ = 1 (1 ≤ i ≤ n) if ai ≥ 1; otherwise, ai’ = 0. We

call it the -thresholding function of v.

Given a program matrix MP  nn
 and an initial vector vo  n

, define:

vk+1 =  (MPvk) (k  0).

 It holds that vk+1 = vk for some k  0. When vk+1 = vk, we write: vk = FP(MPvo).

Theorem 2.1: Let P be an SD-program and MP  nn
 its program matrix. Then m 

n
 is a vector representing the least model of P iff m = FP(MPvo) where vo is the ini-

tial vector of P.

Example 2.1: Consider the program P = {p ← q, q ← p  r, r ← s,

s ← } with BP = {p, q, r, s} then its program matrix MP  44
 is the ma-

trix (right). The initial vector of P is vo = (0 0 0 1)
T
.

Then, v1 = (MPv0) = (0 0 1 1)
T

and v2 = (MPv1) = (0 0 1 1)
T
 = v1.

Hence, the vector v1 represents the least model {r, s} of P.

 Note that the fact s ← in P is encoded as the rule s ← s in MP. By multiplying MP

and v0, the 4
th

 element of v1 represents the truth of s after one-step of deduction.

The study [8] also introduces fixpoint computation of least models. Differently

from the current study, [8] works on a program satisfying the MD-condition
2
 and sets

the empty set as the initial vector for computing fixpoint. In this paper, we work on an

1 In [8], the fact is represented by ―pi ← ‖ and is encoded in a matrix by aij = 1 where

rowi(MP)= pi and colj(MP) = .
2 A definite program P satisfies the MD-condition if it satisfies the following condition: For

any two rules r1 and r2 in P (r1r2): head(r1) = head(r2) implies |body(r1)| ≤1 and |body(r2)| ≤ 1.

0 1 0 0

½ 0 ½ 0

0 0 0 1

0 0 0 1

p q r s

p

q

r

s

 
 
 
 
 
 

4

SD-program and start with the initial vector representing facts, and facts p ← in P are

encoded by the rule p ← p rather than p ← . This has the effect of reducing non-

zero elements in matrices during fixpoint computation. [8] allows the existence of

constraints ― q‖ in a program while the current study does not. Those constraints

are handled as a rule ―p  q, p‖ in Section 3.

2.3 Non-SD programs

When a definite program P contains two rules: r1: h  b1  …  bm and r2: h  c1 

…  cn, P is transformed to a d-program Q such that:

Q = (P \ {r1, r2})  {r1’, r2’, d1}

where r1’: h1  b1  …  bm, r2’: h2  c1  …  cn and d1: h  h1  h2.

Here, h1 and h2 are new propositional variables associated with r1 and r2, respectively.

Generally, a non-SD program is transformed to a d-program as follows.

Definition 2.6: (transformation) Let P be a definite program and BP its Herband

base. For each p  BP, put Pp = { r | r  P and head(r) = p} and Rp = { r | r  Pp and

| Pp | = k > 1}. Then define Sp = {pi  body(r) | r  Rp, i = 1,…,k} and Dp = { p  p1

 …  pk }. Build a d-program:

' (\)
P P P

p p p

p B p B p B

Q D

P P R S D
  

  

We have P’ = Q  D where Q is an SD-program and D is a set of d-rules.

 It is easily shown that a d-program P’ has the least model M’ such that M’  BP = M

where M is the least model of P.

Definition 2.7: (matrix representation of a d-program) Let P’ be a d-program such

that P’ = Q  D where Q is an SD-program and D is a set of d-rules, and BP’ = {p1,…,

pm} the Herband base of P’. Then P’ is represented by a matrix MP’  mm
 such that

for each element aij (1 ≤ i, j ≤ m) in MP’:

1
1. 1 (1 ; 1 ,) if ... is in .

k lij k i j ja k l i j m p p p D       

 2. Otherwise, every rule in Q is encoded as in Def. 2.3.

Theorem 2.2: Let P’ be a d-program and MP’  mm
 its program matrix. Then u 

m
 is a vector representing the least model of P’ iff u = FP(MP’vo) where vo is the

initial vector of P’.

2.4 Algorithms for finding least models

Based on Theorem 2.2, we develop an algorithm for computing the least model of a

definite program P (Fig. 1)

Example 2.2: Consider P = {p ← q, p ← r  s, r ← s, s ← } and BP = {p, q, r, s}.

Then P is transformed to a d-program P’ = Q  D with BP’ = {p, q, r, s, t, u}:

 Q = { t ← q, u ← r  s, r ← s, s ← }.

 D = { p ← t  u }.

5

Fig. 1. Algorithm 2.1

 We have the matrix MP’  66
representing P’ (right).

Let v0 = (0 0 0 1 0 0)
T
 be a vector representing facts in P’.

Then, v1 = (MP’v0) = (0 0 1 1 0 0)
T
, v2 = (MP’v1) = (0 0 1

1 0 1)
T
, v3 = (MP’v2) = (1 0 1 1 0 1)

T
, v4 = (MP’v3) = (1

0 1 1 0 1)
T
 = v3. Hence, v3 is a vector representing the

least model of P’, and v3[1…4] is a vector representing

the least model of P, that represents {p, r, s}.

In Algorithm 2.1, the complexity of computing MP’v is O(m
2
) and computing (.) is

O(m). The number of times for iterating MP’v is at most (m + 1) times. So the com-

plexity of Step 3 is O((m + 1)  (m + m
2
)) = O(m

3
) in the worst case. Comparing the

current study with the previous one [8], the current encoding has an advantage of

increasing zero elements in matrices and reducing the number of required iterations in

fixpoint computation.

2.5 Column reduction

 This section introduces a method for decreasing the complexity of computing u =

(MP’v).

Definition 2.8: (submatrix representation of a d-program) Let P’ be a d-program

such that P’ = Q  D where Q is an SD-program and D is a set of d-rules, and BP’ =

{p1,…, pm} the Herband base of P’. Then P’ is represented by a matrix NP’  mn

such that each element bij (1 ≤ i ≤ m, 1 ≤ j ≤ n) in NP’ is equivalent to the correspond-

ing element aij (1 ≤ i, j ≤ m) in MP’ of Def.2.7. NP’ is called a submatrix of P’.

 Note that the size of MP’  mm
 of Def.2.7 is reduced to NP’  mn

 in Def.2.8 by

n ≤ m.

Definition 2.9: (D-thresholding) Given a vector v = (a1,…, am)
T
, define a vector w =

D(v) = (w1,…, wm)
T
 such that (i) wi = 1 (1 ≤ i ≤ m) if ai ≥ 1, (ii) wi = 1 (1 ≤ i ≤ n) if j

wj = 1 (n + 1 ≤ j ≤ m) and there is a d-rule dD such that head(d) = pi and rowj(w) 

body(d), and (iii) otherwise, wi = 0. D(v) is called a D-thresholding of v.

Intuitively speaking, the additional condition of Def.2.9(ii) says ―if an element in

the body of a d-rule is 1, then the element in the head of the d-rule is set to 1‖. D adds

'

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 ½ ½ 0 0

P

p q r s t u

p

q

r
M

s

t

u

 
 
 
 

  
 
 
  
 

6

this condition to , in return for reducing columns. By definition, it holds that D(v) =

D((v)).

D(v) is computed by checking the value of ai for 1 ≤ i ≤ m and checking all d-rules

for n + 1 ≤ j ≤ m. Since the number of d-rules is at most n, the complexity of compu-

ting D(.) is O(m + (m – n)  n) = O(m  n).

Theorem 2.3: Let P be a definite program with BP = {p1,…,pn}, and P’ a transformed

d-program with BP’ = {p1,…,pn, pn+1,…,pm}. Let NP’  mn
 be a submatrix of P’. Giv-

en a vector v  n
 representing an interpretation I of P, let u = D(NP’v)  m

.

 Then u is a vector representing an interpretation J of P’ such that J  BP = TP(I).

Proof:

Let v = (v1,…, vn)
T
 then NP’v = (x1,…,xn,…,xm)

T
 with xk = ak1v1 +…+ aknvn (1  k  m).

Suppose w = (NP’v) = (w1,…,wm)
T
 and u = D(NP’v) = D(w) = (u1, …, um)

T
.

(I) First, we prove J  BP  TP(I).

Let uk = 1 (1  k  n) and pk = rowk(u). We show pk  TP(I).

 (i) Assume wk = uk = 1. By wk = 1, xk = ak1v1 +…+ aknvn  1.

 Let {b1,…, br}  {ak1,…, akn} such that bi  0 (1  i  r). Then, bi = 1/r (1  i  r)

and b1vb1 +…+ brvbr = 1 imply vb1 = …= vbr = 1.

 In this case, there is a rule: pk ← pb1  …  pbr in P such that pbi = coli(NP’) for bi =

aki (1  i  r) and {pb1,…, pbr}  I. Hence, pk  TP(I) holds.

 (ii) Next assume uk  wk , then wk = 0.

 As wk = 0, by definition of D(.),  j, n + 1  j  m such that wj = 1.

 Also, dj  D such that rowj(w) = pj  body(dj) and head(dj) = pk

 where dj has the form: pk  pk1 … pkq with pj {pk1,…, pkq}  BP’\BP .

 By wj = 1 (n +1  j  m), it holds xj = aj1v1 +…+ ajnvn  1.

 Let {b1,…, br}  {aj1,…, ajn} such that bi  0 (1  i  r). Then,

bi = 1/r (1  i  r) and b1vb1 +…+ brvbr = 1 imply vb1 = …= vbr = 1.

 In this case, there is a rule: pj ← pb1  …  pbr in Q such that pbi = colj(NP’) for bi =

aki (1  i  r) and {pb1,…, pbr}  I. By transforming a definite program P to a d-

program P’, we have: pk  pb1  …  pbr P and {pb1,…, pbr}  I. Hence, pk  Tp(I).

 In both (i) and (ii), it holds that pk = rowk(u)  Tp(I) if uk = 1 (1  k  n).

 Then J  BP  TP(I) .

(II) Next, we prove TP(I)  J  BP . We show that pk  TP(I) implies uk = 1 (1  k  n).

 Let pk  TP(I), then there is pk  pk1  …  pkr  P (1  k  n) such that

 {pk1,…, pkr}  I , so vkj = 1 (1  j  r).

 (i) If pk  pk1  …  pkr  Q then pkj  BP. Then  i, pkj = coli(NP’) (1  i  n) and

akj = 1/r. Hence, xk = ak1v1 +…+ aknvn = 1 and wk = 1 = uk.

 (ii) Else if pk  pk1  …  pkr  Q then  j, n + 1  j  m, pj ← pj1  …  pjr  Q

and pk  pk1 … pkq  D with pj {pk1,…, pkq}.

 By pj ← pj1  …  pjr  Q, it holds pji  BP. Then  l, pji = coll(NP’) (1  l

 n) and ajl = 1/r. Thus, xj = aj1v1 +…+ ajnvn = 1 and wj = 1.

 Since pk  pk1 … pkq  D and rowj(w) = pj {pk1,…, pkq}, it becomes

 uk = 1 (by the definition of D in Def. 2.9(ii)).

 By (i) and (ii), pk  TP(I) implies uk = 1 (1  k  n), thereby TP(I)  J  BP

 Hence: J  BP = TP(I). 

7

Given a matrix NP’  mn
 and the initial vector v0 of P', define vk+1 = D(NP’

vk[1…n]) (k  0). Then it holds that vk+1 = vk for some k  1. When vk+1 = vk, we write

vk = FP(NP’v0[1…n]). It shows that FP(NP’v0[1…n]) represents the least model of P.

Generally, given a d-program P’, the value k of vk = FP(NP’v0[1…n]) is not greater

than the value h of vh = FP(MPvo) in Section 2.2.

Example 2.3: For the d-program P’ of Example 2.2, we

have the submatrix NP’ 64
representing P’ (right). Given the

initial vector v0 = (0 0 0 1 0 0)
T
 of P’, it becomes v1 =

D(NP’v0[1…4]) = (0 0 1 1 0 0)
T
, v2 = D(NP’v1[1…4]) = (1 0 1 1

0 1)
T
, v3 = D(NP’v2[1…4]) = (1 0 1 1 0 1)

T
 = v2.

 Then v2 is a vector representing the least model of P’, and

v2[1…4] is a vector representing the least model {p, r, s} of P.

Note that the first element of vi (i = 2, 3) becomes 1 by Def. 2.9(ii).

By Theorem 2.3, we can replace the computation u = (MP’v) in Step 3 of Algo-

rithm 2.1 by u = D(NP’v[1…n]). In the column reduction method, the complexity of

computing NP’v[1…n] is O(mn) and computing D(.) is O(mn). The number of

times for iterating NP’v is at most (m + 1) times. So the complexity of computing u =

D(NP’v[1…n]) is O((m + 1)  (m  n + m  n)) = O(m
2
n). Comparing the complexi-

ty O(m
3
) of Step 3 of Algorithm 2.1, the column reduction reduces the complexity to

O(m
2
n) as n << m in general.

3 Normal Programs

In [8], normal programs are converted to disjunctive programs using

the transformation by [13], and then encoded in matrices using third-order tensors. In

this paper, we first transform normal programs to definite programs using the trans-

formation in [12] and then encode them in matrices as in Section 2.

3.1 Computing stable models of a normal program

A normal program P is a finite set of rules of the form:

1 1... ... (0)k k mh b b b b m       (3)

where h and bj are propositional variables. P is transformed to a definite program by

rewriting the above rule as:

1 1... ... (0)k k mh b b b b m       (4)

where
ib is a new proposition associated with bi. We call bi a positive literal and

jb a

negative literal.

Given a normal program P and an interpretation I  BP, the transformed definite

program is denoted by P
+
, called a positive form. As Def. 2.6, we can transform P

+
 to

a d-program P’. Define { | \ } and PI p p B I I I I    .

Theorem 3.1 [12]: Let P be a normal program. Then, I is a stable model of P iff I
+
 is

the least model of P I  .
Definition 3.1: (program matrix for a normal program) Let P be a normal pro-

gram with BP = {p1,…,pk}, and P
+
 its positive form with

1 1{ ,..., , ,..., }P k n mB p p q q  .

'

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

0 1 0 0

0 0 ½ ½

P

p q r s

p

q

r
N

s

t

u

 
 
 
 

  
 
 
  
 

8

Also, let P’ be a d-program that is obtained from P
+
 with BP’ = {p1,…,pk, pk+1,…,pn,

1,..., }n mq q
. We have {qn+1,…,qm}  {p1,…,pk}, and P’ has n positive literals and (m-

n) negative literals. Then P’ is represented by a matrix MP’  mm
 such that for each

element aij (1 ≤ i, j ≤ m) in MP’:

1. aii = 1 for n + 1  i  m

2. aij = 0 for n + 1  i  m and 1  j  m such that i  j

3. Otherwise, aij (1  i  n; 1  j  m) is encoded as in Def. 2.7.

By definition, negative literals are encoded in MP’ in the same manner as facts. In-

tuitively, aii = 1 for
iq represents the rule

i iq q that means a ―guess‖ for
iq .

Definition 3.2: (initial matrix) Let P be a normal program and BP = {p1,…,pk}, P’ its

transformed d-program (via. P
+
) and

' 1 1 1{ ,..., , ,..., , ,..., }P k k n n mB p p p p q q  . The

initial matrix Mo  mh
 (1  h  2

m-n
) is defined as follows:

  Each row of Mo corresponds to each element of BP’ in a way that rowi(Mo) = pi

for 1  i  n and rowi(Mo) = iq for n +1  i  m.

  aij = 1 (1  i  n, 1  j  h) iff a fact pi  is in P; otherwise, aij = 0.

  aij = 0 (n + 1  i  m, 1 j h) iff a fact qi  is in P; otherwise, there are two

possibilities 0 and 1 for aij, so it is either 0 or 1.

 Each column of Mo corresponds to a potential stable model.

Let P be a normal program and P’ its transformed d-program. For the program ma-

trix MP’  mm
 and the initial matrix Mo  mh

. Define: Mk+1 =  (MP’Mk) (k  0).

 It holds that Mk+1 = Mk for some k  0. When Mk+1 = Mk, we write Mk = FP(MP’Mo).

Suppose Mk = FP(MP’Mo) (k  1). Let u = (a1 . . .an, an+1… am)
T
 be a column vector

in Mk such that aj = 1 (resp. aj = 0) (n + 1  j  m) iff ai = 0 (resp. ai = 1) with i such

that 1  i  n, rowj(Mo) =
jq and rowi(Mo) = pi = qj. Then we have the next result.

Theorem 3.2: u is a column vector representing the interpretation I of P’ iff I  BP is

a stable model of P.

3.2 Algorithm for computing stable models

Based on Theorem 3.2, we have an algorithm for finding stable models of a normal

program P (Fig. 2).

Example 3.1: Consider P ={ p ← q  r  s, q ← t  q, q ← s, r ← t, s ←,

t←} with BP = {p, q, r, s, t}. First, P is transformed to a positive form P
+
 and a d-

program P’ as follows:

  P
+
 = { p ← q  r  s, q ← t  q, q ← s,

r ← t , s ←, t ← }

  P’= Q  D where: Q ={ p ← q  r  s,

q1 ← t  q, q2 ←s, r ← t , s←, t←}

 D = { q ← q1  q2}

 We have the representing matrix MP’  99
and

the initial matrix Mo  92
:

1 2

'

1

2

0 1/3 0 1/3 0 0 0 1/3 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 ½ 0 0 0 0 0 0 ½

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

P

p q r s t q q r t

p

q

r

s

tM

q

q

r

t

 
 
 
 
 
 
 
 
 
 
 
 
 
 

9

Fig. 2. Algorithm 3.1

Then M1 =  (MP’Mo), M2 =  (MP’M1), M3 =  (MP’M2). M4 =  (MP’M3) = M3 be-

comes the fixpoint. In this case, the column vector u = (1 1 0 1 1 0 1 1 0)
T
 satisfies the

condition u[8] = 1 iff u[3] = 0 where row8(u) = r and row3(u) = r. The vector u repre-

sents the set {p, q, s, t, q2, r } and {p, q, s, t, q2, r }  BP = {p, q, s, t} is the stable

model of P.

 In Algorithm 3.1, the complexity of MP’M is O(m
2
h). The number of times for

iterating MP’M is at most (m + 1) times. Thus, the complexity of Step 3 is O((m + 1)

m
2
h) = O(m

3
h) in the worst case. In this method, we encode a normal program

into a program matrix, while [8] encodes a normal program into a 3
rd

-order tensor.

Since the number of slices in a 3
rd

-order tensor increases exponentially in general, the

current method would have a computational advantage over [8].

3.3 Column reduction

We apply the submatrix technique of Def.2.8 to program matrices for normal pro-

grams. That is, instead of considering a program matrix MP’  mm
 of Def.3.1, we

consider a submatrix NP’  mr
where r = k + (m – n). Note that, r << m in general.

0 1 2 3

1

2

0 0 0 0 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 1 0 1 0 1 0

0 0 0 0 0 0

p

q

r

s

tM M M M

q

q

r

t

     
     
     
     
     
     
        
     
     
     
     
     
     
     

1

0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

10

Definition 3.4: (initial vector) Let P be a normal program with BP = {p1,…,pk}, and

P
+
 its positive form with BP+ = {p1,…,pk, 1nq 

,…
mq } where{qn+1,…,qm}  {p1,…,pk}.

Then the set of initial vectors of a positive form P
+
 is defined as follows:

 Let v1  k
 be a vector representing facts in P where rowj(v1) = pj.

 Consider A  r – k
 where A = {(1 0 … 0)

T
, (1 1 … 0)

T
, …., (1 1 … 1)

T
 } with

card(A) = 2
r

–

k
, and B = {v  A |  i (1 i  r – k) s.t. v[i] = 1 and  j (1 j  k) s.t.

v1[j] = 1 and rowj(v1) = p iff rowi(v) = p where v1 represents facts in P}. Put v2
r-k

s.t. v2 A\B. The set of initial vectors V of P
+
 is:

1

2

2

| , \ and card()r
v

V v v v A B h V
v

   
      
   

Intuitively, the set of initial vectors V represents facts in P together with possible

negative literals in P’. By Theorem 2.3, if v  r
 is a vector representing an interpre-

tation I of P
+
, and u = D(NP’ v)  m

, then u is a vector representing an interpretation

J of P’ and J  BP+ = TP+(I).

 For this reason, in Step 3 of Algorithm 3.1, we can replace the computation of a

fixpoint FP(MP’Mo) by the computation of a fixpoint FP(NP’uo[1…r]) with the initial

vector uoV. In the column reduction method, the complexity of computing

NP’uo[1…n’] is O(m  r) and computing D(.) is O(m  r). Since the number of times

for iterating NP’uo[1… r] is at most (m + 1) times and |V | = h, the complexity of step 3

of this algorithm is O((m + 1)(mr + mr)h) = O(m
2
rh). Comparing the com-

plexity O(m
3
h) of Step 3 of Algorithm 3.1, the column reduction reduces the com-

plexity to O(m
2
rh) by r << m in general.

Example 3.2: Consider a normal program P and a d-program P’ of Example 3.1.

 We have the submatrix NP’  97
representing P’:

 v1  5
 represents the facts in P, v1 = (0 0 0 1 1)

T

 A = {(0 0)
T
, (1 0)

T
, (0 1)

T
, (1 1)

T
} with

card(A) = 2
2
 = 4

 B = {(0 1)
T
, (1 1)

T
}

 v2  A \ B = {(0 0)
T
, (1 0)

T
}

 V = {(0 0 0 1 1 0 0)
T
, (0 0 0 1 1 1 0)

T
}

 with h = card(V) = 2

Compute a fixpoint FP(NP’ uo) (uo  V):

 (i) For uo = (0 0 0 1 1 0 0)
T
:

 u1 = D(NP’uo) = (0 1 0 1 1 0 0 0 1)
T

 u2 = D(NP’u1[1…7]) = (0 1 0 1 1 0 0 0 1)
T

= u1.

 row3(u1) = r and row6(u1) = r then u1[3] + u1[6] = 0, so u1 does not represent a

stable model of P.

(ii) For uo = (0 0 0 1 1 1 0)
T
: u1 = D(NP’uo) = (0 1 0 1 1 1 0 0 1)

T
, u2 =

D(NP’u1[1…7]) = (1 1 0 1 1 1 0 0 1)
T
, u3 = D(NP’u2[1…7]) = (1 1 0 1 1 1 0 0 1)

T
= u2.

 row3(u2) = r and row6(u2) = r then u2[3] + u2[6] = 1

 row5(u2) = t and row7(u2) = t then u2[5] + u2[7] = 1

 u2 represents the set {p, q, s, t, r , q2} and {p, q, s, t, r }  BP = {p, q, s, t} is the

stable model of P.

'

1

2

0 1/ 3 0 1/ 3 0 1/ 3 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 ½ 0 0 0 0 ½

0 0 0 1 0 0 0

P

p q r s t r t

p

q

r

s

tN

r

t

q

q

 
 
 
 
 
 
 
 
 
 
 
 
 
 

11

4 Experimental Results

In this section, we compare runtime for finding the least model of a definite program

and the set of stable models of a normal program by the following three algorithms:

(i) computing the fixpoint of the TP-operator; (ii) matrix computation; (iii) column

reduction computation. The testing is run on a GPU that has configuration as follows:

 Operating system: Linux Ubuntu 16.04 LTS 64bit.

 CPU: Intel® Core™ i7-6800K <3.4 GHz /14nm / Cores = 6 / Threads = 12 /

Cache = 15 MB>, Memory 32GB, DDR-2400

 GPU: GeForce GTX1070TI GDDR5 8GB

 Implementation language: Maple 2017, 64 bit [14].

GPU speeds up the computing and further speed-up would be gained by using

CUDA package in Maple.

4.1 Testing on definite programs

In this testing, given the size n = |BP| of the Herband base BP and the number m =

|P| of rules in P, rules are created randomly as in Table 1:

Table 1. Proportion of rules in P based on the number of propositional variables in their bodies

Number of ele-

ments in body
0 1 2 3 4 5 6 7 8

Number of rules

(proportion)

x,

where

x < n/3
4% 4% 10% 40% 35% 4% 2% ~1%

 Based on (n, m), generate a definite program P randomly. After that, we transform

P to a d-program P’ = Q  D where Q is an SD-program and D is a set of d-rules.

The program P’ will have n’ variables and m’ rules. Table 2 shows the results of test-

ing Algorithm 2.1 on P’ and computation by the TP-operator [9] for constructing the

least model of a program P. There are two important steps in Algorithm 2.1: Step 2

for creating a program matrix MP’ to represent a definite program P’, and step 3 for

computing the fixpoint. We compare three cases—(Case 1): Use the TP-operator on a

program P; (Case 2): naive computation on a program P’ by Algorithm 2.1; (Case 3):

computation by column reduction on a program P’ as Section 2.5.

Table 2. Results of testing on definite programs

n m

TP -

operator

(sec.)

n’ m’

Matrix

Fixpoint / All

(sec.)

Column reduction

Fixpoint/All

(sec.)

20 200 0.066 173 173 0.277 / 0.288 0.009 / 0.018

20 400 0.07 396 396 0.225 / 0.238 0.019 / 0.034

20 8,000 0.628 6,047 6,047 6.491 / 6.709 0.103 / 0.251

50 2,500 0.499 2,430 2,430 3.797 / 3.925 0.114 / 0.205

50 12,500 1.952 8,858 8,858 8.709 / 9.023 0.377 / 0.812

100 5,000 2.056 4,707 4,707 13.23 / 13.326 0.661 / 0.978

100 10,000 1.935 7,000 7,000 11.166 / 11.479 0.79 / 1.27

200 400 0.037 451 428 0.059 / 0.073 0.012 / 0.06

200 20,000 5.846 16,052 16,052 25.093 / 25.945 3.973 / 6.73

―All‖ means the time for creating a program matrix and computing the fixpoint.

12

Fig. 3. Results of testing about fixpoint computing on definite programs

Note that in some cases the number of rules in P’ is smaller than those of P (m’ <

m). This is because we eliminate every rule r in P’ such that head(r) = p and the fact

p is in P. Comparison of fixpoint computation is shown in Fig. 3. We can observe

the following facts: The naive method is slower than the TP-operator while the column

reduction technique significantly reduces runtime and is fastest among three algo-

rithms. The runtime efficiency of column reduction comes from the fact n << n’.

4.2 Testing on normal programs

In this testing, given the size n = |BP| of the Herband base BP and the number m =

|P| of rules in P, rules are created randomly as before (Table 1).

 Based on (n, m), generate a normal program P randomly. After that, we transform

P to a d-program P’ with k negative literals in a program P.

Table 3 is the results of testing Algorithm 3.1 on P' and computation by the TP-

operator (using Theorem 3.1) on P [12] for computing the stable models of a program

P. There are three important steps in Algorithm 3.1: Step 2 for creating a program

matrix for representing a d-program P’, Step 3 for computing the fixpoint and Step 4

for finding the set of vectors which represent stable models. We compare three cas-

es—(Case 1): Computation by the TP-operator (using Theorem 3.1) for computing

stable models of on P; (Case 2): the naive computation on a program P’ by Algorithm

3.1; (Case 3): the column reduction computation on a program P’ as presented in

Section 3.2 of Step 3. Comparison of fixpoint computation is shown in Fig. 4.

Table 3. Results of testing on normal programs

n m k

TP-

operator

(sec.)

Matrix

Fixpoint / All

(sec.)

Column reduction

Fixpoint/All

(sec.)

20 400 8 2.432 19.603 / 19.714 3.338 / 3.362

20 8,000 6 5.531 12.368 / 12.696 4.502 / 4.603

50 100 8 0.221 1.155 / 1.224 0.278 / 0.291

50 2,500 8 36.574 37.863 / 38.463 29.582 / 29.786

50 12,500 7 49.485 30.819 / 32.00 48.883 / 49.32

100 5,000 8 103.586 31.68 / 32.338 69.579 / 69.851

100 10,000 8 264.547 84.899 / 87.142 192.981 / 194.003

200 400 6 0.429 1.928 / 2.021 1.222 / 1.342

200 13,300 6 185.778 48.185 / 49.185 124.119 / 126.255

―All‖ means the time for creating a program matrix and computing the fixpoint.

13

Fig. 4. Results of testing about fixpoint computing on normal programs

By the table we can observe the following fact: matrix computation is effective

when the size of n is large (n =100 or 200). Computation by column reduction is fast-

er than computation by the TP-operator, while it is slower than the naive method in

case of n = 100 or 200. To see the effect of computation by column reduction, we

would need further environment that realizes efficient computation of matrices.

5 Conclusion

In this paper, we proposed methods for representing logic programming based on

linear algebra. We develop new algorithms for computing logic programming seman-

tics in linear algebra and the improvement methods for speeding-up those algorithms.

The results of testing show that the computation by column reduction is fastest in

computing least models, while the naive matrix computation on a d-program is often

better than column reduction in computing stable models. It is known that the least

model of a definite program is computed in O(N) [15] where N is the size (number of

literals) of a program. Since the column reduction computation takes O(m
2
×n) time, it

would be effective when m
2
×n < N, i.e., the size of a program is large with a relatively

small number of atoms. For computation of stable models of a normal program, alt-

hough the size of the program matrix and the initial matrix are large, they have many

zero elements. We can improve the method for representing matrices in sparse forms

which also brings storage advantages with a good matrix library. Introducing partial

evaluation [18] would also help to reduce runtime. We need further optimization and

comparison with existing answer set solvers such as clasp [16], DLV [17].

The performance of our linear algebraic implementation heavily depends on the

manipulation of matrices. We have used Maple for implementation, but our methods

can be realized by other computer languages and architectures. It is now expected that

more powerful platforms are developed for linear algebraic computation in the near

future. Our methods would have the merits when such advanced technologies become

available. Yet, linear algebraic computation for logic programming has just started, so

there will be a lot of rooms for improvement and optimization.

14

Acknowledgment

This work was supported by JSPS KAKENHI Grant Numbers JP17H00763 and

JP18H03288.

References

1. Saraswat, V.: Reasoning 2.0 or machine learning and logic–the beginnings of a new com-

puter science. Data Science Day, Kista Sweden (2016)

2. Sato, T.: A linear algebraic approach to Datalog evaluation. Theory and Practice of Logic

Programming 17(3), 244–265 (2017)

3. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning

and inference in knowledge bases, In: In: Third Int. Conf. Learning Representations (ICLR

2015), San Diego, USA (2015)

4. Grefenstette, E.: Towards a Formal Distributional Semantics: Simulating Logical Calculi

with Tensors, In: Proceedings of Second Joint Conference on Lexical and Computational

Semantics (*SEM), Vol. 1, pp. 1–10, Atlanta, USA (2013).

5. Coecke, B., Sadrzadeh, M., Clarky, S.: Mathematical Foundations for a Compositional

Distributional Model of Meaning, Linguistic Analysis, 36, pp. 345–384 (2011)

6. Serafini, L., Garcez, A.: Learning and Reasoning with Logic Tensor Networks, In: 15th Int.

Conf. of the Italian Association for Artificial Intelligence (AI*IA 2017), LNAI 10037, pp.

334-348, Springer, Genoa, Italy (2016)

7. Serafini, L., Donadello, I., Garcez, A.: Learning and Reasoning with Logic Tensor Net-

works: Theory and application to semantic image interpretation, In: Proc. of 32nd ACM

SIGAPP Symposium On Applied Computing (SAC 2017), pp. 125-130, Marrakech, Mo-

rocco (2017)

8. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs, In:

10th International conference on Knowledge Science, Engineering and Management

(KSEM 2017), LNAI 10412, pp.530-533, Springer, Melbourne, Australia (2017).

9. van Emden, M. H., Kowalski, R. A.: The semantics of predicate logic as a programming

language. Journal of the ACM 23(4), 733–742 (1976).

10. Kolda, T., Bader, B.: Tensor Decompositions and Applications, SIAM Review 51(3), 455-

500 (2009).

11. Lin, F.: From satisfiability to linear algebra. Invited talk, 26th Australian Joint Conference

on Artificial Intelligence (2013)

12. J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, T. Przymusinski: Dynamic updates

of non-monotonic knowledge bases, Journal of Logic Programming 45(1-3), 43-70 (2000).

13. Fernandez, J. A., Lobo, J., Minker, J., Subrahmanian, V. S.: Disjunctive LP + integrity

constraints = stable model semantics, AMAI 8(3-4), 449–474 (1993).

14. Maple: https://www.maplesoft.com/support/install/maple2017_install.html

15. Dowling, W. F., Gallier, J. H.: Linear-time algorithms for testing the satisfiability of prop-

ositional Horn formulae, Journal of Logic Programming 1(3), 267-284 (1984).

16. clasp: https://potassco.org/clasp/

17. DLV system: http://www.dlvsystem.com/dlv/

18. Sakama, C., Nguyen, H.D., Sato, T., Inoue, K.: Partial Evaluation of Logic Programs in

Vector Space, 11th Workshop on Answer Set Programming and Other Computing Para-

digms (ASPOCP 2018), Oxford, UK, July 2018.

https://www.maplesoft.com/support/install/maple2017_install.html
http://www.dlvsystem.com/dlv/

