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Abstract. Logic programs (LPs) and argumentation frameworks (AFs) are two
declarative knowledge representation (KR) formalisms used for different reason-
ing tasks. The purpose of this study is interlinking two different reasoning com-
ponents. To this end, we introduce two frameworks: LPAF and AFLP. The for-
mer enables to use the result of argumentation in AF for reasoning in LP, while
the latter enables to use the result of reasoning in LP for arguing in AF. These
frameworks are extended to bidirectional frameworks in which AF and LP can
exchange information with each other. We also investigate their connection to
several general KR frameworks from the literature.

1 Introduction

A logic program (LP) represents declarative knowledge as a set of rules and realizes
commonsense reasoning as logical inference. An argumentation framework (AF), on
the other hand, represents arguments and an attack relation over them, and defines
acceptable arguments under various semantics. The two frameworks specify different
types of knowledge and realize different types of reasoning. In our daily life, however,
we often use two modes of reasoning interchangeably. For instance, consider a logic
program LP = {get vaccine← safe∧ effective, ¬get vaccine← not safe} which says
that we get a vaccine if it is safe and effective, and we do not get it if it is not safe. To
see whether a vaccine is safe and effective, we refer to an expert opinion. It is often the
case, however, that multiple experts have different opinions. In this case, we observe ar-
gumentation among experts and take it into account to make a decision. In other words,
the truth value of safe is determined by an external argumentation framework such as
AF = ({s,d},{(s,d),(d,s)}) in its most condensed form where s represents safe and d
represents dangerous. A credulous reasoner will accept safe under the stable semantics,
while a skeptical reasoner will not accept it under the grounded semantics. A reasoner
determines acceptable arguments under chosen semantics and makes a decision using
his/her own LP. For another example, consider a debate on whether global warming is
occurring. Scientists and politicians make different claims based on evidence and scien-
tific knowledge. An argumentation framework is used for representing the debate, while
arguments appearing in the argumentation graph are generated as results of reasoning
from the background knowledge of participants represented by LPs.
⋆ The second author has been partial supported by NSF grants 1914635, 1757207, 1812628.



In these examples, we can encode reasoners’ private knowledge as LPs and argu-
mentation in the public space as AFs. It is natural to distinguish two different types of
knowledge and interlink them with each other. In the first example, an agent has a pri-
vate knowledge base that refers to opinions in a public argumentation framework. In the
second example, on the other hand, agents participating in a debate have their private
knowledge bases supporting their individual claims.

Logic programs and argumentation frameworks are mutually transformed with each
other. Dung [6] provides a transformation from LPs to AFs and shows that stable mod-
els [11] (resp. the well-founded model [16]) of a logic program correspond to stable
extensions (resp. the grounded extension) of a transformed argumentation framework.
He also introduces a converse transformation from AFs to LPs, and shows that the se-
mantic correspondences still hold. The results are extended to equivalences of LPs and
AFs under different semantics (e.g. [5]). Using such transformational approaches, an
LP and an AF can be combined and one could perform both argumentative reasoning
and commonsense reasoning in a single framework. One of the limitations of this ap-
proach is that in order to combine an LP and an AF into a single framework, the two
frameworks must have the corresponding semantics. For instance, suppose that an agent
has a knowledge base LP and refers to an AF . If the agent uses the stable model seman-
tics of LP, then to combine LP with AF using a transformation proposed in [5, 6] AF
must use the stable extension semantics. Argumentation can have an internal structure
in structured argumentation. In assumption based argumentation (ABA) [7], for in-
stance, an argument for a claim c is supported by a set of assumptions S if c is deduced
from S using a set of LP rules (S ⊢ c). A structured argumentation has a knowledge base
inside an argument and provides reasons that support particular claims. An argument
is represented as a tree and an attack relation is introduced between trees. However,
merging argumentation and knowledge bases into a single framework would produce a
huge argumentation structure that is complicated and hard to manage.

In this paper, we introduce new frameworks, called LPAF and AFLP, for interlink-
ing LPs and AFs. The LPAF uses the result of argumentation in AFs for reasoning
in LPs. In contrast, the AFLP uses the result of reasoning in LPs for arguing in AFs.
These frameworks are extended to bidirectional frameworks in which AFs and LPs can
exchange information with each other. We address applications of the proposed frame-
work and investigate connections to existing KR frameworks. The rest of this paper
is organized as follows. Section 2 reviews basic notions of logic programming and ar-
gumentation frameworks. Section 3 introduces several frameworks for interlinking LPs
and AFs. Section 4 presents applications to several KR frameworks. Section 5 discusses
complexity issues and Section 6 summarizes the paper. Due to space limitation, proofs
of propositions are omitted in this paper. They are available in the longer version [15].

2 Preliminaries

We consider a language that contains a finite set L of propositional variables.

Definition 1. A (disjunctive) logic program (LP) is a finite set of rules of the form:
p1∨·· ·∨ pℓ← q1, . . . ,qm, not qm+1, . . . ,not qn (ℓ,m,n≥ 0)

where pi and q j are propositional variables in L and not is negation as failure (NAF).



The left-hand side of← is the head and the right-hand side is the body. For each rule r of
the above form, head(r), body+(r), and body−(r) respectively denote the sets of atoms
{p1, . . . , pℓ}, {q1, . . . ,qm}, and {qm+1, . . . ,qn}, and body(r) = body+(r)∪body−(r). A
(disjunctive) fact is a rule r with body(r) =∅. A fact is a non-disjunctive fact if ℓ= 1.
An LP is a normal logic program if |head(r) |≤ 1 for any rule r in the program. Given
a logic program LP, put Head(LP) =

∪
r∈LP head(r) and Body(LP) =

∪
r∈LP body(r).

Throughout the paper, a program means a propositional/ground logic program and BLP
is the set of ground atoms appearing in a program LP (called the Herbrand base).

A program LP under the µ semantics is denoted by LPµ . The semantics of LPµ is
defined as the set M µ

LP ⊆ 2BLP (or simply M µ ) of µ models of LP. If a ground atom p
is included in every µ model of LP, we write LPµ |= p. LPµ is simply written as LP if the
semantics is clear in the context. A logic programming semantics µ is universal if every
LP has a µ model. The stable model semantics is not universal, while the well-founded
semantics of normal logic programs is universal.3 A logic program LP under the stable
model semantics (resp. well-founded semantics) is written as LPstb (resp. LPwf ).

Definition 2. An argumentation framework (AF) is a pair (A,R) where A ⊆ L is a
finite set of arguments and R⊆ A×A is an attack relation.

For an AF (A,R), we say that an argument a attacks an argument b if (a,b) ∈ R. A set
S of arguments attacks an argument a iff there is an argument b ∈ S that attacks a; S is
conflict-free if there are no arguments a,b ∈ S such that a attacks b. S defends an argu-
ment a if S attacks every argument that attacks a. We write D(S) = {a | S defends a}.

The semantics of AF is defined as the set of designated extensions [6]. Given AF =
(A,R), a conflict-free set of arguments S ⊆ A is a complete extension iff S = D(S); a
stable extension iff S attacks each argument in A \ S; a preferred extension iff S is a
maximal complete extension of AF (wrt ⊆); a grounded extension iff S is the minimal
complete extension of AF (wrt ⊆). An argumentation framework AF under the ω se-
mantics is denoted by AFω . The semantics of AFω is defined as the set E ω

AF (or simply
E ω ) of ω extensions of AF . We abbreviate the above four semantics of AF as AFcom,
AFstb, AFprf and AFgrd , respectively. AFω is simply written as AF if the semantics is
clear in the context. Among the four semantics, the following relations hold: for any
AF , E stb

AF ⊆ E prf
AF ⊆ E com

AF and E grd
AF ⊆ E com

AF . E stb
AF is possibly empty, while others are not.

In particular, E grd
AF is a singleton set. An argumentation semantics ω is universal if ev-

ery AF has an ω extension. The stable semantics is not universal, while the other three
semantics presented above are universal.

3 Linking LP and AF

3.1 From AF to LP

We first introduce a framework that can use the result of argumentation in AFs for
reasoning in LPs. In this subsection, we assume that Head(LP)∩A =∅ for a program
LP and AF = (A,R), that is, no rule in a logic program has an argument in its head.

3 We assume readers’ familiarity with the stable model semantics [11, 14] and the well-founded
semantics [16].



Definition 3. Given an LP and AF = (A,R), define LP+A = {r ∈ LP | body(r)∩ A ̸=
∅} and LP−A = {r ∈ LP | body(r)∩ A = ∅}. We say that each rule in LP+A (resp.
LP−A) refers to arguments (resp. is free from arguments). An argument a∈ A is referred
to in LP if a appears in LP. Define A |LP= {a ∈ A | a is referred to in LP}.

By definition, an LP is partitioned into LP = LP+A∪LP−A.

Definition 4. Given an LP and AF = (A,R), a µ model of LP extended by A ⊆ 2A is a
µ model of LP∪{a←| a ∈ E ∩A |LP} for some E ∈A if A ̸=∅; otherwise, it is a µ
model of LP−A.

Definition 5. A simple LPAF framework is a pair ⟨LPµ , AFω ⟩, where LPµ is a program
under the µ semantics and AFω is an argumentation framework under the ω semantics.

Definition 6. Let φ = ⟨LPµ , AFω ⟩ be a simple LPAF framework. Suppose that AF has
the set of ω extensions: E ω = {E1, . . . ,Ek} (k≥ 0). Then an LPAF model of φ is defined
as a µ model of LPµ extended by E ω . The set of LPAF models of φ is denoted by Mφ .

By definition, an LPAF model is defined as a µ model of the program LP by intro-
ducing arguments that are referred to in LP and are acceptable under the ω semantics
of AF . If the AF part has no ω extension (E ω = ∅), on the other hand, AF provides
no justification for arguments referred to by LP. In this case, we do not take the conse-
quences that are derived using arguments in AF . Then an LPAF model is constructed
by rules that are free from arguments in AF .

Example 1. Consider φ1 = ⟨LPstb, AFstb ⟩ where LPstb = { p← a, q← not a} and
AFstb = ({a,b},{(a,b),(b,a)}). As AFstb has two stable extensions {a} and {b}, φ1
has two LPAF models {p,a} and {q}. On the other hand, if we use ω = grounded
then AFgrd has the single extension ∅. Then ⟨LPstb, AFgrd ⟩ has the single LPAF model
{q}.4 Next, consider φ2 = ⟨LPstb, AFstb ⟩ where LPstb = { p← not a, q← not p} and
AFstb = ({a,b},{(a,b),(a,a)}). As AFstb has no stable extension and the second rule in
LPstb is free from arguments, φ2 has the single LPAF model {q}. Note that if we keep
the first rule then a different conclusion p is obtained from LPstb. We do not consider
the conclusion justified because AFstb provides no information on whether the argument
a is acceptable or not.

Proposition 1. Let φ1 = ⟨LPµ , AF1
ω1
⟩ and φ2 = ⟨LPµ , AF2

ω2
⟩ be two LPAFs such that

E ω1
AF1 ̸=∅. If E ω1

AF1 ⊆ E ω2
AF2 , then Mφ1 ⊆Mφ2 .

Proposition 1 implies the inclusion relations with the same AF under different seman-
tics: Mφ1 ⊆Mφ2 holds for φ1 = ⟨LPµ , AFpr f ⟩ and φ2 = ⟨LPµ , AFcom ⟩; φ1 = ⟨LPµ , AFstb ⟩
and φ2 = ⟨LPµ , AFpr f ⟩; or φ1 = ⟨LPµ , AFgrd ⟩ and φ2 = ⟨LPµ , AFcom ⟩.

Two programs LP1
µ and LP2

µ are uniformly equivalent relative to A (denoted LP1
µ ≡A

u

LP2
µ ) if for any set of non-disjunctive facts F ⊆ A, the programs LP1

µ ∪F and LP2
µ ∪F

have the same set of µ models [10]. The equivalence of two simple LPAF frameworks
is then characterized as follows.

4 Note that an AF extension represents whether an argument is accepted or not. If an argument
a is not in an extension E, a is not accepted in E. Then not a in LP becomes true by NAF.



Proposition 2. Let φ1 = ⟨LP1
µ , AFω ⟩ and φ2 = ⟨LP2

µ , AFω ⟩ be two LPAFs such that
E ω ̸=∅. Then, Mφ1 = Mφ2 if LP1

µ ≡A
u LP2

µ and A |LP1
µ
= A |LP2

µ
where AFω = (A,R).

A simple LPAF framework φ = ⟨LPµ , AFω ⟩ is consistent if φ has an LPAF model.
The consistency of φ depends on the chosen semantics µ . In particular, a simple LPAF
framework φ = ⟨LPµ , AFω ⟩ is consistent if µ is universal. φ = ⟨LPµ , AFω ⟩ may have
an LPAF model even if M µ

LP = E ω
AF =∅.

Example 2. Consider φ = ⟨LPstb, AFstb ⟩ where LPstb = { p← not a, not p, q←} and
AFstb = ({a}, {(a,a)}). Then M stb

LP = E stb
AF =∅, but φ has the LPAF model {q}.

A simple LPAF consists of a single LP and an AF, which is generalized to a frame-
work that consists of multiple LPs and AFs.

Definition 7. A general LPAF framework is defined as a tuple ⟨LPm,AFn ⟩ where
LPm = (LP1

µ1
, . . . ,LPm

µm) and AFn = (AF1
ω1
, . . . ,AFn

ωn). Each LPi
µi
(1≤ i≤ m) is a logic

program LPi under the µi semantics and each AF j
ω j (1 ≤ j ≤ n) is an argumentation

framework AF j under the ω j semantics.

A general LPAF framework is used in a situation where multiple agents have in-
dividual LPs as their private knowledge bases and each agent possibly refers to the
results of argumentation of open AFs. The semantics of a general LPAF is defined as
an extension of a simple LPAF framework.

Definition 8. Let φ = ⟨LPm,AFn ⟩ be a general LPAF framework. The LPAF state of
φ is defined as a tuple (Σ1, . . . ,Σm) where Σi = (Mi

1, . . . ,M
i
n) (1 ≤ i ≤ m) and Mi

j

(1≤ j ≤ n) is the set of LPAF models of ⟨LPi
µi
,AF j

ω j ⟩.

By definition, an LPAF state consists of a collection of LPAF models such that each
model is obtained by combining a program LPi

µi
and an argumentation framework AF j

ω j .

Example 3. Consider φ = ⟨(LPstb, LPw f ), (AFstb, AFgrd)⟩ where LPstb = LPw f = { p←
a, not q, q← a, not p} and AFstb = AFgrd = ({a,b},{(a,b),(b,a)}). In this case,
⟨LPstb, AFstb ⟩ has three LPAF models: {p,a}, {q,a} and ∅; ⟨LPstb, AFgrd ⟩ has the sin-
gle LPAF model: ∅; ⟨LPw f , AFstb ⟩ has two LPAF models:5 {a} and ∅; ⟨LPw f , AFgrd ⟩
has the single LPAF model: ∅. Then φ has the LPAF state (Σ1,Σ2) where Σ1 =({{p,a},
{q,a},∅},{∅}) and Σ2 = ({{a},∅},{∅}).

The above example shows that a general LPAF is used for comparing the results of
combination between LP and AF under different semantics. Given tuples (S1, . . . ,Sk)
and (T1, . . . ,Tℓ) (k, ℓ≥ 1), define (S1, . . . ,Sk)⊕ (T1, . . . ,Tℓ) = (S1, . . . ,Sk,T1, . . . ,Tℓ).

Proposition 3. Let φ = ⟨LPm,AFn ⟩ be a general LPAF framework. Then the LPAF
state (Σ1, . . . ,Σm) of φ is obtained by (Σ1, . . . ,Σk)⊕ (Σk+1, . . . ,Σm) (1 ≤ k ≤ m− 1)
where (Σ1, . . . ,Σk) is the LPAF state of φ1 = ⟨LPk, AFn ⟩ and (Σk+1, . . . ,Σm) is the
LPAF state of φ2 = ⟨LPm

k+1, AF
n ⟩ where LPm

k+1 = (LPk+1
µk+1

, . . . ,LPm
µm).

Proposition 3 presents that a general LPAF has the modularity property; φ is partitioned
into smaller φ1 and φ2, and the introduction of new LPs to φ is done incrementally.

5 We consider the well-founded model as the set of true atoms under the well-founded semantics.



3.2 From LP to AF

We next introduce a framework that can use the result of reasoning in LPs for arguing
in AFs. In this subsection, we assume that Body(LP)∩A = ∅ for a program LP and
AF = (A,R), that is, no rule in a logic program has an argument in its body.

Definition 9. Let AF = (A,R) and M ⊆ L . Then AF with support M is defined as
AFM = (A,R′) where R′ = R\{(x,a) | x ∈ A and a ∈ A∩M }.

By definition, AFM is an argumentation framework in which every tuple attacking a∈M
is removed from R. As a result, every argument included in M is accepted in AFM .

Definition 10. Let AF =(A,R) and M ⊆ 2BLP . An ω extension of AF supported by M
is an ω extension of AFM for some M ∈M if M ̸=∅; otherwise, it is an ω extension
of (A′,R′) where A′ = A\BLP and R′ = R∩ (A′×A′).

Definition 11. A simple AFLP framework is a pair ⟨AFω , LPµ ⟩ where AFω is an argu-
mentation framework under the ω semantics and LPµ is a program under µ semantics.

Definition 12. Let ψ = ⟨AFω , LPµ ⟩ be a simple AFLP framework and M µ ⊆ 2BLP be
the set of µ models of LP. An AFLP extension of ψ is defined as an ω extension of AFω
supported by M µ . Eψ denotes the set of AFLP extensions of ψ .

By definition, an AFLP extension is defined as an ω extension of AFM
ω that takes

into account support information in a µ model M of LP. If the LP part has no µ model
(M µ = ∅), on the other hand, LP provides no ground for arguments in A∩BLP. In
this case, we do not use those arguments that rely on LP. Then an AFLP extension is
constructed using arguments that do not appear in LP.

Example 4. Consider ψ1 = ⟨AFstb, LPstb ⟩ where AFstb = ({a,b},{(a,b),(b,a)}) and
LPstb = {a← p, p← not q, q← not p}. LPstb has two stable models M1 = {a, p} and
M2 = {q}, then AFM1

stb = ({a,b},{(a,b)}) and AFM2
stb = AFstb. Hence, ψ1 has two AFLP

extensions {a} and {b}. On the other hand, if we use ω = grounded, then ⟨AFgrd , LPstb ⟩
has two AFLP extensions {a} and ∅. Next, consider ψ2 = ⟨AFgrd , LPstb ⟩where AFgrd =
({a,b,c},{(a,b),(b,c)}) and LPstb = {a← p, p← not p}. As LPstb has no stable
model, ψ2 has the AFLP extension {b} as the grounded extension of ({b,c},{(b,c)}).

Proposition 4. Let ψ1 = ⟨ AFω , LP1
µ1
⟩ and ψ2 = ⟨AFω , LP2

µ2
⟩ be two AFLPs such that

M µ1
LP1 ̸=∅. If M µ1

LP1 ⊆M µ2
LP2 , then Eψ1 ⊆ Eψ2 .

Baumann [1] introduces equivalence relations of AFs with respect to deletion of
arguments and attacks. For two AF1

ω = (A1,R1) and AF2
ω = (A2,R2), AF1

ω and AF2
ω are

normal deletion equivalent (denoted by AF1
ω ≡nd AF2

ω ) if for any set A of arguments
(A′1,R1∩ (A′1×A′1)) and (A′2,R2∩ (A′2×A′2)) have the same set of ω extensions where
A′1 = A1 \A and A′2 = A2 \A. In contrast, AF1

ω and AF2
ω are local deletion equivalent

(denoted by AF1
ω ≡ld AF2

ω ) if for any set R of attacks (A1,R1 \R) and (A2,R2 \R) have
the same set of ω extensions. By definition, we have the next result.

Proposition 5. Let ψ1 = ⟨AF1
ω , LPµ ⟩ and ψ2 = ⟨AF2

ω , LPµ ⟩ be two AFLPs. Then, Eψ1 =
Eψ2 if (i) M µ =∅ and AF1

ω ≡nd AF2
ω ; or (ii) M µ ̸=∅ and AF1

ω ≡ld AF2
ω .



Baumann shows that AF1
ω ≡ld AF2

ω if and only if AF1
ω =AF2

ω for any ω = {com,stb,prf ,
grd}. In contrast, necessary or sufficient conditions for AF1

ω ≡nd AF2
ω are given by the

structure of argumentation graphs and they differ from the chosen semantics in general.
A simple AFLP framework ψ = ⟨AFω , LPµ ⟩ is consistent if ψ has an AFLP exten-

sion. By definition, a simple AFLP framework ψ = ⟨AFω , LPµ ⟩ is consistent if ω is
universal. A simple AFLP consists of a single AF and an LP, which is generalized to a
framework that consists of multiple AFs and LPs.

Definition 13. A general AFLP framework is defined as a tuple ⟨AFn,LPm ⟩ where
AFn = (AF1

ω1
, . . . ,AFn

ωn) and LPm = (LP1
µ1
, . . . ,LPm

µm). Each AF j
ω j (1 ≤ j ≤ n) is an

argumentation framework AF j under the ω j semantics and each LPi
µi
(1 ≤ i ≤ m) is a

logic program LPi under the µi semantics.

A general AFLP framework is used in a situation such that argumentative dialogues
consult LPs as information sources. The semantics of a general AFLP is defined as an
extension of a simple AFLP framework.

Definition 14. Let ψ = ⟨AFn,LPm ⟩ be a general AFLP framework. The AFLP state
of ψ is defined as a tuple (Γ1, . . . ,Γn) where Γj = (E j

1, . . . ,E
j
m) (1 ≤ j ≤ n) and E j

i
(1≤ i≤ m) is the set of AFLP extensions of ⟨AF j

ω j , LPi
µi
⟩.

By definition, an AFLP state consists of a collection of AFLP extensions such that
each extension is obtained by combining AF j

ω j and LPi
µi

.

Example 5. Consider ψ = ⟨(AFgrd), (LP1
stb, LP2

stb)⟩ where AFgrd = ({a,b},{(a,b)}),
LP1

stb = {a← p, p←}, and LP2
stb = {b← q, q←}. Then, ⟨AFgrd ,LP1

stb ⟩ has the
AFLP extension {a}, while ⟨AFgrd ,LP2

stb ⟩ has the AFLP extension {a,b}. Then the
AFLP state of ψ is (Γ1) where Γ1 = ({{a}},{{a,b}}).

A general AFLP has the modularity property. The operation⊕ is defined in Section 3.1.

Proposition 6. Let ψ = ⟨AFn,LPm ⟩ be a general AFLP framework. Then the AFLP
state (Γ1, . . . ,Γn) of ψ is obtained by (Γ1, . . . ,Γk)⊕ (Γk+1, . . . ,Γn) (1≤ k ≤ n−1) where
(Γ1, . . . ,Γk) is the AFLP state of ψ1 = ⟨AFk, LPm ⟩ and (Γk+1, . . . ,Γn) is the AFLP state
of ψ2 = ⟨AFn

k+1, LP
m ⟩ where AFn

k+1 = (AFk+1
ωk+1

, . . . ,AFn
ωn).

3.3 Bidirectional Framework

In Sections 3.1 and 3.2 we provided frameworks in which given LPs and AFs one refers
the other in one direction. This subsection provides a framework such that LPs and AFs
interact with each other. Such a situation happens in social media, for instance, where a
person posts his/her opinion to an Internet forum, which arises public discussion on the
topic, then the person revises his/her belief by the result of discussion. In this subsec-
tion, we assume that any rule in LP could contain arguments in its head or body.

Definition 15. A simple bidirectional LPAF framework is defined as a pair ⟨⟨LPµ , AFω ⟩⟩
where LPµ is a logic program and AFω is an argumentation framework.



Definition 16. Let ζ = ⟨⟨LPµ , AFω ⟩⟩ be a simple bidirectional LPAF framework. Sup-
pose that a simple AFLP framework ψ = ⟨AFω , LPµ ⟩ has the set of AFLP extensions
Eψ . Then a BDLPAF model of ζ is defined as a µ model of LPµ extended by Eψ .

BDLPAF models reduce to LPAF models if Eψ coincides with E ω
AF . In the bidirectional

framework, an LP can refer to arguments in AF and AF can get a support from the LP.

Example 6. Consider ζ = ⟨⟨LPstb, AFstb ⟩⟩ where LPstb = {a← not p, q← c} and
AFstb = ({a,b,c},{(a,b),(b,a),(b,c)}). The simple AFLP framework ⟨AFstb,LPstb ⟩
has the AFLP extension E = {a,c}. So, the BDLPAF model of ζ becomes {a,c,q}.

Similarly, we can make a simple AFLP bidirectional.

Definition 17. A simple bidirectional AFLP framework is defined as a pair ⟨⟨AFω , LPµ ⟩⟩
where AFω is an argumentation framework and LPµ is a logic program.

Definition 18. Let η = ⟨⟨AFω , LPµ ⟩⟩ be a simple bidirectional AFLP framework. Sup-
pose that a simple LPAF framework φ = ⟨LPµ , AFω ⟩ has the set of LPAF models Mφ .
Then a BDAFLP extension of η is defined as an ω extension of AFω supported by Mφ .

Example 7. Consider η = ⟨⟨AFgrd , LPstb ⟩⟩ where AFgrd = ({a,b},{(a,b),(b,a)}) and
LPstb = { p← a, q← not a, b← q}. The simple LPAF framework ⟨LPstb,AFgrd ⟩ has
the single LPAF model M = {b,q}. So, the BDAFLP extension of η becomes {b}.

Given AFω and LPµ , a series of BDLPAF models (or BDAFLP extensions) can
be built by repeatedly referring to each other. Starting with the AFLP extensions E0

ψ ,
the BDLPAF models M1

φ extended by E0
ψ are produced, then the BDAFLP extensions

E1
ψ supported by M1

φ are produced, which in turn produce the BDLPAF models M2
φ

extended by E1
ψ , and so on. Likewise, starting with the LPAF models M0

φ , the sets E1
ψ ,

M1
φ , E2

ψ , . . ., are produced. We write the sequences of BDLPAF models and BDAFLP
extensions as [M1

φ ,M2
φ , . . .] and [E1

ψ ,E2
ψ , . . .], respectively.

Proposition 7. Let [M1
φ ,M2

φ , . . .] and [E1
ψ ,E2

ψ , . . .] be sequences defined as above. Then,

Mi
φ = Mi+1

φ and E j
ψ = E j+1

ψ for some i, j ≥ 1.

4 Applications

4.1 Deductive Argumentation

A structured argumentation is a framework such that there is an internal structure to an
argument. In structured argumentation, knowledge is represented using a formal lan-
guage and each argument is constructed from that knowledge. Given a logical language
L and a consequence relation ⊢ in L , a deductive argument [2] is a pair ⟨F ,c⟩ where
F is a set of formulas in L and c is a (ground) atom such that F ⊢ c. F is called
the support of the argument and c is the claim. A counterargument is an argument that
attacks another argument. It is defined in terms of logical contradiction between the
claim of a counterargument and the premises of the claim of an attacked argument.



An AFLP framework is captured as a kind of deductive arguments in the sense
that LP can support an argument a appearing in AF . There is an important difference,
however. In an AFLP, argumentative reasoning in AF and deductive reasoning in LP are
separated. The AF part is kept at the abstract level and the LP part represents reasons for
supporting particular arguments. As such, an AFLP provides a middle ground between
abstract argumentation and structured argumentation. Such a separation keeps the whole
structure compact and makes it easy to update AF or LP without changing the other part.
Thus, AFLP/LPAF supports an elaboration tolerant development of knowledge bases.
This allows us to characterize deductive argumentation in AFLP as follows.

Definition 19. Let ψ = ⟨AFn, LPm ⟩ be a general AFLP framework s.t. AF i
ωi
= (Ai,Ri)

(1 ≤ i ≤ n). (i) a ∈ Ai is supported in LP j
µ j for some 1 ≤ j ≤ m (written (LP j

µ j ,a)) if

LP j
µ j |= a; (ii) (LP j

µ j ,a) and (LPk
µk
,b) rebut each other if {(a,b), (b,a)} ⊆ Ri for some

i; (iii) (LP j
µ j ,a) undercuts (LPk

µk
,b) if LPk

µk
∪{a} ̸|= b.

Example 8. ([2]) (a) There is an argument that the government should cut spending
because of a budget deficit. On the other hand, there is a counterargument that the
government should not cut spending because the economy is weak. These arguments
are respectively represented using deductive arguments as: A1 = ⟨{deficit, deficit→
cut}, cut ⟩ and A2 = ⟨{weak, weak→¬cut}, ¬cut ⟩where A1 and A2 rebut each other.
The situation is represented using the AFLP ⟨(AFstb), (LP1

stb, LP2
stb)⟩ such that AFstb =

({cut,no-cut}, {(cut,no-cut), (no-cut,cut)}); LP1
stb = {cut← deficit, deficit←}; LP2

stb =
{no-cut← weak, weak←}. Then (LP1

stb,cut) and (LP2
stb,no-cut) rebut each other.

(b) There is an argument that the metro is an efficient (eff ) form of transport, so
one can use it. On the other hand, there is a counterargument that the metro is inef-
ficient (ineff ) because of a strike. These arguments are respectively represented using
deductive arguments as: A1 = ⟨{eff , eff → use}, use⟩ and A2 = ⟨{strike, strike→
¬eff}, ¬eff ⟩ where A2 undercuts A1. The situation is represented using an AFLP
⟨(AFstb), (LP1

stb, LP2
stb)⟩ such that AFstb =({eff , ineff}, {(eff , ineff ),(ineff ,eff )}); LP1

stb =
{use← eff , eff ← not ineff }; LP2

stb = { ineff ← strike, strike←}. Then (LP2
stb, ineff )

undercuts (LP1
stb, use).

4.2 Argument Aggregation

Argument aggregation or collective argumentation [3] considers a situation in which
multiple agents may have different arguments and/or opinions. The problems are then
what and how to aggregate arguments. In abstract argumentation, the problem is for-
mulated as follows. Given several AFs having different arguments and attacks, find ac-
ceptable arguments among those AFs. In the argument-wise aggregation, individually
supported arguments are aggregated by some voting mechanism.

Example 9. ([3]) Suppose three agents deciding which among three arguments a, b,
and c, are collectively acceptable. Each agent has a subjective evaluation of the in-
teraction among those arguments, leading to three different individual AFs: AF1 =
({a,b,c}, {(a,b),(b,c)}), AF2 = ({a,b,c}, {(a,b)}), and AF3 = ({a,b,c}, {(b,c)}).
Three AFs have the grounded extensions {a,c}, {a,c}, and {a,b}, respectively. By
majority voting, {a,c} is obtained as the collective extension.



In Example 9, however, how an agent performs a subjective evaluation is left as a black-
box. The situation is represented using a general AFLP ψ where ψ = ⟨(AFgrd), (LP1

stb,
LP2

stb, LP3
stb)⟩ with AFgrd = ({a,b,c}, {(a,b),(b,c)}), LP1

stb = { p← not q}, LP2
stb =

{c← p, p←}, and LP3
stb = {b← not q}. Then (AFgrd ,LP1

stb) has the AFLP extension
{a,c}; (AFgrd ,LP2

stb) has the AFLP extension {a,c}; (AFgrd ,LP3
stb) has the AFLP exten-

sion {a,b}. In this case, the AFLP state of ψ is (Γ ) with Γ =({{a,c}}, {{a,c}}, {{a,b}}).
As such, three agents evaluate the common AF based on their private knowledge base,
which results in three individual sets of extensions in the AFLP state. Observe that in
this case, the private knowledge of the agents are related to p and q, and only the third
agent is influenced by his private knowledge base in drawing the conclusion.

When multiple agents argue on the common AF, argument-wise aggregation is char-
acterized using AFLP as follows. Suppose Γ = (T1, . . . ,Tk) (k ≥ 1) with Ti ⊆ 2A where
A is the set of arguments of AF. For any E ⊆ A, let FΓ (E) = h where h is the number
of occurrences of E in T1, . . . ,Tk. Define maxFΓ = {E |FΓ (E) is maximal}.

Definition 20. Let ψ = ⟨AF1, LPm ⟩ (m ≥ 1) be a general AFLP that consists of a
single AF and multiple LPs. When ψ has the AFLP state (Γ ) with Γ = (T1, . . . ,Tm), the
collective extension by majority voting is any extension in maxFΓ .

Applying it to the above example, maxFΓ = {{a,c}}. In Definition 20, if there is
E ⊆ A such that FΓ (E) = m, then E is included in every Ti (1 ≤ i ≤ m). In this case,
all agents agree on E.

4.3 Multi-Context System

Multi-context system (MCS) has been introduced as a general formalism for integrating
heterogeneous knowledge bases [4]. An MCS M = (C1, . . . ,Cn) consists of contexts
Ci = (Li,kbi,bri) (1 ≤ i ≤ n), where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is a
knowledge base of Li, BSi is the set of possible belief sets, ACCi : KBi 7→ 2BSi is a
semantic function of Li, and bri is a set of Li-bridge rules of the form:

s← (c1:p1), . . . ,(c j:p j), not (c j+1:p j+1), . . . , not (cm:pm)
where, for each 1 ≤ k ≤ m, we have that: 1 ≤ ck ≤ n, pk is an element of some belief
set of Lck , and kbi∪{s} ∈ KBi. Intuitively, a bridge rule allows us to add s to a context,
depending on the beliefs in the other contexts. Given a rule r of the above form, we
denote head(r) = s. The semantics of an MCS is described by the notion of belief states.
A belief state of an MCS M = (C1, . . . ,Cn) is a tuple S = (S1, . . . ,Sn) where Si ∈ BSi
(1≤ i≤ n). Given a belief state S and a bridge rule r of the above form, r is applicable
in S if pℓ ∈ Scℓ for each 1 ≤ ℓ ≤ j and pk ̸∈ Sck for each j+ 1 ≤ k ≤ m. By app(B,S)
we denote the set of the bridge rules r ∈ B that are applicable in S. A belief state S of M
is an equilibrium if Si ∈ ACCi(kbi∪{head(r) | r ∈ app(bri,S)}) for any i (1≤ i≤ n).

Given an LPAF φ = ⟨LPµ , AFω ⟩, the corresponding MCS of φ is defined by φmcs =
(C1,C2) where C1 = (L1,LPµ ,br1) in which L1 is the logic of LP under the µ semantics
and br1 = {a← (c2 : a) | a ∈ A |LP}; and C2 = (L2,AFω ,∅) where L2 is the logic of
AF under the ω semantics. Intuitively, the bridge rules transfer the acceptability of
arguments in AFω to LPµ .



Proposition 8. Let φ = ⟨LPµ ,AFω ⟩ be an LPAF framework and φmcs the correspond-
ing MCS of φ . If AFω is consistent then (S1,S2) is an equilibrium of φmcs iff S1 is an
LPAF model of φ and S2 is an ω extension of AFω .

Let ψ = ⟨AFω , LPµ ⟩ be an AFLP framework with AFω = (A,R). The corresponding
MCS of ψ is defined by ψmcs = (C1,C2) where C1 = (L1,AFω ,br1) in which L1 is
the logic of AF under the ω semantics, and br1 = {(y,x)← (c2 : a) | ∃a∃x [a ∈ A∩
BLP and (x,a) ∈ R]} where y(̸∈ A) is a new argument; C2 = (L2,LPµ ,∅) where L2
is the logic of LP under the µ semantics. As with LPAF, the bridge rules transfer the
acceptability of arguments from LPµ to AFω . We assume that new arguments and attacks
introduced by the bridge rules br1 are respectively added to the set of arguments and
attacks of AF .
Proposition 9. Let ψ = ⟨AFω ,LPµ ⟩ be an AFLP framework and ψmcs the correspond-
ing MCS of ψ . If LPµ is consistent then (S1,S2) is an equilibrium of ψmcs iff S1 \Y is an
AFLP extension of ψ and S2 is a µ model of LPµ , where Y is the set of new arguments
introduced by br1.

A general LPAF φ = ⟨LPm, AFn ⟩ can be viewed as a collection of MCS. Let C j
i

be the corresponding MCS of ⟨LPi
µi
,AF j

ω j ⟩. It is easy to see that by Proposition 8,
(C1

i , . . . ,C
n
i ) can be used to characterize the i-th element Σi of the LPAF state (Σ1, . . . ,Σm)

of φ . A similar characterization of an AFLP state using MCS could be derived by Propo-
sition 9. A simple LPAF/AFLP is captured as an MCS with a restriction of two systems
(Propositions 8 and 9). However, φmcs (resp. ψmcs) is well-defined only if its submodule
AFω (resp. LPµ ) is consistent. This is because an MCS assumes that each context is
consistent. By contrast, LPAF/AFLP just neglects rules/arguments relying on informa-
tion that comes from inconsistent AF/LP. As such, LPAF/AFLP shares a view similar
to MCS while it is different from MCS in general.

4.4 Constrained Argumentation Frameworks
Constrained argumentation frameworks (CAF) [13] could be viewed as another attempt
to extend AF with a logical component. A CAF is of the form ⟨A,R,C ⟩ where (A,R)
is an AF and C is a propositional formula over A. A set of arguments S satisfies C if
S∪{¬a | a ∈ A \ S} |= C. For a semantics ω , an ω C-extension of ⟨A,R,C ⟩ is an ω
extension of (A,R) that satisfies C, i.e., the constraint C is used to eliminate undesirable
extensions. Therefore, a CAF can be viewed as an LPAF (LPµ ,AFω) where AFω is the
original AF of the CAF and LPµ is used to verify the condition C.

Consider a CAF δ = ⟨A,R,C ⟩. For simplicity of the presentation, assume that C is
in DNF. For a ∈ A, let na be a unique new atom associated with a, denoting that a is not
acceptable. Let ⊤ be a special atom denoting true. Define the logic program LP(C) as:
LP(C)= {⊤← l′1, . . . , l

′
n | a conjunct l1∧·· ·∧ln is in C and l′i = a if li = a, and l′i = not a

if li = ¬a}∪{na← not a, ← a,na | a ∈ A}∪{← not⊤}. We can easily verify that
a set of arguments S satisfies C iff S∪{na | a∈ A\S}∪{⊤} is a stable model of LP(C).
The next proposition highlights the flexibility of LPAF in that it can also be used to
express preferences among extensions of AF.
Proposition 10. Let δ = ⟨A,R,C ⟩ be a CAF. Then, (LP(C)stb,AFω) has an LPAF model
M iff M \ ({na | a ∈ A}∪{⊤}) is an ω C-extension of δ .



5 Complexity

The complexity of LPAF/AFLP depends on the complexities of LP and AF. Let us con-
sider the model existence problem of simple LPAF frameworks, denoted by ExistsM ,
which is defined as: “given an LPAF framework φ , determine whether φ has an LPAF
model.” For a simple LPAF framework φ = ⟨LPµ , AFω ⟩, the existence of an LPAF
model of φ depends on µ and ω . For example, if µ = well-founded and ω = grounded
then φ has a unique LPAF model which can be computed in polynomial time (if LP
is a normal logic program); on the other hand, if µ = stable and ω = stable then the
existence of an LPAF model of φ is not guaranteed. Generally, the next result holds.

Proposition 11. Let φ = ⟨LPµ , AFω ⟩ be a simple LPAF framework such that µ is not
universal. Also, let Cµ and Cω be the complexity classes of LPµ and AFω in the poly-
nomial hierarchy, respectively, and max(Cµ ,Cω) the higher complexity class among
Cµ and Cω . Then the model existence problem of φ belongs to the complexity class
max(Cµ ,Cω).

Intuitively, the result follows from the observation that we can guess a pair (X ,Y )
and check whether Y is an ω extension of AFω and X is a µ model of LPµ ∪{a←| a ∈
Y ∩A |LP}. A similar argument is done for a simple AFLP framework. As an example,
the existence of a stable model of a propositional disjunctive LP is in Σ P

2 [9] while
the existence of extensions in AF is generally in NP or trivial [8], then ExistsM for
LPAF/AFLP involving µ = stable is in Σ P

2 where ω is one of the semantics of AF
considered in this paper. Other semantics of AF (e.g. semi-stable, ideal, etc) or LP (e.g.
supported, possible models, etc) can be easily adapted.

The model existence problem of simple LPAF/AFLP can be generalized to the state
existence problem of general LPAF/AFLP frameworks, and it can be shown that it is the
highest complexity class among all complexity classes involved in the general frame-
work. Similar arguments can be used to determine the complexity class of credulous or
skeptical reasoning in LPAF/AFLP. For example, the skeptical entailment in LPAF, i.e.,
checking whether an atom a belongs to every LPAF model of φ = ⟨LPstb,AFω ⟩ is in
Π P

2 . We omit detailed discussion for space limitation.

6 Concluding Remarks

Several studies have attempted to integrate LP and AF–translating from one into the
other (e.g. [5, 6]), or incorporating rule bases into an AF in the context of structured
argumentation (e.g. [2, 7]). An approach taken in this paper is completely different from
those approaches. We do not merge LP and AF while interlinking two components in
different manners. LPAF and AFLP enable to combine different reasoning tasks while
keeping independence of each knowledge representation. Separation of two frameworks
also has an advantage of flexibility in dynamic environments, and several LPs and AFs
are freely combined in general LPAF/AFLP frameworks under arbitrary semantics. In
addition, it supports an elaboration tolerant use of various knowledge representation
frameworks. The potential of the proposed framework is shown by several applications
to existing KR frameworks. LPAF or AFLP is realized by linking solvers of LP and AF.



In the proposed framework, LP imports ω extensions from AF in LPAF, while
AF imports µ models from LP in AFLP. We can also consider frameworks such that
LP (resp. AF) imports skeptical/credulous consequences from AFω (resp. LPµ ). Such
frameworks are realized by importing the intersection/union of ω extensions of AF to
LP (or µ models of LP to AF). In this paper we considered extension based semantics
of AF. If we consider the labelling based semantics of AF, each argument has three
different justification states, in, out, or undecided. In this case, LPAF/AFLP is defined
in a similar manner by selecting a 3-valued semantics of logic programs. The current
framework can be further extended and applied in several ways. For instance, we can
extend it to allow a single LP/AF to refer to multiple AFs/LPs. If AFω is coupled with
a probabilistic logic program LPµ , an AFLP (AFω ,LPµ) could be used for comput-
ing probabilities of arguments in LPµ and realizing probabilistic argumentation in AFω
[12]. As such, the proposed framework has potential for rich applications in AI.
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9. Eiter, T., Leone, N., Saccá, D.: Expressive power and complexity of partial models for dis-
junctive deductive databases. Theoretical Computer Science, 206:181–218, Elsevier (1998)

10. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM TOCL 8(3), 17 (2007)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc.
JICSLP, MIT Press, pp. 1070–1080 (1988)

12. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. J. Approxi-
mate Reasoning 54:47–81 (2013)

13. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In:
Proc. KR’06, pp. 112–122 (2006)

14. Przymusinski, T. C.: Stable semantics for disjunctive programs. New Generation Computing
9:401–424 (1991)

15. Sakama, C., Son, T. C.: Interlinking logic programs and argumentation frameworks. In:
Proc. NMR-2021, pp. 305–314 (2021). https://sites.google.com/view/nmr2021/home

16. Van Gelder, A., Ross, K., Schlipf, J. S.: The well-founded semantics for general logic pro-
grams. J. ACM 38:620–650 (1991)


