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Abstract

We consider the problem of identifying equivalence of two knowledge bases
which are capable of abductive reasoning. Here, a knowledge base is written in
either first-order logic or nonmonotonic logic programming. In this work, we will
give two definitions of abductive equivalence. The first one, explainable equiva-
lence, requires that two abductive programs have the same explainability for any
observation. Another one, explanatory equivalence, guarantees that any observa-
tion has exactly the same explanations in each abductive framework. Explanatory
equivalence is a stronger notion than explainable equivalence, and in fact, the for-
mer implies the latter. In first-order abduction, explainable equivalence can be
verified by the notion of extensional equivalence in default theories. In nonmono-
tonic logic programs, explanatory equivalence can be checked by means of the
notion of relative strong equivalence. We also discuss how the two notions of ab-
ductive equivalence can be applied to extended abduction, where abducibles can
not only be added to a program but also be removed from the program to explain
an observation.

1 Introduction

Nowadays, abduction is used in many AI applications, including diagnosis, design, up-
dates, and discovery. Abduction is an important paradigm for problem solving, and is
incorporated in programming technologies, i.e., abductive logic programming (ALP)
[14; 2]. Automated abduction is also studied in the literature as an extension of de-
ductive methods or a part of inductive systems [5; 8], and its computational properties
have also been studied [25; 3; 4].
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In this work, we are concerned with such computational issues on abductive rea-
soning. Despite being a problem-solving paradigm, ALP has a lot of issues which
have not been fully understood yet. In particular, there are no concrete methods for
(a) evaluation of abductive power in ALP, (b) measurement of efficiency in abductive
reasoning, (c) semantically correct simplification and optimization, (d) debugging and
verification in ALP, and (e) standardization in ALP. Since all these topics are important
for any programming paradigm, the lack of them is a serious drawback of ALP. Then,
it can be recognized that all the above issues are related to different notions of identifi-
cation or equivalence in ALP. In particular, the item (c) is related to understanding the
semantics of ALP with respect to modularity and contexts.

The notion of equivalence between two knowledge bases is also one of the most
important problems in knowledge representation based on logic. For example, one
axiom set

���
represents the specification of a device or a program and the other formula

set
���

is a result of the design of a hardware/software system. Then, we should check
whether

���
is equivalent to

���
, intending the verification of the design. Similarly, the

notion of equivalence in logic programming has recently become important. Because a
logic program is used to represent knowledge of a problem domain [1], we often have
to consider whether two logic programs � � and � � represent the same knowledge. For
example, one logic program � � may be viewed as a specification of knowledge in some
domain, and another representation � � may be expected to be a compact form of � �
which can easily be computed.

Abduction can be formalized in various logics [15; 5]. Then, we can consider
several notions of equivalence in several logics for abduction. In this paper, we will give
two definitions of abductive equivalence in two logical frameworks for abduction. Two
logics we consider here are first-order logic (FOL) and abductive logic programming
(ALP). The first abductive equivalence, called explainable equivalence, requires that
two abductive programs have the same explainability for any observation. Another
one, explanatory equivalence, guarantees that any observation has exactly the same
explanations in each abductive framework. Explanatory equivalence is stronger than
explainable equivalence, and in fact, the former implies the latter.

In this paper, we characterize these two notions of abductive equivalence in terms
of other well-known concepts in AI and logic programming. In abduction in first-
order logic, we will see that explainable equivalence can be verified by the notion
of equivalence in default logic [21], which is defined for the families of extensions
of two default theories. On the other hand, abductive equivalence in ALP is more
complicated than in the case of FOL due to the nonmonotonicity in logic programs.
In fact, equivalence between two abductive logic programs has little been discussed in
the literature except that effects of some program transformation techniques in ALP
are analyzed in [23]. In this work, by means of the notion of strong equivalence [18;
16] and its relativized extension [17; 13; 27], we will show that explanatory equivalence
can be checked in ALP.

Finally, we also discuss how the two notions of abductive equivalence can be ap-
plied to extended abduction [9; 12], where hypotheses can not only be added to a
program but also be removed from the program to explain an observation. In extended
abduction, abductive equivalence can be characterized by the notion of update equiva-
lence [13].
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The rest of this paper is organized as follows. Section 2 presents two definitions
for abductive equivalence. Section 3 considers first-order logic as the representation
language, while Section 4 considers nonmonotonic logic programming for ALP. Sec-
tion 5 extends the equivalence results in ALP to extended abduction. Section 6 gives
concluding remarks.

2 Abductive Equivalence

We start with a question as to when two abductive frameworks are equivalent. As far as
the authors know, there is no answer for such a question in the literature of ALP. More-
over, no such a concept can be found in philosophy, either. It is conceivable that there
must be several aspects on this question. When can we consider that an explanation �
is equivalent to another explanation � for an observation? When can we say that an
observation � is equivalent to another observation � in an abductive framework? In
what circumstances, can we say that abduction by person

�
is equivalent to abduction

by person � ? When can we regard that abduction with knowledge � is equivalent to
abduction with knowledge � ?

There are also many parameters which should be considered important in defining
equivalence notions in abductive frameworks. In the world, both background knowl-
edge and observations are surely essential. In an agent who performs abduction, on the
other hand, her abductive power must depend on her logic (language, syntax, seman-
tics) of background knowledge, observations and hypotheses. Moreover, the quality of
abduction is relevant to other parameters such as axioms, inference procedures, logics
of explanations, and criteria of best explanations. If we would take all such parameters
into account, the task of defining the equivalence notion might become combinatorial
and too complex.

In the following, we thus consider a rather simple framework for our problem while
we try to hold the essence of equivalence notions as much as possible. First, logic,
background knowledge and hypotheses are put as input parameters in each abductive
framework. Second, a logic of explanations is taken into account in a definition, but its
diversity is reflected in different notions of abductive equivalence.

The following definition of abductive frameworks is a standard one [15; 25; 3;
4]. As a notation, ��� 	�
�� means that a formula � is derived from a set � of formulas
in a logic  .

Definition 2.1 Let � and � be sets of formulas in some underlying logic  . An
abductive framework is defined as a triple ������������ , where � is called background
knowledge and each element of � is called a candidate hypothesis.

Definition 2.2 Let ������������ be an abductive framework, and � a formula in  , and
� a formula belonging to � . We define that � is an explanation of an observation � in
������������ if ������� 	�
�� and � ��� is consistent in  . We say that � is explainable
in ������������ if it has an explanation in ������������ .
Remark. Definition 2.2 requires that each explanation � must be consistent with the
background knowledge � in the logic  . This condition is sometimes too strong in
realistic cases, and can be weaken if the logic  is paraconsistent.
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In the next two sections, we consider two logics for abduction both of which are
popular formalisms in AI: first-order logic (FOL) (Section 3), and logic programming
with negation as failure (ALP) (Section 4).

We now give two definitions for abductive equivalence. We assume that the under-
lying logic  is common when two abductive theories are compared.

Definition 2.3 Two abductive frameworks ������ � ��� � � and ������ � ��� � � are explain-
ably equivalent if, for any observation � , there is an explanation of � in ������ � ��� � �
iff there is an explanation of � in ������ � ��� � � .

Explainable equivalence requires that two abductive frameworks have the same
explainability for any observation. Explainable equivalence may reflect a situation that
two theories have different knowledge to derive the same goals.

Definition 2.4 Two abductive frameworks ������ � ��� � � and ������ � ��� � � are explana-
torily equivalent if, for any observation � , � is an explanation of � in ������ � ��� � � iff
� is an explanation of � in ������ � ��� � � .

Explanatory equivalence assures that two abductive frameworks have the same ex-
planation power for any observation. Explanatory equivalence is stronger than ex-
plainable equivalence. In fact, the former implies the latter. The two notions coincide
if � � 	�� � 	�� .
Proposition 2.1 If abductive frameworks ������ � ��� � � and ������ � ��� � � are explanato-
rily equivalent, then they are explainably equivalent.

Proposition 2.2 Two abductive frameworks ������ � ��� � and ������ � ��� � are explainably
equivalent iff they are explanatorily equivalent.

For explanatory equivalence, we can assume that the hypotheses � are common in
two abductive frameworks in Definition 2.4, as the following property holds.

Proposition 2.3 Suppose that
� � 	 ������ � ��� � � and

��� 	 ������ � ��� � � are abductive
frameworks. If

���
and

���
are explanatorily equivalent, then ���� 	 ���� , where ���� 	�
	�� � � � � � � �
	� is consistent in   for � 	�� ��� .

Proof. Assume that � ���� � ����	�� . Then, for a formula � � � ���� � �� , � �  is an
explanation of � in

� �
because � � � � �  is consistent in  . However,

� �  is not an
explanation of � in

� �
. Hence,

� �
and

� �
are not explanatorily equivalent. �

Note in Proposition 2.3 that any hypothesis
	

in � � � � �� cannot be added without
violating the consistency of � � � ��	� in  . Thus, � �� is the set of hypotheses that can
be actually used in explanations of some formulas.

Example 2.1 Suppose two abductive frameworks,
� � 	 � FOL � ����� �� � ��� ��!  � and� � 	 � FOL � � ! �"�# � �
� ��!  � . Then,

� �
and

� �
are explainably equivalent, but are

not explanatorily equivalent. On the other hand,
�%$ 	 � FOL � ���&�'�� � � !  � and

�)( 	
� FOL � � ! �*�� � � !  � are neither explainably equivalent nor explanatorily equivalent.
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3 Abduction in First-order Logic

Abduction is used in many AI applications, and classical first-order logic (FOL) is
most often used as the underlying logic for abduction [20; 15; 3; 25; 8]. When the
underlying logic  is FOL, the relation � 	 
 becomes the usual entailment relation � 	 .
A first-order formula � is closed if � contains no free variables. A ground instance of a
first-order formula � is a formula obtained by replacing every variable in � with a term
containing no variables. In first-order abduction, explanations are usually defined as a
set of ground instances from hypotheses as follows [20; 8].

Definition 3.1 Suppose an abductive framework � FOL ��������� , where both the back-
ground knowledge � and the hypotheses � are sets of first-order formulas. Given a
closed formula � as an observation, a set � of ground instances of elements of � is an
explanation of � in � FOL ��������� if ��� ��� 	�� and ��� � is consistent.

In the following, � 	 � � � denotes the set of logical consequences of a set � of first-
order formulas. That is, � 	 � � � 	 � � � � � 	 �  . The next definition is originally
given for default logic by Reiter [21].

Definition 3.2 [22; 20] Let � and � be sets of first-order formulas. An extension of
� with respect to � is � 	 ��� ��� � where � is a maximal subset of ground instances of
elements from � such that ����� is consistent.

When an abductive framework � FOL ��������� is given, we can associate a Reiter’s
default theory � 	 ��� ��� � where � is the set of prerequisite-free normal defaults�	� 

 ��� � �  such that there is a one-to-one correspondence between the extensions of
� (which are defined in[21]) and the extensions of � with respect to � [20]. Using
the notion of extensions in Definition 3.2, explainable equivalence can be characterized
in first-order abduction.

Theorem 3.1 Two abductive frameworks � FOL ��� � ��� � � and � FOL ��� � ��� � � are ex-
plainably equivalent iff the extensions of � � with respect to � � coincide with the ex-
tensions of � � with respect to � � .
Proof. First, we claim that the union of the extensions of � with respect to � are
exactly the set of formulas explainable in � FOL ��������� . To see this, we can use a well-
known theorem [20; 25] that a formula � can be explained in � FOL ������� � iff there is
a consistent extension  of � with respect to � such that  contains � . Thus, the
set of all explainable formulas are precisely those formulas contained in at least one
extension of � with respect to � .

Now, let
��� 	 � FOL ��� � ��� � � and

��� 	 � FOL ��� � ��� � � be two abductive frame-
works. Suppose that the extensions of � � with respect to � � coincide with those of � �
with respect to � � . By the above claim, the set of formulas explainable in

� �
is equal

to the set of formulas explainable in
� �

. This means that
� �

and
� �

are explainably
equivalent.

Conversely, assume that there is an extension  � of � � with respect to � � which
is not an extension of � � with respect to � � . Let ����� be a first-order formula which
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is logically equivalent to  � . Such a formula actually exists because  � 	 � 	 ��� � �
� � holds for some maximally consistent subset � of � � , and hence  � is logically
equivalent to

�������
� ��� �
	����� . Since  � is consistent, ����� is consistent too. Then,

����� is explainable in
� �

because � is an explanation of ����� .
Now, if ����� is not explainable in

� �
, then obviously

� �
and

� �
are not explainably

equivalent. Hence, there is an explanation of � ��� in
� �

. Then, there is an extension
 � of � � with respect to � � which contains ����� . Since  � is not an extension of � �
with respect to � � ,  � �	  � holds. Then,  ���  � . Let � ��� be a formula which is
logically equivalent to  � . By the same argument as above, � ��� is explainable in

���
.

However, this � ��� cannot be explained in
���

. This is because, if � ��� were explained
in
���

, there must be an extension  �� of � � with respect to � � such that  ���  �� ,
which is impossible because any extension is orthogonal to another extension in a
default theory [21]. In any case,

���
and

���
are not explainably equivalent. �

In [19], Reiter’s default theories � � 	 � � � ��� � � and � � 	 ��� � ��� � � are said to
be equivalent if the extensions of � � are the same as the extensions of � � . Using this
notation, explainable equivalence in first-order abduction can also be represented as
follows.

Corollary 3.2 Two abductive frameworks � FOL ��� � ��� � � and � FOL ��� � ��� � � are ex-
plainably equivalent iff the default theories ��� � ��� � � and ��� � ��� � � are equivalent
where � � 	 � � 

 ��� � � �  for � 	�� ��� .
Example 3.1 Suppose two abductive frameworks,

� � 	 � FOL ��� � ��� � � and
� � 	

� FOL ��� � ��� � � , where

� � 	 �
� �'� � ! ��� �� �
� � 	 �
� � ! � ����� � ! � � � �����  �
� � 	 ��� ��� � � � �!�  � and
� � 	 ��� � � � ���"� � ! � � � ����� #

Then,
� �

and
� �

are explainably equivalent. In fact, the two extensions of � � with
respect to � � are � 	 ��� � ����� � � � !  � � 	 � 	 � ��� � � ! � � � � � � � � �  � and � 	 ��� � �
��� � � ���  ��� 	 � 	 � �$� � ��! � �!� � � � � � � �!�  � , which are respectively equivalent to the two
extensions of � � with respect to � � , � 	 ��� � � ��� � � � �  � � and � 	 ��� � ����� � � ���� � � .

Logical equivalence of background theories implies explainable equivalence when
the hypotheses are common.

Corollary 3.3 If � � � � � , then abductive frameworks � FOL ��� � ��� � and � FOL ��� � �����
are explainably equivalent. However, the converse does not hold.

Proof. If � � � � � , then any extension of � � with respect to � is an extension of � �
with respect to � and vice versa. The converse does not hold as Example 2.1 shows.
�

It is interesting to see that we can transform any abductive framework to an ex-
plainably equivalent abductive framework whose background theory is empty. The
next property is also derived by the representation theory for default logic [19].

6



Corollary 3.4 For any abductive framework � FOL ��������� , there is an abductive frame-
work � FOL ��� ��� � � which is explainably equivalent to � FOL ��������� .
Proof. Put � � 	 �
	 ��� � 	 � �  � � �  , where � 	 � � ��� � . Then, it holds for any
� that, � ����� 	 � iff � � � 	�� where � � � and � � 	 �
	 �%� � 	 � �  � � �  � � � .
�

An abductive framework ������������ is called ��������� -compatible if ��� � is con-
sistent. Explainable equivalence can be easily verified for ��������� -compatible frame-
works.

Corollary 3.5 Let � FOL ��� � ��� � � and � FOL ��� � ��� � � be ��� � ��� � � -compatible abduc-
tive frameworks for � 	 � ��� . Then, � FOL ��� � ��� � � and � FOL ��� � ��� � � are explainably
equivalent iff � � ��� � � � � ��� � .
Proof. For any ������� � -compatible abductive framework � FOL ��������� , we have that
� � � is consistent. Then, � 	 ��� � ��� is the unique extension of � with respect to
� . By Theorem 3.1, � FOL ��� � ��� � � and � FOL ��� � ��� � � are explainably equivalent iff
� 	 ��� � ��� � � 	 � 	 ��� � � � � � . Hence, the corollary holds. �

An abductive framework � FOL ������� � is called assumption-free where � is the set
of all literals in the underlying language. It is known that the complexity of find-
ing explanations in assumption-free abductive frameworks is not harder than that in
assumption-based frameworks [25]. Explainable equivalence in the assumption-free
case can also be simply characterized as follows.

Corollary 3.6 Abductive frameworks � FOL ��� � ��� � and � FOL ��� � ��� � are explainably
equivalent iff � � � � � .
Proof. For an assumption-free abductive framework � FOL ������� � , each extension of �
with respect to � is logically equivalent to a model of � . Hence, explainable equiv-
alence implies that the models of � � coincide with the models of � � , and vice versa.
�

For explanatory equivalence in first-order abduction, logical equivalence of back-
ground theories is necessary and sufficient.

Theorem 3.7 Two abductive frameworks � FOL ��� � ����� and � FOL ��� � ����� are explana-
torily equivalent iff � � � � � .
Proof. If � � � � � , then for any � and any � , it holds that, � � ����� 	 � iff � � ����� 	
� , and that, � � � � is consistent iff � � � � is consistent. Hence, � FOL ��� � ��� � and
� FOL ��� � ����� are explanatorily equivalent.

Conversely, suppose that � FOL ��� � ����� and � FOL ��� � ����� are explanatorily equiv-
alent. Then, for any formula � and any � from � , it holds that � � � � � 	 � iff
� � � � � 	 � . Then, for any � , we have � 	 ��� � � � ��	 � 	 ��� � � � � . That is,
� � ��� � � � ��� holds for any � . This implies � � � � � when � 	 � . �
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4 Abductive Logic Programming

Abductive logic programming (ALP) is another popular formalization of abduction
in AI [14; 2; 4]. Background knowledge in ALP is called a logic program, and the
candidate hypotheses are given as literals called abducibles. The most significant dif-
ference between abduction in FOL and ALP is that ALP allows the nonmonotonic
negation-as-failure operator ��� � in background knowledge. In abduction, addition of
hypotheses may invalidate explanations of some observations if the background theory
is nonmonotonic.

Recall that a (logic) program is a set of rules of the form

 ���������	� �
 � ��� � �
� ���������	� ��� � ���� ���� � � # # # ���� ����� � ���� � � # # # ����� � ��
where each  � is a literal ���������� !�#"$�&% � , and ��� � is negation as failure (NAF).
The symbol

�
represents a disjunction. The left-hand side of the rule is called the head,

and the right-hand side is called the body. A rule with variables stands for the set of its
ground instances. Intuitively, the rule in the above form can be read as follows: if all
��'� � � # # # ���� are believed and all ���� � � # # # ���� are disbelieved then either some  �
� �)( ��(#" � should be believed or some �*��+"-, �)(�.$(/ � should be disbelieved.

In this paper, the semantics of a logic program is given by its answer sets [6; 1;
11], while another semantics can be considered as well in ALP [14; 4]. Intuitively
speaking, each answer set represents a set of literals corresponding to beliefs which
can be built by a rational reasoner on the basis of a program [1]. The answer sets for
a program are defined in the following two steps [6; 11]. First, let � be a program
without NAF (i.e., " 	0 and � 	1� ) and � � � , where � is the set of all ground
literals in the language of � . Then, � is an answer set of � if � is a minimal set
satisfying the conditions:

1. � satisfies every rule in � , that is, for any ground rule of the form  � ���������  � �
 ��� � � # # # �� � from � , if

�  �'� � � # # # �� �  � � then
�  � � # # # �� � �2 � �	�� ;

2. If � contains a pair of complementary literals  and
�  , then � 	 � .

Second, given any program � (with NAF) and � � � , consider the program (without
NAF) �

�
obtained as follows: a rule  �3��������� �
)� ���� � � # # # ���� is in �

�
if there is

a ground rule of the form

 ���������	� �
 � ��� � �
� ���������	� ��� � ���� ���� � � # # # ���� ����� � ���� � � # # # ����� � ��
from � such that

�  
� � � # # # �� �  � � and
�  ��� � � # # # �� � 42 � 	 � . Then, � is

an answer set of � if � is an answer set of �
�

. An answer set is consistent if it is
not � . A program is consistent if it has a consistent answer set. A program has none,
one, or multiple answer sets in general. A typical program which has no answer set is� � �5��� � �# . Problem solving by representing knowledge as a logic program and then
computing its answer sets is called answer set programming (ASP). In ASP, alternative
belief sets of a reasoner are represented by multiple answer sets of a program.

Definition 4.1 An abductive (logic) program is defined as a pair 6 � ��798 , where � is a
logic program and 7 is a set of literals called abducibles. Instead of using the notation
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� ALP � � � 7 � , we also use 6 � ��798 to represent an abductive framework whose underlying
logic is ALP.

Definition 4.2 Let 6 � ��7 8 be an abductive program, and � a conjunction of ground
literals called observations. A set � � 7 is a (credulous) explanation of � in 6 � � 798
if every ground literal in � is true in a consistent answer set of � ��� .

Note that both abducibles and observations are restricted to ground literals in ALP.
However, it is known for this framework that rules can be allowed in abducibles and that
observations can contain NAF formulas as well as literals [10]. We assume that the set
of observations includes the special atom

�
, which represents the empty conjunction

of observations. Note that
�

is always true in any set of ground literals. Definition 4.2
can also be represented in a different way as follows [10]. A belief set (with respect to
� ) of an abductive program 6 � � 798 is a consistent answer set of a logic program � � �
where � � 7 . Then, � � 7 is an explanation of � if � is true in a belief set of 6 � ��7 8
with respect to � .

Remark. In Definition 4.2, explanations are defined in a credulous way. Another,
skeptical notion for explanations is defined as � � 7 such that � is true in all consis-
tent answer sets of � ��� . Abductive equivalence relative to skeptical explanations can
also be defined in a similar way, but characterization of such notions needs different
formalizations. For instance, instead of taking the union of belief sets in the equation of
Theorem 4.1, skeptical consequences are computed by taking the intersection of them.

According to Section 2, we consider two types of abductive equivalence for ALP.

Definition 4.3 Abductive programs 6 � � ��7 � 8 and 6 � � ��7 � 8 are explainably equiva-
lent if, for any ground literal � , � is explainable in 6 � � � 7 � 8 iff � is explainable
in 6 � � ��7 � 8 .
Definition 4.4 Abductive programs 6 � � ��798 and 6 � � ��798 are explanatorily equivalent
if, for any conjunction of ground literals � , � is an explanation of � in 6 � � � 798 iff �
is an explanation of � in 6 � � � 798 .

Explainable equivalence in ALP guarantees the same explainability for any ground
literal as a single observation, but it does not matter how each observation is explained.
Hence, we do not have to care about whether multiple observations can be jointly ex-
plained by a common explanation. On the other hand, explanatory equivalence in ALP
guarantees that, any conjunction (or set) of observations has exactly the same credu-
lous explanations. Hence, explanatory equivalence implies that any set of abducibles
� � 7 should explain the same set of observations in each abductive program. Again,
explanatory equivalence implies explainable equivalence.

We now show that explainable equivalence in ALP can be checked by comparing
the belief sets of two abductive programs. Because there exist several methods to
compute belief sets using ASP [7; 24; 10; 11], checking explainable equivalence is
also possible using such methods. In the following, we denote the set of all belief sets
of 6 � � 798 as � � � � ��7 � .
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Theorem 4.1 Abductive programs 6 � � ��7 � 8 and 6 � � ��7 � 8 are explainably equivalent
iff �

� ��� ����� ��� ���	�
� 	

�
� ���!�����

� � � � �
� #

Proof. Recall that � � 7 is an explanation of a ground literal � iff � is true in
a belief set of 6 � ��798 with respect to � . Then, the set of all explainable literals are
precisely those literals contained in some belief sets of 6 � ��798 with respect to some � .
Hence, the union of the belief sets of 6 � ��798 are exactly the set of literals explainable
in 6 � � 798 . Therefore, two abductive programs are explainably equivalent iff the unions
of the belief sets of two abductive programs coincide. �

The next corollary gives a sufficient condition.

Corollary 4.2 Abductive programs 6 � � ��7 � 8 and 6 � � ��7 � 8 are explainably equivalent
if � � � � � � 7 � � 	�� � � � � � 7 � � .

In some case of ��������� -compatible problems, explanatory equivalence can be eas-
ily verified. Here, a logic program is definite if every its rule is NAF-free and has
exactly one atom in the head and only atoms in the body. A definite program has a
unique answer set that is equivalent to its least model. An abductive program 6 � ��798 is
called definite if � is a definite logic program and 7 is a set of atoms.

Corollary 4.3 Suppose that 6 � � ��7 � 8 and 6 � � ��7 � 8 are definite abductive programs.
Then, 6 � � � 7 � 8 and 6 � � ��7 � 8 are explainably equivalent if the least model of � � � 7 �
coincides with that of � � � 7 � .
Example 4.1 Given the common set of abducibles 7 	 ��� ��!  and three logic pro-
grams:

� � 	 � � � � � � � !  �
� � 	 � � � ! � � � �  �
� $ 	 � � � � � � � � � � ��!  �

the three abductive programs 6 � � � 798 (for � 	 � ��� ��
 ) are all explainably equivalent,
but none of them are explanatorily equivalent. In particular, the least model of � � � 7
is
��� � � � � ��!  , which is identical to that of � � � 7 . � $ is not definite because of the

third rule, but 6 � $ ��798 has three belief sets:
� �� � ��� � � � �  � ��� ��!  , the union of which is

equal to that of 6 � � ��798 for � 	 � ��� .
Explanatory equivalence in ALP, on the other hand, requires a more semantical no-

tion of logic programming. Note that explanatory equivalence of 6 � � ��7 8 and 6 � � ��798
implies � � � � � � 7 � 	�� � � � � � 7 � , but the converse does not hold.

Example 4.2 Suppose � � 	 ��� � � � � �  , � � 	 ��� � ��� � � � � � �  and
7 	 ���  . Then, � � � � � � 7 � 	 � � � � � � 7 � 	 � ��� � �#  . However, � is an explanation
of
�

,
�

and
�

in 6 � � � 798 , but is not an explanation of them in 6 � � � 798 . In fact, � � alone
has no answer set although � � � ���  has the answer set

��� � �# .
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To characterize explanatory equivalence precisely, we need to utilize the concept of
equivalence in logic programming and ASP. There are several notions for equivalence
in logic programming, and weak equivalence and strong equivalence are most well
known. We say that two programs are weakly equivalent if they simply agree with their
answer sets. The notion of weak equivalence is similar to that of logical equivalence
in FOL and other classical logics. Given two abductive programs 6 � � � 798 and 6 � � ��798 ,
weak equivalence of � � and � � is not a sufficient condition for explanatory equivalence
of them, and is not even a sufficient condition for explainable equivalence. However,
weak equivalence is meaningful when the abducibles are empty.

Proposition 4.4 Abductive programs 6 � � ��� 8 and 6 � � ��� 8 are explanatorily equivalent
iff � � and � � are weakly equivalent.

On the other hand, strong equivalence [18; 16] is a more context-sensitive notion
for equivalence of logic programs. Two logic programs � � and � � are said to be
strongly equivalent if for any additional logic program � , � � ��� and � � ��� have
the same answer sets. Obviously, strong equivalence implies weak equivalence (when
� 	 � ). When we allow NAF in logic programs, weak equivalence is too fragile as
a criterion. For example,

� � � ��� � �  and
� � �  are weakly equivalent with the

same unique answer set
� �#

, but are not strongly equivalent because the addition of
�

to both results in the withdrawal of
�

in the former only. In [16], it is argued that strong
equivalence can be used to simplify a part of a logic program without looking at the
other part. For example,

� � � �  and � are strongly equivalent, so that the rule in the
former can always be eliminated from any program.

For many applications, however, strong equivalence is too strong, and often we
can restrict the language for additional programs � to some subset � of the whole
language of programs. Then, two programs � � and � � are said to be strongly equivalent
with respect to � if � � ��� and � � ��� have the same answer sets for any program
� � � [13]. Such restriction of � is practicably interesting because knowledge bases
are usually divided into invariable and variable parts such that only variable parts are
changed in updates. The equivalence notion with such restriction is called relative
strong equivalence [17; 13; 27]. Using this notion, explanatory equivalence can be
characterized as follows.

Theorem 4.5 Two abductive programs 6 � � � 798 and 6 � � ��7 8 are explanatorily equiva-
lent iff � � and � � are strongly equivalent with respect to 7 .

Proof. Suppose that 6 � � ��798 and 6 � � ��798 are explanatorily equivalent. Then, for any
conjunction � of literals and any � � 7 , it holds that, � is an explanation of � in
6 � � ��798 iff � is an explanation of � in 6 � � ��7 8 . The latter equivalence then implies
that, for any � and any � , we have that, � is true in a belief set of 6 � � ��798 with respect
to � iff � is true in a belief set of 6 � � ��7 8 with respect to � . Then, for any � and any
� , � is true in an answer set of � � � � iff � is true in an answer set of � � � � . That is,
for any � and any set � of literals, � is an answer set of � � � � iff � is an answer set
of � � � � . Hence, � � and � � are strongly equivalent with respect to 7 . The converse
direction can also be proved by tracing the above proof backward. �
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Example 4.3 Given the common set of abducibles 7 	 �
� ��!  , consider three pro-
grams

� � 	 � � � � � � � !  �
� � 	 � � � � � � � ! � � � !  �
� $ 	 � � � ! � � � ! #

Then, the three abductive programs 6 � � � 798 (for � 	�� ��� � 
 ) are explainably equivalent.
Although 6 � � � 798 is explanatorily equivalent to 6 � � ��7 8 , it is not to 6 � $ ��798 [23]. In
fact, � � and � � are strongly equivalent with respect to 7 , while � � and � $ are not
because the addition of

�
derives

�
in � � but this is not the case in � $ . This example

shows that unfold/fold transformation [26] does not preserve explanatory equivalence
in ALP [23] even when � � and � � are definite.

5 Abduction with Removal of Hypotheses

The two notions of abductive equivalence in Section 4 can be applied to extended ab-
duction [9; 12] in ALP, in which abducibles can not only be added to a program but
also be removed from the program to explain an observation. Extended abduction is
defined by Inoue and Sakama[9] in autoepistemic logic for formalizing dynamics of
abductive theories, and is then incorporated in ALP [12]. The intuition behind ex-
tended abduction is that, when the underlying logic is nonmonotonic, removal of some
formulas makes other formulas become true. Hence, explanations are caused not only
by addition of new hypotheses but also by deletion of old hypotheses.

To characterize abductive equivalence in extended abduction, we need to extend
both the definition of belief sets and the notion of relative strong equivalence by taking
removals of literals and rules into account.

Definition 5.1 Let 6 � ��7 8 be an abductive program, and � a conjunction of ground
literals. A pair ��� ��� � where � ��� � 7 is a (credulous) explanation of � (in 6 � � 798 )
if � is true in some consistent answer set of � � � � � ��� .

The notion of normal abduction, which has been discussed in Section 4, can be
defined as the task of finding explanations with � 	�� in extended abduction.

Remark. In extended abduction, Inoue and Sakama also define the notion of anti-
explanations as follows [9; 12]. A pair ��� ��� � � � ��� � � is an anti-explanation of
� if � is not explainable in � � � � � � � . The notion of anti-explanations is useful
when there are negative observations which should not exist in the world. Because
explanations are defined in a credulous way in Section 4, anti-explanations are defined
in a skeptical way: ��� ��� � is an anti-explanation of � if � is not true in any consistent
answer set of � � � � � ��� . Abductive equivalence relative to anti-explanations can also
be defined in a way similar to that for explanations in this section, but characterization
of such notions needs different formalizations.

We now define the notion of abductive equivalence for extended abduction. This
can be done as straightforward extensions of Definitions 4.3 and 4.4.
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Definition 5.2 Abductive programs 6 � � � 7 � 8 and 6 � � ��7 � 8 are explainably equivalent
in extended abduction if, for any ground literal � , � is explainable in 6 � � � 7 � 8 iff � is
explainable in 6 � � ��7 � 8 .
Definition 5.3 Abductive programs 6 � � ��798 and 6 � � ��798 are explanatorily equivalent
in extended abduction if, for any conjunction of ground literals � , ��� ��� � is an expla-
nation of � in 6 � � � 798 iff ������� � is an explanation of � in 6 � � ��7 8 .

The notion of belief sets also needs to be extended by taking removal of abducibles
into account. That is, a belief set (with respect to ��� ��� � ) of 6 � ��798 is a consistent
answer set of � � � � � � � where � ��� � 7 . Then, a pair ��� ��� � is an explanation of
� iff � is true in a belief set of 6 � � 798 with respect to ��� ��� � .

Like Theorem 4.1, explainable equivalence in extended abduction can be checked
by comparing the unions of the belief sets of two abductive programs.

Example 5.1 Suppose the set of abducibles 7 	 ���  and two logic programs:

� � 	 � � �5��� � � � � �  �
� � 	 � � � �  �

the abductive programs
� � 	 6 � � ��798 and

��� 	 6 � � � 798 are explainably equivalent
in extended abduction. In fact,

�
has the unique explanation � � � ���  � in

� �
and the

explanations � ���  ��� � and � �
�  � �
�  � in � � , and
�

has the explanations � � ��� � , � ���  ��� �
and � ���  � ���  � in

� �
and the explanations � �
�  ��� � and � �
�  � �
�  � in

� �
. Obviously,� �

and
� �

are not explanatorily equivalent in extended abduction.

To characterize explanatory equivalence in extended abduction, we use the equiva-
lence criterion called update equivalence [13]. Given two sets of rules

�
and � , two

logic programs � � and � � are said to be update equivalent with respect to � � � ��� if
� � � � � � � � and � � � � � � � � have the same answer sets for any two logic programs
� � �

and � � � . Here, two parameters
�

and � correspond to the languages for
deletion and addition, respectively. Update equivalence is suitable for taking program
updates into account when two logic programs are compared. Clearly, the notion of
strong equivalence is a special case of update equivalence where

�
is empty and � is

the set of all rules in the language. The notion of update equivalence is strong enough
to capture explanatory equivalence as the next theorem shows.

Theorem 5.1 Two abductive programs 6 � � � 798 and 6 � � ��7 8 are explanatorily equiva-
lent in extended abduction iff � � and � � are update equivalent with respect to � 7 � 7 � .
Proof. Suppose that 6 � � ��7 8 and 6 � � � 798 are explanatorily equivalent in extended ab-
duction. Then, for any conjunction � of literals and any � ��� � 7 , it holds that,
������� � is an explanation of � in 6 � � � 798 iff ��� ��� � is an explanation of � in 6 � � ��798 .
The latter equivalence then implies that, for any � and any ��� ��� � , we have that, �
is true in a belief set of 6 � � ��798 with respect to ������� � iff � is true in a belief set of
6 � � ��798 with respect to ��� ��� � . Then, for any � and any ��� ��� � , � is true in an answer
set of � � � � � � ��� iff � is true in an answer set of � � � � � � � � . That is, for any
������� � and any set � of literals, � is an answer set of � � � � � � � � iff � is an answer
set of � � � � � � � � . Hence, � � and � � are update equivalent with respect to � 7���7 � .
The converse direction can also be proved by tracing the above proof backward. �
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Example 5.2 Suppose that two programs � � and � � are given as

� � 	 � � � � � � � � �5��� � ! � ! �  �
� � 	 � � � � � ��� � ! � � �5��� � ! � ! �  #

Let 7 � 	 ��� ��!  and 7 � 	 ��� ��! � � � �  . Then, 6 � � ��7 � 8 and 6 � � ��7 � 8 are explana-
torily equivalent, while 6 � � ��7 � 8 and 6 � � ��7 � 8 are not explanatorily equivalent. In
fact, � � and � � are update equivalent with respect to � 7 � � 7 � � , but are not with re-
spect to � 7 � � 7 � � . For the latter claim, we see that the answer sets of � � � �
� � �  are� �
� ��! � � � �   , which are not the same as the answer sets of � � � ��� � �  , i.e.,

� ��� ��! � �   .

6 Discussion

We have introduced the notion of abductive equivalence in this paper. We have consid-
ered two definitions of abductive equivalence in two logics. Two important differences
between FOL and ALP as the underlying logics are that (1) explainability is considered
for all formulas in FOL while only literals are considered as observations in ALP, and
that (2) nonmonotonicity by NAF appears in ALP while this is not the case in FOL.
Intuitively, the restriction of observations to literals in ALP gives more chances for
two abductive programs to be equivalent, but the existence of nonmonotonicity in ALP
makes comparison of abductive programs more complicated.

We have observed that logical equivalence of background theories in FOL or weak
equivalence of logic programs does not simply imply abductive equivalence except for
some very simple cases. That is why we need to characterize abductive equivalence in
terms of other known concepts in classical or nonmonotonic logics. Having such char-
acterizations in this paper, the next target will be to develop transformation techniques
which preserve abductive equivalence.

We have considered a rather simple framework for abductive equivalence. In future
work, further parameters should be considered in defining abductive equivalence. For
example, we can consider another underlying logic for background theories, hypothe-
ses and observations. The criteria of best explanations are also important. It is easy
to show that explanatory equivalence implies coincidence of the minimal explanations.
However, the converse does not hold.

Another future topic is to define the concept of generality/specificity or strength/weakness
for abductive frameworks. These concepts are useful for comparing two abductive
frameworks, and generality is related to induction too. It might be natural for such rela-
tions to be anti-symmetric, that is, two abductive frameworks are explainably/explanatorily
equivalent iff one is both stronger and weaker than another at the same time. Once such
a notion is formalized, suppose we know that an abductive program 6 � � ��7 � 8 is weaker
than another abductive program 6 � � ��7 � 8 . This means, for example, that there is a lit-
eral � which cannot be explained in the former but can be in the latter. Then, we expect
that � � may have less knowledge than � � or 7 � may have less hypotheses than 7 � .
However, the situation is more complicated in nonmonotonic programs. Hence, rela-
tionships between amounts of background theories and hypotheses should be important
in these concepts for abductive frameworks.
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Abduction has been used in the process of scientific discovery. We should update
our theory in accordance with situation change and discovery of surprising facts. The
notions of equivalence and generality are always important in evaluating such scientific
processes. We hope that our work can serve a basis for the theory of abductive change.
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