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Abstract. In this paper, we perform an experimental study to examine the evo-
lution of self-interested agents in cooperative agent societies. To this end, we
realize a multiagent system in which agents initially behave altruistically by shar-
ing information of food. After generations of a genetic algorithm, we observe the
emergence of selfish agents who do not share food information. The experimental
results show the process of evolving self-interested agents in resource-restrictive
environments, which is observed in nature and in human society.
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1 Introduction

In nature, animals communicate in many ways to share information. For example, ants
inform each other about the location of food using scent, and sheep alert others about
predator attacks by making a bleating sound. On the other hand, animals compete with
one another for limited resources, such as food, space and mates. In his book “The
Selfish Gene” [1], Richard Dawkins says: “Any altruistic system is inherently unstable,
because it is open to abuse by selfish individuals, ready to exploit it.”” Animals are
inherently self-interested and often behave dishonestly to have their own benefit. In
[6], Searcy and Nowicki argue that “The predominant view nowadays, however, is that
selection acts largely at the level of the individual, so that behavior evolves toward what
is best for the individual performing the behavior, and not toward what is best for the
group. If behavior is commonly selfish, in this sense, then it is not always obvious why
animals should exchange information cooperatively. Instead, one might expect many
instances in which signalers would attempt to profit individually by conveying dishonest
information.” Some studies are devoted to modelling evolution of selfish or dishonest
behaviors of animals. Wade and Breden [8] provide a population generic model and
examine necessary conditions for the spread of genes that determine selfish and cheating
behaviors. Sober [7] provides a simple model which explains that lying and credulity are
behaviors that evolved by natural selection. Rowell et al. [5] develop a game-theoretic
model of animal communication in which animals effectively use deceptive signals as
strategies.
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Fig. 1. An environment

Recent studies show the evolution of selfishness in robot communication. Floreano
et al. [2,4] show that robots which compete for food learn to conceal food information.
In their studies, a group of robots has the task of finding a food source in a field. Once
a robot found the food, it stays nearby and emits blue light. This informs other robots
of the location and results in overcrowding around the food. After a few generations,
robots become more secretive and learn to conceal food information for their own sur-
vival. The study shows the possibility of designing artificial agents which would acquire
selfish or dishonest attitudes in their environment.

In this study, we consider an environment similar to [2,4] and observe how self-
interested behaviors evolve in an artificial society. In contrast to [2,4], we do not use
robots but realize software agents who can communicate and move in an environment.
We implement a multiagent system in which agents initially behave cooperatively by
sharing information of food. After generations of a genetic algorithm, we observe the
evolution of self-interested agents who do not share food information. We analyze ex-
perimental results and see the adaptation of agents in a resource-restrictive environment.
The rest of this paper is organized as follows. Section 2 presents an agent society which
is considered in this paper. Section 3 provides experimental results and considerations.
Section 4 discusses related issues and Section 5 concludes the paper.

2 Agent Society

2.1 Agents

We set the environment as a two-dimensional grid of 50x50 cells where 250 agents
are living. Each agent stays at one cell and two different agents cannot stay at a cell at
the same time. The environment contains 132 cells of food and 132 cells of poison. The
spacial constraints on the food allow a maximum of 132 agents to be fed simultaneously.
The maximum amounts of food or poison in each cell are initially given. The range of
maximal values is from 3 to 1 in order of the depth of a color (Figure 1). If the amounts
of food or poison in each cell become less than its maximum value by consumption,
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Fig. 2. Neural Network

they are automatically supplemented in every fixed period. Agents act synchronously
in discrete time steps. A generation consists of 200 time steps. Each agent can move to
neighbor cells (horizontally or vertically adjacent cells), send a signal, and obtain food
or poison at every step. If an agent stays at a cell where food or poison is located, then
it is counted as one at a step. The numbers of food or poison which an agent obtains in
one generation are counted.

Each agent can send a signal when they find food or poison. An agent can recognize
signals on the 360° field and decides a direction to move at the next step based on
the amount and direction of signals. Each agent has a simple neural network which
consists of 6 input neurons I; (1 < ¢ < 6) and 3 output neurons O; (1 < j < 3)
through 10 synaptic weights SW;; representing the strength of connections between
the input neuron /; and the output neuron O; (Figure 2).!

The value v([;) of the input neuron I; (i = 1,2) is decided by the location of an
agent as follows.

(I) = 1 if there is food on the cell where an agent is staying;
YU 0 otherwise

o(ly) = 1 if there is poison on the cell where an agent is staying;
22710 otherwise

The values of I3, 14, I5 and I are decided by the amount of signals which an agent
perceives from each direction as follows.
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Here, S, Se, S, and S, respectively represent the amount of signals from the four
sections (west, east, north and south) of 90° each and S = S\, +S.+ S, +S, (Figure 3).

"'In [2,4], a similar but more complicated neural network is used which consists of 11 input
neurons connected to 3 output neurons through 33 synaptic weights.



Fig. 3. Signals from four sections

Each agent has a sequence of 80-bit genes ( g; )1<i<so as a binary digit. The values
of synaptic weights are calculated by
D x2
255
where D;; represents the decimal number corresponding to 8-bit genes as follows:
D11 = (g1---98)10, D21 = (99 - - - g16) 10, D32 = (917 - - - g24) 10, D33 = (gas - - - g32) 10,

SWij = 1 )

Dy = (933 - - - 940)10, Daz = (ga1 - - - g48)10> D52 = (949 - - - g56)10, D53 = (g57 - - - g64) 10>

Dga = (965 ---972)10, Dés = (g3 - - - gso)10. For instance, when the 8-bit gene is
00000000 (resp. 11111111), it becomes D;; = 0 and SW;; = —1 (resp. D;; = 255
and SW;; = 1) by (2). Thus, a synaptic weight takes a value of —1 < SW;; < 1.

The values of output neurons are computed using the values of input neurons and
synaptic weights as follows:

M

O1 =tanh () (v(Ix) x SWi1)),

=
=

6
O,, = tanh (Z (v(Ig) X SWgp)) (n=2,3).
k=3
O; is expressed using the hyperbolic function and takes a value between —1 and 1. The
values of output neurons are used for deciding action of an agent. [

2.2 Action Rules

An agent can take two different actions at each step: sending a signal or moving to
neighbor cells. First, an agent sends a signal if the value of the output neuron is O; > 0.
This may happen when an agent finds food (I; > 0) or poison (/s > 0), but whether
O > 0 or not depends on the values of the synaptic weights. If O; < 0, then an agent
does not send any signal even if it obtains food or poison. Next, a move of an agent is
decided by the values of output neurons O3 and O3. A move of an agent is expressed
by (dz,dy) where dx (resp. dy) represents a movement in the z-axis (resp. y-axis)
direction. Each movement is defined by O and Oj3 as follows:

-1 (02 < —%) 1 (03 _%)
de =40 (-:<0,<1 dy=¢0 (-3<03<3) 3)
1 (L<0) —1 (3 <03)



where the values of O5 and O3 are divided into three.

We consider a few agents who may not act properly in an environment. This is
realized by making an agent move randomly at the probability of 0.2, regardless of the
values of output neurons.

The movement of an agent depends on the values of its synaptic weights. As stated
before, the synaptic weights of an agent are calculated by a sequence of 80-bit genes
of the agent. The initial genes are randomly generated, and then evolve under a fitness
condition using the genetic algorithm. The fitness of a gene is computed by

f=F-P “)

where F' and P respectively represent the numbers of food and poison which an agent
obtained in one generation. By definition, the fitness increases if an agent obtains more
food, while the fitness decreases if an agent obtains more poison. In each generation,
agents having higher fitnesses are selected, and their genes are modified (by crossover
and mutation) to form a new generation. The selection is made using the fitness propor-
tionate selection in which the ¢-th individual is selected based on the probability:

I
' ZZ:l fk

where n = 250 is the total number of agents and f; is the fitness of the i-th individual
(1 < 7 < 250). At the end of each generation, the 250 agents are ranked based on
their fitness and the best 20% are selected. From these selected agents, two individuals
are randomly chosen and paired to perform crossovers and mutations to create a new
generation of 250 individuals. Here we use the uniform crossover which evaluates each
bit in the parent strings for exchange with a probability of 0.5. We also set mutation
with a rate of 0.01. The individual which has the highest fitness is also retained in the
next generation (elitism).

3 Experiments

We perform experiments in three different situations: (i) the field contains food only;
(i1) the field contains poison only; and (iii) the field contains both food and poison. In
each case, the location of food and poison are fixed; food are located in the north-east
corner of the field and poison are located in the south-west corner of the field (Figure 1).

Initially, each agent is assigned a sequence of 80-bit genes which is randomly gen-
erated. The initial location of 250 agents is also decided randomly and the evolution
of agents is observed in 300 generations. The fitness value of an agent depends on its
initial location. To reduce such biases, a group of agents in each generation is produced
based on the average of fitness values in 20 trials in which each trial consists of 200
steps of transactions by the same agents. With these settings, we observe the following
changes over generations: (i) the number of signals in the field, and (ii) the average
values of the synaptic weights among all agents. A snapshot of an experiment is shown
in Figure 4 where some (but not all) agents send signals around food.



Fig. 4. Snapshot of an experiment

3.1 Food and Signal

We first observe how the number of signals by obtaining food changes in generations.
When the field contains food only, the number of signals increases at first and arrives at
the peak around the 20th generation (Figure 5). Then, the number of signals suddenly
decreases and keeps low values in subsequent generations, mostly less than 5000. This
phenomenon is explained as follows. At the initial stage some agents at the location
of food send signals which attract other agents. Then the number of agents monoton-
ically increases around the food and the number of signals increases accordingly. In
several generations, however, it results in the crowd around food. Those agents who
actively send signals around the food cannot obtain food as before (because they cannot
move neighbors where other agents stay), which results in the decrease of fitness val-
ues of those agents. In contrast, those agents which do not actively send signals would
have relatively high fitness values. (Note that some agents would not send signals at
food due to the negative synaptic weights given initially.) Then, the probability of se-
lecting agents who actively send signals around the food reduces, which results in the
decrease of signaling agents in the next generation. This is observed by Figure 6 in
which the average synaptic weight ST, increases at first, while it decreases after the
peak around the 20th generation. After the 50th generation, ST, mostly takes negative
values which indicates that most agents do not send signals around the food. However,
agents who send signals around the food do not die out. This is because reduction of
signals has the effect of solving overpopulation around the food, which results in weak-
ening the selection pressure on secretive agents.

When the field contains both food and poison, the number of signals also decreases
in Figure 5 but the values sharply oscillate compared with the case of food only. This is
because agents around the poison also send signals, which eliminates the effect of de-
crease of signals in the field. The average synaptic weight ST, also oscillates between
positive and negative values in Figure 6.
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Fig. 6. Evolution of SW1;

3.2 Poison and Signal

We next observe how the number of signals by obtaining poison changes in generations.
When the field contains poison only, the number of signals is relatively small through
generations (Figure 7). The reason is that in this case agents who obtained poison have
low fitness values by the equation (4), which results in the evolution that agents are
directed away from signals. When the field contains both food and poison, the number
of signals randomly oscillates. Such a chaotic behavior is due to the mixture of signals
from food and poison. The average synaptic weight ST, also oscillates between pos-
itive and negative values (Figure 8). This means that in case of poison stopping signals
does not imply any advantage for an agent, which results in no particular evolution of
the synaptic weight STWs;.
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3.3 Movement

We finally observe how each agent develops genes controlling its movement in gen-
erations. Figure 9 shows the evolution of average synaptic weights SW, o and SW 3
(x = 3,4, 5, 6) which control output neurons Oy and O3, respectively. In the figure, (a)
shows the case of food only, (b) shows the case of poison only, and (c) shows the case
of food plus poison. Observing (a), synaptic weights are classified into three different
classes. The first class takes positive values, the second class takes negative values, and
the third class oscillates between positive and negative values. More precisely, SWyo
and SWis take positive values, while SW3, and SWis3 take negative values. Others
oscillate between positive and negative values. The synaptic weight ST, depends on
the signals from the east and the synaptic weight STW3, depends on the signals from the
west (see (1)). Both SWj5 and STW35 control movements in the x-axis direction. The
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Fig. 9. Evolution of SW2 and SW3

synaptic weight SWs3 depends on the signals from the north and the synaptic weight
SWses depends on the signals from the south. Both SWs53 and SWss control move-
ments in the y-axis direction. As a result, synaptic weights which control movements in
the x-axis direction from signals from the east and the west have evolved, and synaptic
weights which control movements in the y-axis direction from signals from the north
and the south have evolved. Moreover, positive SWyo contributes to making O posi-



tive (hence movement dz = +1 in (3)) and negative SWjs3 contributes to making Osg
negative (hence movement dy = +1 in (3)). This leads agents toward the food location
in the north-east section of the field.

In case of (b), synaptic weights are also classified into three different classes. In
contrast to (a), SWyo and SWss take negative values, while SW3, and SWis take
positive values. Thus, the positive-negative patterns are the reverse of those of (a). This
is explained that in case of (a) agents are evolved to be attracted to food, while in case
of (b) agents are evolved to be kept away from poison.

In (c), synaptic weights, which are oscillated in (a) and (b), converge on either posi-
tive or negative values. Sso and Sgo take positive values while S33 and Sy3 take negative
values. This indicates when there are both food and poison, those synaptic weights play
roles for deciding movements. When signals from the north and the south, the positive
weights S52 and Sgz make O positive, which will lead an agent to proceed forward
the z-axis direction (the east) (cf. (3)). When signals from the east and the west, the
negative weights Ss3 and Sy3 make O3 negative, which will lead an agent to proceed
forward the y-axis direction (the north) (cf. (3)). In each case, the weights lead agents
close to food and apart from poison.

4 Comparison with Floreano et al.’s Study

Floreano et al. [2,4] simulate evolution and natural selection in robot learning. In their
experiments, robots are randomly placed in an arena containing a food source and a
poison source that both emit red light. The food and poison sources are placed at two
opposite corners of the arena. The robots earn points for how much time they spent near
food as opposed to poison. The robots could produce information by emitting blue light,
which other robots could perceive. Each robot has a neural network which consists of 11
input neurons that are connected to a robot’s sensors and 3 output neurons that control
movement of the robot and the emission of blue light. Each input neuron is connected
to every output neuron in terms of 33 synapses whose strength are controlled by a 8-bit
gene. Each robot has 33 x 8 = 264 bits genome that determines its behavior. With this
setting, groups of 10 robots compete for food in separate arenas. After 100 rounds, the
robots with the highest scores are selected for the next round. As robots become more
efficient at finding and remaining near the food, the concentration of blue light near food
also increases. Thus, blue light plays an inadvertent cue providing information on the
food location. However, spacial constraints around the food source allow a maximum of
8 robots of 10 to feed simultaneously and result in higher robots density and increased
competition and interference near the food. By the 50th generation, robots are selected
to decrease the rate of blue light emission. Thus, selection is acting toward suppressing
information on the food location.

As addressed in the introduction, our experimental setup is similar to [2, 4], while
there are some important differences as follows. First, in their experiment robots emit
blue light randomly while it provides inadvertent social information on the food loca-
tion. Once robots evolve the ability to find food and stay nearby, their increasing density
near the food source translates into higher blue density near the food and a source of
information for other robots in the arena. On the other hand, in our experiment, agents



are initially set to send signals when they find food or poison. Floreano et al. observe
how unintentional communication develops useful information, which generates self-
centered behaviors of robots. By contrast, we observe that agents who behave coop-
eratively at first also turn to become self-interested in evolution. Second, neural nets
used in [2,4] have 11 input neurons and 3 output neurons.” One of the input neurons
is devoted to the sensing of food and another one is to the sensing of poison. Other 8
neurons are used for encoding the 360° visual input image, which is divided into four
sections of 90° each. For each section, one neuron is used for perceiving blue light,
and the other neuron is used for perceiving red light (food or poison). The activation
of output neurons is computed as the sum of all inputs multiplied by the 8-bit synaptic
weight of the connection and passed through the continuous hyperbolic function. Two
of the 3 output neurons are used for controlling the two tracks, where the output value
of each neuron gave the direction of rotation and velocity of one of the two tracks. The
third output neuron determines whether to emit blue light. Thus the total length of the
genetic string of an individual is: (8 bits) x (11 input neurons) x (3 output neurons)
= 264 bits. In our multiagent model, each agent has a simpler neural network: 6 input
neurons and 3 output neurons through 10 synaptic weights, and a 80-bit genetic string
in total. Thus, an agent has less than one-third of genes compared with a robot of [2,4].
With this simplified neurons, we demonstrate an evolution similar to [2, 4].

Thirdly, in the experimental setup, Floreano et al. consider the single environment
in which both food and poison are located. By contrast, we set up three different en-
vironments: the first one contains food only, the second one contains poison only, and
the third one contains both food and poison. We observe that such different settings
affect the results of evolution of agents. Moreover, we analyze the evolution of synaptic
weights in generations which are not reported in [2, 4].

S Summary

We experimentally realized a multiagent system to observe the evolution of self-interested
agents to survive in a resource-restrictive environment. The results show that at the ini-
tial stage agents act altruistically to inform others of the location of food, while the
increased population around the food results in the increase of self-interested agents
who act egoistically to hide food information. Agents react to signals by other agents
to obtain useful information, while once they successfully obtain food they evolve into
agents who do not always send signals cooperatively. The evolution of self-interested
nature of agents from simple action rules would explain a reason for the emergence of
selfish behaviors of animals in resource-limited environments in nature.

In this study, self-interested agents appear around food, while further evolution
might generate dishonest agents who intentionally send “false” signals to other agents
in order to keep them away from food (or even lead them to poison). Such deceptive
signals exist in nature [3]. Further refinement of social models is needed to realize the
evolution of agents who may act dishonestly.

2 More precisely, 10 input neurons are used in [2] while 11 input neurons are used in [4]. The
role of the additional input neuron is not clearly stated, however.
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