Computing Logic Programming Semantics in Linear Algebra

Hien D. Nguyen ${ }^{1}$, Chiaki Sakama ${ }^{2}$, Taisuke Sato ${ }^{3}$, Katsumi Inoue ${ }^{4}$
${ }^{1}$ University of Informatics Technology, VNU-HCM, Vietnam
${ }^{2}$ Wakayama University, Japan
${ }^{3}$ AI Research Center AIST, Japan
${ }^{4}$ National Institute of Informatics (NII), Japan
hiennd@uit.edu.vn, sakama@sys.wakayama-u.ac.jp, satou.taisuke@aist.go.jp, inoue@nii.ac.jp

Abstract

Logic programming is a logic-based programming paradigm, and provides languages for declarative problem solving and symbolic reasoning. In this paper, we develop new algorithms for computing logic programming semantics in linear algebra. We first introduce an algorithm for computing the least model of a definite logic program using matrices. Next, we introduce an algorithm for computing stable models of a normal logic program. We also develop optimization techniques for speeding-up those algorithms. Finally, the complexity of them is analyzed and tested in practice.

Keywords. logic programming, linear algebra, definite program, normal program.

1 Introduction

Logic programming provides languages for declarative problem solving and symbolic reasoning, yet symbolic computation often suffers from the difficulty to make it scalable. On the other hand, linear algebra is the core of many applications of scientific computation and has been equipped with several scalable techniques. However, linear algebra has not been used for knowledge representation, since it only handles numbers and does not manipulate symbols. Then, it has recently been recognized that the integration of linear algebraic computation and symbolic computation is one of the promising and challenging topics in AI [1]. Such integration has potential to make symbolic reasoning scalable to real-life datasets. There are some studies for realizing logical reasoning using linear algebra.

In [2], Sato translates the rules of a Datalog program into a set of matrix equations. Based on this, the least model of a Datalog program is computed by solving the matrix equations. Yang, et al. [3] consider learning representations of entities and relations in knowledge bases using the neural-embedding approach. This method is applied for mining Horn clauses from relational facts represented in a vector space. Real Logic [6] is a framework where learning from numerical data and logical reasoning are integrated using first order logic syntax. Logic tensor networks (LTN) are one of the modern methods for reasoning and learning from the concrete data as real logic. This method has been applied to semantic image interpretation [7].

Logic programming can be represented based on multilinear algebra. In [4, 5], the authors used multilinear maps and tensors to represent predicates, relations, and logical atoms of a predicate calculus. Lin [11] introduces linear algebraic computation of

SAT for clausal theories. Besides that, Horn, disjunctive and normal logic programs are also represented by algebraic manipulation of tensors in [8]. The study builds a new theory of logic programming, while implementation and evaluation are left open.

In this paper, we first refine the framework of [8] and present algorithms for finding the least model [9] of a definite program and stable models [12] of a normal program. Some optimization techniques for speeding-up these algorithms are studied. These methods are developed based on the structure of matrices representing logic programs. The complexity of proposed algorithms is evaluated and tested in practice.

The next section presents an algorithm for computing the least model of a definite program and an improved method for this algorithm. Section 3 presents an algorithm for finding stable models of a normal program and its improvement. Section 4 shows experimental results by testing in practice. The last section concludes the paper. Due to space limit, we omit some proofs of propositions and theorems.

2 Definite Programs

We consider a language \mathfrak{L} that contains a finite set of propositional variables and the logical connectives \neg, \wedge, \vee and \leftarrow. Given a logic program P, the set of all propositional variables appearing in P is the Herband base of P, denoted B_{P}.

2.1 Preliminaries

A definite program is a finite set of rules of the form:

$$
\begin{equation*}
h \leftarrow b_{1} \wedge \ldots \wedge b_{m} \quad(m \geq 0) \tag{1}
\end{equation*}
$$

where h and b_{i} are propositional variables. A rule r is called d-rule iff r has the form:

$$
\begin{equation*}
h \leftarrow b_{1} \vee \ldots \vee b_{m} \quad(m \geq 0) \tag{2}
\end{equation*}
$$

where h, b_{i} are propositional variables. A d-program is a finite set of rules that are either (1) or (2). Note that the rule (2) is a shorthand of m rules: $h \leftarrow b_{1}, \ldots, h \leftarrow b_{m}$, so a d-program is also a definite program. Given a rule r as (1) or (2), define head $(r)=h$ and $\operatorname{body}(r)=\left\{b_{1}, \ldots, b_{m}\right\}$. In particular, the rule is a fact if $\operatorname{body}(r)=\varnothing$.

A set $I \subseteq B_{P}$ is an interpretation of P. An interpretation I is a model of a d-program P if $\left\{b_{1}, \ldots, b_{m}\right\} \subseteq I$ implies $h \in I$ for every rule (1) in P, and $\left\{b_{1}, \ldots, b_{m}\right\} \cap I \neq \varnothing$ implies $h \in I$ for every rule (2) in P. A model I is the least model of P if $I \subseteq J$ for any model J of P. The T_{P} - operator is a mapping $T_{P}: 2^{B_{P}} \rightarrow 2^{B_{P}}$ which is defined as:

$$
\begin{aligned}
& T_{P}(I)=\left\{h \mid h \leftarrow b_{1} \wedge \ldots \wedge b_{m} \in P \text { and }\left\{b_{1}, \ldots, b_{m}\right\} \subseteq I\right\} \cup \\
& \\
& \left\{h \mid h \leftarrow b_{1} \vee \ldots \vee b_{n} \in P \text { and }\left\{b_{1}, \ldots, b_{n}\right\} \cap I \neq \varnothing\right\} .
\end{aligned}
$$

The powers of T_{P} are defined as: $T_{P}^{k+1}(I)=T_{P}\left(T_{P}^{k}(I)\right)$ and $T_{P}^{0}(I)=I \quad(k \geq 0)$.
Given $I \subseteq B_{P}$, there is a fixpoint $T_{P}^{n+1}(I)=T_{P}^{n}(I) \quad(n \geq 0)$. For a definite program
P, the fixpoint $T_{P}^{n}(\varnothing)$ coincides with the least model of $P[9]$.

2.2 SD-program

We first consider a subclass of definite programs, called SD-programs.
Definition 2.1: (SD-program) A definite program P is called singly defined (or SDprogram) if $\operatorname{head}\left(r_{1}\right) \neq \operatorname{head}\left(r_{2}\right)$ for any two rules r_{1} and r_{2} in $P\left(r_{1} \neq r_{2}\right)$.

Definition 2.2 [8]: (interpretation vector) Let P be a definite program and $B_{P}=$ $\left\{p_{1}, \ldots, p_{n}\right\}$. Then an interpretation I of P is represented by a vector $v=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}}$ where each element a_{i} represents the truth value of the proposition p_{i} such that $a_{i}=1$ if $p_{i} \in I(1 \leq i \leq n)$; otherwise, $a_{i}=0$. We write $\operatorname{row}_{i}(v)=p_{i}$. Given $v=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}} \in$ $\mathbb{R}^{n}, v[i]$ is the $i^{\text {th }}$ element of $v(1 \leq i \leq n)$ and $v[1 \ldots k]$ is a vector $\left(a_{l}, \ldots, a_{k}\right)^{\mathrm{T}} \in \mathbb{R}^{k}(k \leq n)$.
Definition 2.3: (matrix representation of a SD-program) ${ }^{1}$ Let P be an SD-program and $B_{P}=\left\{p_{1}, \ldots, p_{n}\right\}$. Then P is represented by a matrix $M_{P} \in \mathbb{R}^{n \times n}$ such that for each element $a_{i j}(1 \leq i, j \leq n)$ in $M_{P \text { : }}$

1. $a_{i j_{k}}=\frac{1}{m}\left(1 \leq k \leq m ; 1 \leq i, j_{k} \leq n\right)$ if $p_{i} \leftarrow p_{j_{1}} \wedge \ldots \wedge p_{j_{m}}$ is in P.
2. $a_{i i}=1$ if $p_{i} \leftarrow$ is in P.
3. $a_{i j}=0$, otherwise.
M_{P} is called a program matrix. We write $\operatorname{row}_{i}\left(M_{P}\right)=p_{i}$ and $\operatorname{col}_{j}\left(M_{P}\right)=p_{j}(1 \leq i, j \leq n)$.
By the condition of an SD-program, there is at most one rule $r \in P$ such that $\operatorname{head}(r)=p$ for each $p \in B_{P}$. Then no two rules are encoded in a single row of M_{P}.
Definition 2.4: (initial vector) Let P be a definite program and $B_{P}=\left\{p_{1}, \ldots, p_{n}\right\}$. Then the initial vector is an interpretation $v_{o}=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}}$ such that $a_{i}=1$ if $\operatorname{row}_{i}\left(v_{o}\right)=p_{i}$ and a fact $p_{i} \leftarrow$ is in $P(1 \leq i \leq n)$; otherwise, $a_{i}=0$.
Definition 2.5 [8]: (thresholding function) Given a vector $v=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$, define $\theta(v)=\left(a_{1}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right)^{\mathrm{T}}$ where $a_{i}{ }^{\prime}=1(1 \leq i \leq n)$ if $a_{i} \geq 1$; otherwise, $a_{i}{ }^{\prime}=0$. We call it the θ-thresholding function of v.

Given a program matrix $M_{P} \in \mathbb{R}^{n \times n}$ and an initial vector $v_{o} \in \mathbb{R}^{n}$, define:

$$
v_{k+1}=\theta\left(M_{P} v_{k}\right) \quad(k \geq 0)
$$

It holds that $v_{k+1}=v_{k}$ for some $k \geq 0$. When $v_{k+1}=v_{k}$, we write: $v_{k}=F P\left(M_{P} v_{o}\right)$.
Theorem 2.1: Let P be an SD-program and $M_{P} \in \mathbb{R}^{n \times n}$ its program matrix. Then $m \in$ \mathbb{R}^{n} is a vector representing the least model of P iff $m=F P\left(M_{P} v_{o}\right)$ where v_{o} is the initial vector of P.
Example 21. Consm $P=\left\{\begin{array}{llll}p & q & s\end{array}\right.$ Example 2.1: Consider the program $P=\{p \leftarrow q, q \leftarrow p \wedge r, r \leftarrow s$,
$s \leftarrow\}$ with $B_{P}=\{p, q, r, s\}$ then its program matrix $M_{P} \in \mathbb{R}^{4 \times 4}$ is the matrix (right). The initial vector of P is $v_{o}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)^{\mathrm{T}}$. Then, $v_{1}=\theta\left(M_{P} v_{0}\right)=\left(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right)^{\mathrm{T}}$ and $v_{2}=\theta\left(M_{P} v_{1}\right)=\left(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right)^{\mathrm{T}}=v_{1}$. Hence, the vector v_{1} represents the least model $\{r, s\}$ of P.
p
$\left(\begin{array}{cccc}0 & 1 & 0 & r \\ 1 / 2 & 0 & 1 / 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right) p$
q
r

Note that the fact $s \leftarrow$ in P is encoded as the rule $s \leftarrow s$ in M_{P}. By multiplying M_{P} and v_{0}, the $4^{\text {th }}$ element of v_{1} represents the truth of s after one-step of deduction.

The study [8] also introduces fixpoint computation of least models. Differently from the current study, [8] works on a program satisfying the MD-condition ${ }^{2}$ and sets the empty set as the initial vector for computing fixpoint. In this paper, we work on an

[^0]SD-program and start with the initial vector representing facts, and facts $p \leftarrow$ in P are encoded by the rule $p \leftarrow p$ rather than $p \leftarrow \mathrm{~T}$. This has the effect of reducing nonzero elements in matrices during fixpoint computation. [8] allows the existence of constraints " $\leftarrow q$ " in a program while the current study does not. Those constraints are handled as a rule " $p \leftarrow q, \neg p$ " in Section 3 .

2.3 Non-SD programs

When a definite program P contains two rules: $r_{1}: h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ and $r_{2}: h \leftarrow c_{1} \wedge$ $\ldots \wedge c_{n}, P$ is transformed to a d-program Q such that:

$$
Q=\left(P \backslash\left\{r_{1}, \widetilde{r_{2}}\right\}\right) \cup\left\{r_{1}^{\prime}, r_{2}^{\prime}, d_{1}\right\}
$$

where $r_{l}^{\prime}: h_{1} \leftarrow b_{1} \wedge \ldots \wedge b_{m}, r_{2}^{\prime}: h_{2} \leftarrow c_{1} \wedge \ldots \wedge c_{n}$ and $d_{l}: h \leftarrow h_{l} \vee h_{2}$.
Here, h_{1} and h_{2} are new propositional variables associated with r_{1} and r_{2}, respectively.
Generally, a non-SD program is transformed to a d-program as follows.
Definition 2.6: (transformation) Let P be a definite program and B_{P} its Herband base. For each $p \in B_{P}$, put $P_{p}=\{r \mid r \in P$ and head $(r)=p\}$ and $R_{p}=\left\{r \mid r \in P_{p}\right.$ and $\left.\left|P_{p}\right|=k>1\right\}$. Then define $S_{p}=\left\{p_{i} \leftarrow \operatorname{body}(r) \mid r \in R_{p}, i=1, \ldots, k\right\}$ and $D_{p}=\left\{p \leftarrow p_{1}\right.$ $\left.\vee \ldots \vee p_{k}\right\}$. Build a d-program:

$$
P^{\prime}=\underbrace{\left(P \backslash \bigcup_{p \in B_{p}} R_{p}\right) \cup \bigcup_{p \in B_{p}} S_{p}}_{Q} \cup \underbrace{\bigcup_{p \in B_{p}} D_{p}}_{D}
$$

We have $P^{\prime}=Q \cup D$ where Q is an SD-program and D is a set of d-rules.
It is easily shown that a d-program P^{\prime} has the least model M^{\prime} such that $M^{\prime} \cap B_{P}=M$ where M is the least model of P.

Definition 2.7: (matrix representation of a d-program) Let P ' be a d-program such that $P^{\prime}=Q \cup D$ where Q is an SD-program and D is a set of d-rules, and $B_{P^{\prime}}=\left\{p_{1}, \ldots\right.$, $\left.p_{m}\right\}$ the Herband base of P^{\prime}. Then P^{\prime} is represented by a matrix $M_{P}, \in \mathbb{R}^{m \times m}$ such that for each element $a_{i j}(1 \leq i, j \leq m)$ in $M_{P^{\prime}}$:

1. $a_{i j_{k}}=1\left(1 \leq k \leq l ; 1 \leq i, j_{k} \leq m\right)$ if $p_{i} \leftarrow p_{j_{1}} \vee \ldots \vee p_{j_{i}}$ is in D.
2. Otherwise, every rule in Q is encoded as in Def. 2.3.

Theorem 2.2: Let P^{\prime} be a d-program and $M_{P^{\prime}} \in \mathbb{R}^{m \times m}$ its program matrix. Then $u \in$ \mathbb{R}^{m} is a vector representing the least model of P^{\prime} iff $u=F P\left(M_{P}, v_{o}\right)$ where v_{o} is the initial vector of P^{\prime}.

2.4 Algorithms for finding least models

Based on Theorem 2.2, we develop an algorithm for computing the least model of a definite program P (Fig. 1)
Example 2.2: Consider $P=\{p \leftarrow q, p \leftarrow r \wedge s, r \leftarrow s, s \leftarrow\}$ and $B_{P}=\{p, q, r, s\}$. Then P is transformed to a d-program $P^{\prime}=Q \cup D$ with $B_{P^{\prime}}=\{p, q, r, s, t, u\}$:

$$
\begin{aligned}
& Q=\{t \leftarrow q, u \leftarrow r \wedge s, \quad r \leftarrow s, \quad s \leftarrow\} . \\
& D=\{p \leftarrow t \vee u\} .
\end{aligned}
$$

```
Algorithm 2.1:
    Input: a definite program \(P\), and its Herband base \(B_{P}=\left\{p_{1}, \ldots, p_{n}\right\}\).
    Output: a vector \(u\) representing the least model of \(P\).
Step 1: Transform a definite program \(P\) to a \(\quad\) Step 3: Compute the least model of \(P^{\prime}\)
d-program \(P^{\prime}=Q \cup D\) with \(B_{P^{\prime}}=\left\{p_{1}, \ldots, p_{n}\right.\)
\(\left.p_{n+1}, \ldots, p_{m}\right\}\), where \(Q\) is an SD-program and \(D\)
is a set of d-rules.
Step 2:
- Create the matrix \(M_{P^{\prime}}=\left(a_{i j}\right)_{1 \leq i, j \leq m}\) repre-
senting a d-program \(P^{\prime}\).
- Create the initial vector \(v_{o}=\left(v_{l}, \ldots v_{m}\right)\) of \(P^{\prime}\).
```

Step 3: Compute the least model of P^{\prime}
$v=v_{0}$
$u:=\theta\left(M_{P} \cdot v\right)$
while $u \neq v$ do
$v:=u$;
$u:=\theta\left(M_{P} \cdot v\right)$
end do; \#while
return $u[1 \ldots n]$;

Fig. 1. Algorithm 2.1
$\begin{array}{llllll}p & q & r & s & t & u\end{array}$
We have the matrix $M_{P^{\prime}} \in \mathbb{R}^{6 \times 6}$ representing P^{\prime} (right). Let $v_{0}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array} 00\right)^{\mathrm{T}}$ be a vector representing facts in P^{\prime}. Then, $v_{1}=\theta\left(M_{P}, v_{0}\right)=\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)^{\mathrm{T}}, v_{2}=\theta\left(M_{P}, v_{1}\right)=\left(\begin{array}{ll}0 & 0\end{array}\right.$ $101)^{\mathrm{T}}, v_{3}=\theta\left(M_{P}, v_{2}\right)=\left(\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}\right)^{\mathrm{T}}, v_{4}=\theta\left(M_{P}, v_{3}\right)=(1$ $01101)^{\mathrm{T}}=v_{3}$. Hence, v_{3} is a vector representing the least model of P^{\prime}, and $v_{3}[1 \ldots 4]$ is a vector representing the least model of P, that represents $\{p, r, s\}$.

$$
M_{P^{\prime}}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 & 0 & 0
\end{array}\right) \begin{aligned}
& p \\
& q \\
& r \\
& s \\
& t
\end{aligned}
$$

In Algorithm 2.1, the complexity of computing M_{P}, v is $\mathrm{O}\left(m^{2}\right)$ and computing $\theta($.$) is$ $\mathrm{O}(m)$. The number of times for iterating M_{P}, v is at most $(m+1)$ times. So the complexity of Step 3 is $\mathbf{O}\left((\boldsymbol{m}+\mathbf{1}) \times\left(\boldsymbol{m}+\boldsymbol{m}^{2}\right)\right)=\mathbf{O}\left(\boldsymbol{m}^{\mathbf{3}}\right)$ in the worst case. Comparing the current study with the previous one [8], the current encoding has an advantage of increasing zero elements in matrices and reducing the number of required iterations in fixpoint computation.

2.5 Column reduction

This section introduces a method for decreasing the complexity of computing $u=$ $\theta\left(M_{P}, v\right)$.
Definition 2.8: (submatrix representation of a d-program) Let P^{\prime} be a d-program such that $P^{\prime}=Q \cup D$ where Q is an SD-program and D is a set of d-rules, and $B_{P^{\prime}}=$ $\left\{p_{1}, \ldots, p_{m}\right\}$ the Herband base of P^{\prime}. Then P^{\prime} is represented by a matrix $N_{P^{\prime}} \in \mathbb{R}^{m \times n}$ such that each element $b_{i j}(1 \leq i \leq m, 1 \leq j \leq n)$ in N_{P}, is equivalent to the corresponding element $a_{i j}(1 \leq i, j \leq m)$ in M_{P}, of Def.2.7. N_{P}, is called a submatrix of P^{\prime}.

Note that the size of $M_{P^{\prime}} \in \mathbb{R}^{m \times m}$ of Def.2.7 is reduced to $N_{P}, \in \mathbb{R}^{m \times n}$ in Def.2.8 by $n \leq m$.
Definition 2.9: $\left(\theta_{D}\right.$-thresholding) Given a vector $v=\left(a_{1}, \ldots, a_{m}\right)^{\mathrm{T}}$, define a vector $w=$ $\theta_{D}(v)=\left(w_{1}, \ldots, w_{m}\right)^{\mathrm{T}}$ such that (i) $w_{i}=1(1 \leq i \leq m)$ if $a_{i} \geq 1$, (ii) $w_{i}=1(1 \leq i \leq n)$ if $\exists j$ $w_{j}=1(n+1 \leq j \leq m)$ and there is a d-rule $d \in D$ such that $\operatorname{head}(d)=p_{i} \operatorname{and}_{\operatorname{row}_{j}(w) \in}$ $\operatorname{body}(d)$, and (iii) otherwise, $w_{i}=0 . \theta_{D}(v)$ is called a $\theta_{D^{-}}$-thresholding of v.

Intuitively speaking, the additional condition of Def.2.9(ii) says "if an element in the body of a d-rule is 1 , then the element in the head of the d-rule is set to $1 " . \theta_{D}$ adds
this condition to θ, in return for reducing columns. By definition, it holds that $\theta_{D}(v)=$ $\theta_{D}(\theta(v))$.
$\theta_{D}(v)$ is computed by checking the value of a_{i} for $1 \leq i \leq m$ and checking all d-rules for $n+1 \leq j \leq m$. Since the number of d-rules is at most n, the complexity of computing $\theta_{D}($.$) is \mathrm{O}(m+(m-n) \times n)=\mathrm{O}(m \times n)$.
Theorem 2.3: Let P be a definite program with $B_{P}=\left\{p_{1}, \ldots, p_{n}\right\}$, and P^{\prime} a transformed d-program with $B_{P^{\prime}}=\left\{p_{1}, \ldots, p_{n}, p_{n+1}, \ldots, p_{m}\right\}$. Let $N_{P^{\prime}} \in \mathbb{R}^{m \times n}$ be a submatrix of P^{\prime}. Given a vector $v \in \mathbb{R}^{n}$ representing an interpretation I of P, let $u=\theta_{D}\left(N_{P}, v\right) \in \mathbb{R}^{m}$.
Then u is a vector representing an interpretation J of P^{\prime} such that $J \cap B_{P}=T_{P}(I)$. Proof:
Let $v=\left(v_{1}, \ldots, v_{n}\right)^{\mathrm{T}}$ then $N_{P}, v=\left(x_{1}, \ldots, x_{n}, \ldots, x_{m}\right)^{\mathrm{T}}$ with $x_{k}=a_{k 1} v_{1}+\ldots+a_{k n} v_{n}(1 \leq k \leq m)$. Suppose $w=\theta\left(N_{P}, v\right)=\left(w_{1}, \ldots, w_{m}\right)^{\mathrm{T}}$ and $u=\theta_{D}\left(N_{P}, v\right)=\theta_{D}(w)=\left(u_{1}, \ldots, u_{m}\right)^{\mathrm{T}}$.
(I) First, we prove $J \cap B_{P} \subseteq T_{P}(I)$.

Let $u_{k}=1(1 \leq k \leq n)$ and $p_{k}=\operatorname{row}_{k}(u)$. We show $p_{k} \in T_{P}(I)$.
(i) Assume $w_{k}=u_{k}=1$. By $w_{k}=1, x_{k}=a_{k 1} v_{1}+\ldots+a_{k n} v_{n} \geq 1$.

Let $\left\{b_{1}, \ldots, b_{r}\right\} \subseteq\left\{a_{k 1}, \ldots, a_{k n}\right\}$ such that $b_{i} \neq 0(1 \leq i \leq r)$. Then, $b_{i}=1 / r(1 \leq i \leq r)$ and $b_{1} v_{b 1}+\ldots+b_{r} v_{b r}=1$ imply $v_{b 1}=\ldots=v_{b r}=1$.

In this case, there is a rule: $p_{k} \leftarrow p_{b 1} \wedge \ldots \wedge p_{b r}$ in P such that $p_{b i}=\operatorname{col}_{i}\left(N_{P}\right)$ for $b_{i}=$ $a_{k i}(1 \leq i \leq r)$ and $\left\{p_{b 1}, \ldots, p_{b r}\right\} \subseteq I$. Hence, $p_{k} \in T_{P}(I)$ holds.
(ii) Next assume $u_{k} \neq w_{k}$, then $w_{k}=0$.

As $w_{k}=0$, by definition of $\theta_{D}(),. \exists j, n+1 \leq j \leq m$ such that $w_{j}=1$.
Also, $\exists d_{j} \in D$ such that $\operatorname{row}_{j}(w)=p_{j} \in \operatorname{body}\left(d_{j}\right)$ and $\operatorname{head}\left(d_{j}\right)=p_{k}$
where d_{j} has the form: $p_{k} \leftarrow p_{k 1} \vee \ldots \vee p_{k q}$ with $p_{j} \in\left\{p_{k 1}, \ldots, p_{k q}\right\} \subseteq B_{P} \backslash B_{P}$.
By $w_{j}=1(n+1 \leq j \leq m)$, it holds $x_{j}=a_{j 1} v_{1}+\ldots+a_{j n} v_{n} \geq 1$.
Let $\left\{b_{1}, \ldots, b_{r}\right\} \subseteq\left\{a_{j 1}, \ldots, a_{j n}\right\}$ such that $b_{i} \neq 0(1 \leq i \leq r)$. Then,
$b_{i}=1 / r(1 \leq i \leq r)$ and $b_{1} v_{b 1}+\ldots+b_{r} v_{b r}=1$ imply $v_{b 1}=\ldots=v_{b r}=1$.
In this case, there is a rule: $p_{j} \leftarrow p_{b 1} \wedge \ldots \wedge p_{b r}$ in Q such that $p_{b i}=\operatorname{col}_{j}\left(N_{P},\right)$ for $b_{i}=$ $a_{k i}(1 \leq i \leq r)$ and $\left\{p_{b 1}, \ldots, p_{b r}\right\} \subseteq I$. By transforming a definite program P to a dprogram P^{\prime}, we have: $p_{k} \leftarrow p_{b 1} \wedge \ldots \wedge p_{b r} \in P$ and $\left\{p_{b l}, \ldots, p_{b r}\right\} \subseteq I$. Hence, $p_{k} \in T_{p}(I)$. In both (i) and (ii), it holds that $p_{k}=\operatorname{row}_{k}(u) \in T_{p}(I)$ if $u_{k}=1(1 \leq k \leq n)$.

Then $J \cap B_{P} \subseteq T_{P}(I)$.
(II) Next, we prove $T_{P}(I) \subseteq J \cap B_{\mathrm{P}}$. We show that $p_{k} \in T_{\mathrm{P}}(I)$ implies $u_{k}=1(1 \leq k \leq n)$.

Let $p_{k} \in T_{P}(I)$, then there is $p_{k} \leftarrow p_{k 1} \wedge \ldots \wedge p_{k r} \in P(1 \leq k \leq n)$ such that $\left\{p_{k 1}, \ldots, p_{k r}\right\} \subseteq I$, so $v_{k j}=1(1 \leq j \leq r)$.
(i) If $p_{k} \leftarrow p_{k 1} \wedge \ldots \wedge p_{k r} \in Q$ then $p_{k j} \in B_{P}$. Then $\exists i, p_{k j}=\operatorname{col}_{i}\left(N_{P},\right)(1 \leq i \leq n)$ and $a_{k j}=1 / r$. Hence, $x_{k}=a_{k 1} v_{1}+\ldots+a_{k n} v_{n}=1$ and $w_{k}=1=u_{k}$.
(ii) Else if $p_{k} \leftarrow p_{k 1} \wedge \ldots \wedge p_{k r} \notin Q$ then $\exists j, n+1 \leq j \leq m, p_{j} \leftarrow p_{j 1} \wedge \ldots \wedge p_{j r} \in Q$ and $p_{k} \leftarrow p_{k 1} \vee \ldots \vee p_{k q} \in D$ with $p_{j} \in\left\{p_{k 1}, \ldots, p_{k q}\right\}$.
By $p_{j} \leftarrow p_{j 1} \wedge \ldots \wedge p_{j r} \in Q$, it holds $p_{j i} \in B_{P \text {. }}$ Then $\exists l, p_{j i}=\operatorname{col}_{l}\left(N_{P},\right)(1 \leq l$ $\leq n)$ and $a_{j l}=1 / r$. Thus, $x_{j}=a_{j 1} v_{1}+\ldots+a_{j n} v_{n}=1$ and $w_{j}=1$.

Since $p_{k} \leftarrow p_{k 1} \vee \ldots \vee p_{k q} \in D$ and $\operatorname{row}_{j}(w)=p_{j} \in\left\{p_{k l}, \ldots, p_{k q}\right\}$, it becomes $u_{k}=1$ (by the definition of θ_{D} in Def. 2.9(ii)).
By (i) and (ii), $p_{k} \in T_{\mathrm{P}}(I)$ implies $u_{k}=1(1 \leq k \leq n)$, thereby $T_{\mathrm{P}}(I) \subseteq J \cap B_{P}$ Hence: $J \cap B_{\mathrm{P}}=T_{\mathrm{P}}(I)$.

Given a matrix $N_{P}, \in \mathbb{R}^{m \times n}$ and the initial vector v_{0} of P^{\prime}, define $v_{k+1}=\theta_{D}\left(N_{P}\right.$, $\left.v_{k}[1 \ldots n]\right)(k \geq 0)$. Then it holds that $v_{k+1}=v_{k}$ for some $k \geq 1$. When $v_{k+1}=v_{k}$, we write $v_{k}=F P\left(N_{P}, v_{0}[1 \ldots n]\right)$. It shows that $F P\left(N_{P}, v_{0}[1 \ldots n]\right)$ represents the least model of P.

Generally, given a d-program P^{\prime}, the value k of $v_{k}=F P\left(N_{P}, v_{0}[1 \ldots n]\right)$ is not greater than the value h of $v_{h}=F P\left(M_{P} v_{o}\right)$ in Section 2.2.

Example 2.3: For the d-program P^{\prime} of Example 2.2, we have the submatrix $N_{P^{\prime}} \in \mathbb{R}^{6 \times 4}$ representing P^{\prime} (right). Given the initial vector $v_{0}=\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0\end{array}\right)^{\mathrm{T}}$ of P^{\prime}, it becomes $v_{1}=$ $\theta_{D}\left(N_{P}, v_{0}[1 \ldots 4]\right)=\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}\right)^{\mathrm{T}}, v_{2}=\theta_{D}\left(N_{P}, v_{1}[1 \ldots 4]\right)=\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right.$ $01)^{\mathrm{T}}, v_{3}=\theta_{D}\left(N_{P} \cdot v_{2}[1 \ldots 4]\right)=\left(\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array} 1\right)^{\mathrm{T}}=v_{2}$

Then ν_{2} is a vector representing the least model of P^{\prime}, and $v_{2}[1 \ldots 4]$ is a vector representing the least model $\{p, r, s\}$ of P.
$N_{P^{\prime}}=\left(\begin{array}{cccc}p & q & r & s \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) p$ Note that the first element of $v_{i}(i=2,3)$ becomes 1 by Def. 2.9(ii).

By Theorem 2.3, we can replace the computation $u=\theta\left(M_{P}, v\right)$ in Step 3 of Algorithm 2.1 by $u=\theta_{D}\left(N_{P} v[1 \ldots n]\right)$. In the column reduction method, the complexity of computing $N_{P} v[1 \ldots n]$ is $\mathrm{O}(m \times n)$ and computing $\theta_{D}($.$) is \mathrm{O}(m \times n)$. The number of times for iterating N_{P}, v is at most $(m+1)$ times. So the complexity of computing $u=$ $\theta_{D}\left(N_{P}, v[1 \ldots n]\right)$ is $\mathrm{O}((m+1) \times(m \times n+m \times n))=\mathbf{O}\left(\boldsymbol{m}^{2} \times \boldsymbol{n}\right)$. Comparing the complexity $\mathrm{O}\left(m^{3}\right)$ of Step 3 of Algorithm 2.1, the column reduction reduces the complexity to $\mathrm{O}\left(m^{2} \times n\right)$ as $n \ll m$ in general.

3 Normal Programs

In [8], normal programs are converted to disjunctive programs using the transformation by [13], and then encoded in matrices using third-order tensors. In this paper, we first transform normal programs to definite programs using the transformation in [12] and then encode them in matrices as in Section 2.

3.1 Computing stable models of a normal program

A normal program P is a finite set of rules of the form:

$$
\begin{equation*}
h \leftarrow b_{1} \wedge \ldots \wedge b_{k} \wedge \neg b_{k+1} \wedge \ldots \wedge \neg b_{m}(m \geq 0) \tag{3}
\end{equation*}
$$

where h and b_{j} are propositional variables. P is transformed to a definite program by rewriting the above rule as:

$$
\begin{equation*}
h \leftarrow b_{1} \wedge \ldots \wedge b_{k} \wedge \overline{b_{k+1}} \wedge \ldots \wedge \overline{b_{m}}(m \geq 0) \tag{4}
\end{equation*}
$$

where $\overline{b_{i}}$ is a new proposition associated with b_{i}. We call b_{i} a positive literal and $\overline{b_{j}}$ a negative literal.

Given a normal program P and an interpretation $I \subseteq B_{P}$, the transformed definite program is denoted by P^{+}, called a positive form. As Def. 2.6, we can transform P^{+}to a d-program P^{\prime}. Define $\bar{I}=\left\{\bar{p} \mid p \in B_{P} \backslash I\right\}$ and $I^{+}=I \cup \bar{I}$.
Theorem 3.1 [12]: Let P be a normal program. Then, I is a stable model of P iff I^{+}is the least model of $P^{+} \cup \bar{I}$.
Definition 3.1: (program matrix for a normal program) Let P be a normal program with $B_{P}=\left\{p_{1}, \ldots, p_{k}\right\}$, and P^{+}its positive form with $B_{P_{+}}=\left\{p_{1}, \ldots, p_{k}, \overline{q_{n+1}}, \ldots, \overline{q_{m}}\right\}$.

Also, let P^{\prime} be a d-program that is obtained from P^{+}with $B_{P^{\prime}}=\left\{p_{1}, \ldots, p_{k}, p_{k+1}, \ldots, p_{n}\right.$, $\left.\overline{q_{n+1}}, \ldots, \overline{q_{m}}\right\}$. We have $\left\{q_{n+1}, \ldots, q_{m}\right\} \subseteq\left\{p_{l}, \ldots, p_{k}\right\}$, and P^{\prime} has n positive literals and (m n) negative literals. Then P^{\prime} is represented by a matrix $M_{P}, \in \mathbb{R}^{m \times m}$ such that for each element $a_{i j}(1 \leq i, j \leq m)$ in $M_{P^{\prime}}$:

1. $a_{i i}=1$ for $n+1 \leq i \leq m$
2. $a_{i j}=0$ for $n+1 \leq i \leq m$ and $1 \leq j \leq m$ such that $i \neq j$
3. Otherwise, $a_{i j}(1 \leq i \leq n ; 1 \leq j \leq m)$ is encoded as in Def. 2.7.

By definition, negative literals are encoded in M_{P}, in the same manner as facts. Intuitively, $a_{i i}=1$ for \bar{q}_{i} represents the rule $\bar{q}_{i} \leftarrow \overline{q_{i}}$ that means a "guess" for \bar{q}_{i}.
Definition 3.2: (initial matrix) Let P be a normal program and $B_{P}=\left\{p_{l}, \ldots, p_{k}\right\}, P^{\prime}$ its transformed d-program (via. P^{+}) and $B_{P^{\prime}}=\left\{p_{1}, \ldots, p_{k}, p_{k+1}, \ldots, p_{n}, \overline{q_{n+1}}, \ldots, \overline{q_{m}}\right\}$. The initial matrix $M_{o} \in \mathbb{R}^{m \times h}\left(1 \leq h \leq 2^{m-n}\right)$ is defined as follows:

- Each row of M_{o} corresponds to each element of B_{P}, in a way that $\operatorname{row}_{i}\left(M_{o}\right)=p_{i}$ for $1 \leq i \leq n$ and $\operatorname{row}_{i}\left(M_{o}\right)=\bar{q}_{i}$ for $n+1 \leq i \leq m$.
- $a_{i j}=1(1 \leq i \leq n, 1 \leq j \leq h)$ iff a fact $p_{i} \leftarrow$ is in P; otherwise, $a_{i j}=0$.
- $a_{i j}=0(n+1 \leq i \leq m, 1 \leq j \leq h)$ iff a fact $q_{i} \leftarrow$ is in P; otherwise, there are two possibilities 0 and 1 for $a_{i j}$, so it is either 0 or 1 .

Each column of M_{o} corresponds to a potential stable model.
Let P be a normal program and P^{\prime} its transformed d-program. For the program matrix $M_{P^{\prime}} \in \mathbb{R}^{m \times m}$ and the initial matrix $M_{o} \in \mathbb{R}^{m \times h}$. Define: $M_{k+1}=\theta\left(M_{P} M_{k}\right)(k \geq 0)$.
It holds that $M_{k+1}=M_{k}$ for some $k \geq 0$. When $M_{k+1}=M_{k}$, we write $M_{k}=F P\left(M_{P} \cdot M_{o}\right)$.
Suppose $M_{k}=F P\left(M_{P} M_{o}\right)(k \geq 1)$. Let $u=\left(a_{1} \ldots a_{n}, a_{n+1} \ldots a_{m}\right)^{\mathrm{T}}$ be a column vector in M_{k} such that $a_{j}=1$ (resp. $\left.a_{j}=0\right)(n+1 \leq j \leq m)$ iff $a_{i}=0$ (resp. $\left.a_{i}=1\right)$ with i such that $1 \leq i \leq n, \operatorname{row}_{j}\left(M_{o}\right)=\overline{q_{j}}$ and $\operatorname{row}_{i}\left(M_{o}\right)=p_{i}=q_{j}$. Then we have the next result.
Theorem 3.2: u is a column vector representing the interpretation I of P^{\prime} iff $I \cap B_{P}$ is a stable model of P.

3.2 Algorithm for computing stable models

Based on Theorem 3.2, we have an algorithm for finding stable models of a normal program P (Fig. 2).
Example 3.1: Consider $P=\{p \leftarrow q \wedge \neg r \wedge s, q \leftarrow \neg t \wedge q, q \leftarrow s, r \leftarrow \neg t, s \leftarrow$, $t \leftarrow\}$ with $B_{P}=\{p, q, r, s, t\}$. First, P is transformed to a positive form P^{+}and a dprogram P^{\prime} as follows:

Algorithm 3.1:

Input: a normal program P and the Herband base $B_{P}=\left\{p_{1}, \ldots, p_{k}\right\}$
Output: A set of vectors representing stable models of P.

```
Step 1: Transform a normal program \(P\) to
d-program \(P^{\prime}\left(\right.\) via \(\left.P^{+}\right)\)with \(B_{P^{\prime}}=\left\{p_{1}, \ldots, p_{k}\right.\)
\(\left.p_{k+1}, \ldots, p_{n}, q_{n+1}, \ldots, q_{m}\right\}\)
Step 2:
- Create the matrix \(M_{P^{\prime}} \in \mathbb{R}^{m^{\times} m}\) represent-
ing a d-program \(P^{\prime}\).
- Create the initial matrix \(M_{o} \in \mathbb{R}^{m^{\times} h}\) of \(P^{\prime}\).
Step 3: Compute a fixpoint \(F P\left(M_{P} \cdot M_{o}\right)\)
    \(M:=M_{0}\)
    \(U:=\theta\left(M_{P} \cdot M\right)\)
    while \(U \neq M\) do
        \(M:=U\);
        \(U:=\theta\left(M_{P} \cdot M\right) ;\)
    end do;
Step 4: Find stable models of \(P\)
result:=\{ \};
for \(i\) from 1 to \(h\) do
    \(v:=\left(a_{1}, \ldots . a_{n}, a_{n+1}, \ldots, a_{m}\right)^{\mathrm{T}}\) is \(i^{\text {th }}\)-column of \(M\)
    for \(j\) from \(n+1\) to \(m\) do
        \(\overline{q_{j}}:=\operatorname{row}_{j}(M)\);
        for \(l\) from 1 to \(n\) do
            if \(\operatorname{row}_{l}(M)=q_{j}\) then
                if \(a_{l}+a_{j} \neq 1\) then break;
            end for; \#l
            if \(l \leq n\) then break;
    end for; \#j
    if \(j \leq m\) then break;
    else result \(:=\) result \(\cup\{v\}\);
end for;
return result;
```

Fig. 2. Algorithm 3.1

$M_{0}=$| p |
| :---: |
| q |
| r |
| s |
| |
| q_{1} |
| q_{2} |
| \bar{q} |
| |\(\left(\begin{array}{ll}0 \& 0

1 \& 1

1 \& 1

0 \& 0

0 \& 0

0 \& 1

0 \& 0\end{array}\right) \quad M_{1}=\left($$
\begin{array}{ll}0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 0\end{array}
$$\right) \quad M_{2}=\left($$
\begin{array}{ll}0 & 0 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 0\end{array}
$$\right) \quad M_{3}=\left($$
\begin{array}{ll}0 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 1 \\
0 & 0\end{array}
$$\right)\)

Then $M_{l}=\theta\left(M_{P} \cdot M_{o}\right), M_{2}=\theta\left(M_{P} \cdot M_{I}\right), M_{3}=\theta\left(M_{P} M_{2}\right) . M_{4}=\theta\left(M_{P} \cdot M_{3}\right)=M_{3}$ becomes the fixpoint. In this case, the column vector $u=\left(\begin{array}{ll}110110110\end{array}\right)^{\mathrm{T}}$ satisfies the condition $u[8]=1$ iff $u[3]=0$ where $\operatorname{row}_{8}(u)=\bar{r}$ and $\operatorname{row}_{3}(u)=r$. The vector u represents the set $\left\{p, q, s, t, q_{2}, \bar{r}\right\}$ and $\left\{p, q, s, t, q_{2}, \bar{r}\right\} \cap B_{P}=\{p, q, s, t\}$ is the stable model of P.

In Algorithm 3.1, the complexity of $M_{P} M$ is $\mathbf{O}\left(\boldsymbol{m}^{2} \times \boldsymbol{h}\right)$. The number of times for iterating $M_{P} M$ is at most $(\boldsymbol{m}+1)$ times. Thus, the complexity of Step 3 is $\mathbf{O}((\boldsymbol{m}+\mathbf{1})$ $\left.\times \boldsymbol{m}^{2} \times \boldsymbol{h}\right)=\mathbf{O}\left(\boldsymbol{m}^{3} \times \boldsymbol{h}\right)$ in the worst case. In this method, we encode a normal program into a program matrix, while [8] encodes a normal program into a $3^{\text {rd }}$-order tensor. Since the number of slices in a $3{ }^{\text {rd }}$-order tensor increases exponentially in general, the current method would have a computational advantage over [8].

3.3 Column reduction

We apply the submatrix technique of Def.2.8 to program matrices for normal programs. That is, instead of considering a program matrix $M_{P}, \in \mathbb{R}^{m \times m}$ of Def.3.1, we consider a submatrix $N_{P}, \in \mathbb{R}^{m \times r}$ where $r=k+(m-n)$. Note that, $r \ll m$ in general.

Definition 3.4: (initial vector) Let P be a normal program with $B_{P}=\left\{p_{1}, \ldots, p_{k}\right\}$, and P^{+}its positive form with $B_{P+}=\left\{p_{1}, \ldots, p_{k}, \overline{q_{n+1}}, \ldots \overline{q_{m}}\right\}$ where $\left\{q_{n+1}, \ldots, q_{m}\right\} \subseteq\left\{p_{1}, \ldots, p_{k}\right\}$. Then the set of initial vectors of a positive form P^{+}is defined as follows:

Let $v_{1} \in \mathbb{R}^{k}$ be a vector representing facts in P where $\operatorname{row}_{j}\left(v_{1}\right)=p_{j}$.
Consider $A \subseteq \mathbb{R}^{r-k}$ where $A=\left\{(10 \ldots 0)^{\mathrm{T}},\left(\begin{array}{lll}1 & 1 & \ldots\end{array}\right)^{\mathrm{T}}, \ldots,\left(\begin{array}{lll}1 & 1 & \ldots\end{array}\right)^{\mathrm{T}}\right\}$ with $\operatorname{card}(A)=2^{r-k}$, and $B=\{v \in A \mid \exists i(1 \leq i \leq r-k)$ s.t. $v[i]=1$ and $\exists j(1 \leq j \leq k)$ s.t. $v_{1}[j]=1$ and $\operatorname{row}_{j}\left(v_{1}\right)=p$ iff $\operatorname{row}_{i}(v)=\bar{p}$ where v_{1} represents facts in $\left.P\right\}$. Put $v_{2} \in \mathbb{R}^{r-k}$ s.t. $v_{2} \in \mathrm{~A} \backslash \mathrm{~B}$. The set of initial vectors V of P^{+}is:

$$
V=\left\{v \in \mathbb{R}^{r} \left\lvert\, v=\binom{v_{1}}{v_{2}}\right., v_{2} \in A \backslash B\right\} \quad \text { and } \quad h=\operatorname{card}(V)
$$

Intuitively, the set of initial vectors V represents facts in P together with possible negative literals in P^{\prime}. By Theorem 2.3, if $v \in \mathbb{R}^{r}$ is a vector representing an interpretation I of P^{+}, and $u=\theta_{D}\left(N_{P}, v\right) \in \mathbb{R}^{m}$, then u is a vector representing an interpretation J of P^{\prime} and $J \cap B_{P+}=T_{P_{+}}(I)$.

For this reason, in Step 3 of Algorithm 3.1, we can replace the computation of a fixpoint $F P\left(M_{P} \cdot M_{o}\right)$ by the computation of a fixpoint $F P\left(N_{P}, u_{\mathrm{o}}[1 \ldots r]\right)$ with the initial vector $u_{0} \in V$. In the column reduction method, the complexity of computing $N_{P} \cdot u_{0}\left[1 \ldots n^{\prime}\right]$ is $\mathrm{O}(m \times r)$ and computing $\theta_{D}($.$) is \mathrm{O}(m \times r)$. Since the number of times for iterating $N_{P} \cdot u_{o}[1 \ldots r]$ is at most $(m+1)$ times and $|V|=h$, the complexity of step 3 of this algorithm is $\mathrm{O}((m+1) \times(m \times r+m \times r) \times h)=\mathbf{O}\left(\boldsymbol{m}^{2} \times r \times h\right)$. Comparing the complexity $\mathrm{O}\left(m^{3} \times h\right)$ of Step 3 of Algorithm 3.1, the column reduction reduces the complexity to $\mathrm{O}\left(m^{2} \times r \times h\right)$ by $r \ll m$ in general.
Example 3.2: Consider a normal program P and a d-program P ' of Example 3.1.
We have the submatrix $N_{P}, \in \mathbb{R}^{9 \times 7}$ representing P^{\prime} :

- $v_{1} \in \mathbb{R}^{5}$ represents the facts in $P, v_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)^{\mathrm{T}}$
- $\left.A=\left\{\begin{array}{ll}(0 & 0\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}1 & 0\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}0 & 1\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}1 & 1\end{array}\right)^{\mathrm{T}}\right\}$ with $\operatorname{card}(\mathrm{A})=2^{2}=4$
- $B=\left\{\left(\begin{array}{ll}0 & 1\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}1 & 1\end{array}\right)^{\mathrm{T}}\right\}$

$$
v_{2} \in A \backslash B=\left\{\left(\begin{array}{ll}
0 & 0
\end{array}\right)^{\mathrm{T}},\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{\mathrm{T}}\right\}
$$

$\left.V=\left\{\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}\right)^{\mathrm{T}},\left(\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)^{\mathrm{T}}\right\}$

$$
\text { with } h=\operatorname{card}(\mathrm{V})=2
$$

Compute a fixpoint $F P\left(N_{P}, u_{o}\right)\left(u_{o} \in V\right)$:

$$
\text { (i) For } \begin{aligned}
u_{o} & =\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)^{\mathrm{T}} \text { : } \\
u_{1} & =\theta_{D}\left(N_{P} \cdot u_{o}\right)=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array} 001\right)^{\mathrm{T}} \\
u_{2} & =\theta_{D}\left(N_{P} \cdot u_{1}[1 \ldots 7]\right)=\left(\begin{array}{lllllll}
0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array} 01\right)^{\mathrm{T}}=u_{1} .
\end{aligned}
$$

$$
\begin{array}{r}
p \\
N_{P^{\prime}}
\end{array}=\left(\begin{array}{ccccccc}
0 & q & r & s & t & \bar{r} & \bar{t} \\
0 & 0 & 0 & 1 / 3 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 / 2 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \begin{aligned}
& p \\
& q \\
& r \\
& \bar{t} \\
& \bar{t} \\
& q_{1} \\
& q_{2}
\end{aligned}
$$

$\operatorname{row}_{3}\left(u_{1}\right)=r$ and $\operatorname{row}_{6}\left(u_{1}\right)=\bar{r}$ then $u_{1}[3]+u_{1}[6]=0$, so u_{1} does not represent a stable model of P.
(ii) For $u_{o}=\left(\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)^{\mathrm{T}}: \quad u_{1}=\theta_{D}\left(N_{P}, u_{o}\right)=\left(\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 1 & 0 & 0\end{array}\right)^{\mathrm{T}}, u_{2}=$ $\theta_{D}\left(N_{P} \cdot u_{1}[1 \ldots 7]\right)=(1101111001)^{\mathrm{T}}, u_{3}=\theta_{D}\left(N_{P} \cdot u_{2}[1 \ldots 7]\right)=\left(\begin{array}{llllll}1 & 1 & 0 & 1 & 1 & 1\end{array} 001\right)^{\mathrm{T}}=u_{2}$.
$\operatorname{row}_{3}\left(u_{2}\right)=r$ and $\operatorname{row}_{6}\left(u_{2}\right)=\bar{r}$ then $u_{2}[3]+u_{2}[6]=1$
$\operatorname{row}_{5}\left(u_{2}\right)=t$ and $\operatorname{row}_{7}\left(u_{2}\right)=\bar{t}$ then $u_{2}[5]+u_{2}[7]=1$
u_{2} represents the set $\left\{p, q, s, t, \bar{r}, q_{2}\right\}$ and $\{p, q, s, t, \bar{r}\} \cap B_{P}=\{p, q, s, t\}$ is the stable model of P.

4 Experimental Results

In this section, we compare runtime for finding the least model of a definite program and the set of stable models of a normal program by the following three algorithms: (i) computing the fixpoint of the T_{P}-operator; (ii) matrix computation; (iii) column reduction computation. The testing is run on a GPU that has configuration as follows:

- Operating system: Linux Ubuntu 16.04 LTS 64bit.
- CPU: Intel® Core ${ }^{\text {TM }}$ i7-6800K $<3.4 \mathrm{GHz} / 14 \mathrm{~nm} /$ Cores $=6 /$ Threads $=12$ / Cache $=15 \mathrm{MB}>$, Memory 32GB, DDR-2400
- GPU: GeForce GTX1070TI GDDR5 8GB
- Implementation language: Maple 2017, 64 bit [14].

GPU speeds up the computing and further speed-up would be gained by using CUDA package in Maple.

4.1 Testing on definite programs

In this testing, given the size $n=\left|B_{P}\right|$ of the Herband base B_{P} and the number $m=$ $|P|$ of rules in P, rules are created randomly as in Table 1:
Table 1. Proportion of rules in P based on the number of propositional variables in their bodies

Number of ele- ments in body	0	1	2	3	4	5	6	7	8
Number of rules (proportion)	x, where $\mathrm{x}<\mathrm{n} / 3$	4%	4%	10%	40%	35%	4%	2%	$\sim 1 \%$

Based on (n, m), generate a definite program P randomly. After that, we transform P to a d-program $P^{\prime}=Q \cup D$ where Q is an SD-program and D is a set of d-rules. The program P^{\prime} will have n^{\prime} variables and m ' rules. Table 2 shows the results of testing Algorithm 2.1 on P^{\prime} and computation by the T_{P}-operator [9] for constructing the least model of a program P. There are two important steps in Algorithm 2.1: Step 2 for creating a program matrix M_{P}, to represent a definite program P^{\prime}, and step 3 for computing the fixpoint. We compare three cases-(Case 1): Use the T_{P}-operator on a program P; (Case 2): naive computation on a program P^{\prime} by Algorithm 2.1; (Case 3): computation by column reduction on a program P^{\prime} as Section 2.5.

Table 2. Results of testing on definite programs

n	m	$T_{P}-$ operator (sec.)	n^{\prime}	m,	Matrix Fixpoint / All (sec).	Column reduction Fixpoint/All (sec).
20	200	0.066	173	173	$0.277 / 0.288$	$0.009 / 0.018$
20	400	0.07	396	396	$0.225 / 0.238$	$0.019 / 0.034$
20	8,000	0.628	6,047	6,047	$6.491 / 6.709$	$0.103 / 0.251$
50	2,500	0.499	2,430	2,430	$3.797 / 3.925$	$0.114 / 0.205$
50	12,500	1.952	8,858	8,858	$8.709 / 9.023$	$0.377 / 0.812$
100	5,000	2.056	4,707	4,707	$13.23 / 13.326$	$0.661 / 0.978$
100	10,000	1.935	7,000	7,000	$11.166 / 11.479$	$0.79 / 1.27$
200	400	0.037	451	428	$0.059 / 0.073$	$0.012 / 0.06$
200	20,000	5.846	16,052	16,052	$25.093 / 25.945$	$3.973 / 6.73$

"All" means the time for creating a program matrix and computing the fixpoint.

Fig. 3. Results of testing about fixpoint computing on definite programs
Note that in some cases the number of rules in P^{\prime} is smaller than those of $P\left(m^{\prime}<\right.$ m). This is because we eliminate every rule r in P^{\prime} such that $\operatorname{head}(r)=p$ and the fact $p \leftarrow$ is in P. Comparison of fixpoint computation is shown in Fig. 3. We can observe the following facts: The naive method is slower than the T_{P}-operator while the column reduction technique significantly reduces runtime and is fastest among three algorithms. The runtime efficiency of column reduction comes from the fact $n \ll n$ '.

4.2 Testing on normal programs

In this testing, given the size $n=\left|B_{P}\right|$ of the Herband base B_{P} and the number $m=$ $|P|$ of rules in P, rules are created randomly as before (Table 1).

Based on (n, m), generate a normal program P randomly. After that, we transform P to a d-program P^{\prime} with k negative literals in a program P.

Table 3 is the results of testing Algorithm 3.1 on P^{\prime} and computation by the $T_{P^{-}}$ operator (using Theorem 3.1) on P [12] for computing the stable models of a program P. There are three important steps in Algorithm 3.1: Step 2 for creating a program matrix for representing a d-program P^{\prime}, Step 3 for computing the fixpoint and Step 4 for finding the set of vectors which represent stable models. We compare three cas-es-(Case 1): Computation by the T_{P}-operator (using Theorem 3.1) for computing stable models of on P; (Case 2): the naive computation on a program P^{\prime} by Algorithm 3.1; (Case 3): the column reduction computation on a program P^{\prime} as presented in Section 3.2 of Step 3. Comparison of fixpoint computation is shown in Fig. 4.

Table 3. Results of testing on normal programs

n	m	k	$T_{P^{-}}$ operator (sec.)	Matrix Fixpoint / All (sec.)	Column reduction Fixpoint/All (sec.)
20	400	8	2.432	$19.603 / 19.714$	$3.338 / 3.362$
20	8,000	6	5.531	$12.368 / 12.696$	$4.502 / 4.603$
50	100	8	0.221	$1.155 / 1.224$	$0.278 / 0.291$
50	2,500	8	36.574	$37.863 / 38.463$	$29.582 / 29.786$
50	12,500	7	49.485	$30.819 / 32.00$	$48.883 / 49.32$
100	5,000	8	103.586	$31.68 / 32.338$	$69.579 / 69.851$
100	10,000	8	264.547	$84.899 / 87.142$	$192.981 / 194.003$
200	400	6	0.429	$1.928 / 2.021$	$1.222 / 1.342$
200	13,300	6	185.778	$48.185 / 49.185$	$124.119 / 126.255$

[^1]

Fig. 4. Results of testing about fixpoint computing on normal programs
By the table we can observe the following fact: matrix computation is effective when the size of n is large ($n=100$ or 200). Computation by column reduction is faster than computation by the T_{P}-operator, while it is slower than the naive method in case of $n=100$ or 200 . To see the effect of computation by column reduction, we would need further environment that realizes efficient computation of matrices.

5 Conclusion

In this paper, we proposed methods for representing logic programming based on linear algebra. We develop new algorithms for computing logic programming semantics in linear algebra and the improvement methods for speeding-up those algorithms.

The results of testing show that the computation by column reduction is fastest in computing least models, while the naive matrix computation on a d-program is often better than column reduction in computing stable models. It is known that the least model of a definite program is computed in $\mathrm{O}(N)$ [15] where N is the size (number of literals) of a program. Since the column reduction computation takes $\mathrm{O}\left(m^{2} \times n\right)$ time, it would be effective when $m^{2} \times n<N$, i.e., the size of a program is large with a relatively small number of atoms. For computation of stable models of a normal program, although the size of the program matrix and the initial matrix are large, they have many zero elements. We can improve the method for representing matrices in sparse forms which also brings storage advantages with a good matrix library. Introducing partial evaluation [18] would also help to reduce runtime. We need further optimization and comparison with existing answer set solvers such as clasp [16], DLV [17].

The performance of our linear algebraic implementation heavily depends on the manipulation of matrices. We have used Maple for implementation, but our methods can be realized by other computer languages and architectures. It is now expected that more powerful platforms are developed for linear algebraic computation in the near future. Our methods would have the merits when such advanced technologies become available. Yet, linear algebraic computation for logic programming has just started, so there will be a lot of rooms for improvement and optimization.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Numbers JP17H00763 and JP18H03288.

References

1. Saraswat, V.: Reasoning 2.0 or machine learning and logic-the beginnings of a new computer science. Data Science Day, Kista Sweden (2016)
2. Sato, T.: A linear algebraic approach to Datalog evaluation. Theory and Practice of Logic Programming 17(3), 244-265 (2017)
3. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases, In: In: Third Int. Conf. Learning Representations (ICLR 2015), San Diego, USA (2015)
4. Grefenstette, E.: Towards a Formal Distributional Semantics: Simulating Logical Calculi with Tensors, In: Proceedings of Second Joint Conference on Lexical and Computational Semantics (*SEM), Vol. 1, pp. 1-10, Atlanta, USA (2013).
5. Coecke, B., Sadrzadeh, M., Clarky, S.: Mathematical Foundations for a Compositional Distributional Model of Meaning, Linguistic Analysis, 36, pp. 345-384 (2011)
6. Serafini, L., Garcez, A.: Learning and Reasoning with Logic Tensor Networks, In: $15^{\text {th }}$ Int. Conf. of the Italian Association for Artificial Intelligence (AI*IA 2017), LNAI 10037, pp. 334-348, Springer, Genoa, Italy (2016)
7. Serafini, L., Donadello, I., Garcez, A.: Learning and Reasoning with Logic Tensor Networks: Theory and application to semantic image interpretation, In: Proc. of $32^{\text {nd }} A C M$ SIGAPP Symposium On Applied Computing (SAC 2017), pp. 125-130, Marrakech, Morocco (2017)
8. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs, In: $10^{\text {th }}$ International conference on Knowledge Science, Engineering and Management (KSEM 2017), LNAI 10412, pp.530-533, Springer, Melbourne, Australia (2017).
9. van Emden, M. H., Kowalski, R. A.: The semantics of predicate logic as a programming language. Journal of the ACM 23(4), 733-742 (1976).
10. Kolda, T., Bader, B.: Tensor Decompositions and Applications, SIAM Review 51(3), 455500 (2009)
11. Lin, F.: From satisfiability to linear algebra. Invited talk, $26^{\text {th }}$ Australian Joint Conference on Artificial Intelligence (2013)
12. J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, T. Przymusinski: Dynamic updates of non-monotonic knowledge bases, Journal of Logic Programming 45(1-3), 43-70 (2000).
13. Fernandez, J. A., Lobo, J., Minker, J., Subrahmanian, V. S.: Disjunctive LP + integrity constraints $=$ stable model semantics, AMAI 8(3-4), 449-474 (1993).
14. Maple: https://www.maplesoft.com/support/install/maple2017_install.html
15. Dowling, W. F., Gallier, J. H.: Linear-time algorithms for testing the satisfiability of propositional Horn formulae, Journal of Logic Programming 1(3), 267-284 (1984).
16. clasp: https://potassco.org/clasp/
17. DLV system: http://www.dlvsystem.com/dlv/
18. Sakama, C., Nguyen, H.D., Sato, T., Inoue, K.: Partial Evaluation of Logic Programs in Vector Space, $11^{\text {th }}$ Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2018), Oxford, UK, July 2018.

[^0]: ${ }^{1}$ In [8], the fact is represented by " $p_{i} \leftarrow T$ " and is encoded in a matrix by $a_{i j}=1$ where $\operatorname{row}_{i}\left(M_{P}\right)=p_{i}$ and $\operatorname{col}_{j}\left(M_{P}\right)=T$.
 2 A definite program P satisfies the MD-condition if it satisfies the following condition: For any two rules r_{1} and r_{2} in $P\left(r_{1} \neq r_{2}\right)$: head $\left(r_{1}\right)=\operatorname{head}\left(r_{2}\right)$ implies $\left|\operatorname{body}\left(r_{1}\right)\right| \leq 1$ and $\left|\operatorname{body}\left(r_{2}\right)\right| \leq 1$.

[^1]: "All" means the time for creating a program matrix and computing the fixpoint.

