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Abstract. Nonmonotonic logic programming (NMLP) and inductive logic
programming (ILP) are two important extensions of logic programming.
The former aims at representing incomplete knowledge and reasoning
with commonsense, while the latter targets the problem of inductive con-
struction of a general theory from examples and background knowledge.
NMLP and ILP thus have seemingly different motivations and goals, but
they have much in common in the background of problems, and tech-
niques developed in each field are related to one another. This paper
presents techniques for combining these two fields of logic programming
in the context of nonmonotonic inductive logic programming (NMILP).
We review recent results and problems to realize NMILP.

1 Introduction

Representing knowledge in computational logic gives formal foundations of ar-
tificial intelligence (AI) and provides computational methods for solving prob-
lems. Logic programming supplies a powerful tool for representing declarative
knowledge and computing logical inference. However, logic programming based
on classical Horn logic is not sufficiently expressive for representing incomplete
human knowledge, and is inadequate for characterizing nonmonotonic common-
sense reasoning. Nonmonotonic logic programming (NMLP) [3,5] is introduced
to overcome such limitations of Horn logic programming by extending the rep-
resentation language and enhancing the inference mechanism. The purpose of
NMLP is to represent incomplete knowledge and reason with commonsense in a
program.

On the other hand, machine learning concerns with the problem of building
computer programs that automatically construct new knowledge and improve
with experience [27]. The primary inference used in learning is induction which
constructs general sentences from input examples. Inductive Logic Programming
(ILP) [28, 30, 33] realizes inductive machine learning in logic programming, which
provides a formal background to inductive learning and has advantages of us-
ing computational tools developed in logic programming. The goal of ILP is the
inductive construction of first-order clausal theories from examples and back-
ground knowledge.



NMLP and ILP thus have seemingly different motivations and goals, how-
ever, they have much in common in the background of problems, and techniques
developed in each field are related to one another. First, the process of discov-
ering new knowledge by humans is the iteration of hypotheses generation and
revision, which is inherently nonmonotonic. Indeed, induction is nonmonotonic
reasoning in the sense that once induced hypotheses might be changed by the
introduction of new evidences. Second, induction problems assume background
knowledge which is incomplete, otherwise there is no need to learn. Therefore,
representing and reasoning with incomplete knowledge are vital issues in ILP.
Third, NMLP uses hypotheses in the process of commonsense reasoning, and
hypotheses generation is particularly important in abductive logic programming.
Abduction generates hypotheses in a different manner from induction, but they
are both inverse deduction and extend theories to account for evidences. Indeed,
abduction and induction interact, and work complementarily in many phases
[14]. Fourth, in NMLP updates of general rules are considered in the context
of intentional knowledge base update [6], while a similar problem is captured in
ILP as concept-learning [26]. It is argued in [9] that these two researches handle
the same problem when formulated in a logical framework. With these reasons,
it is clear that both NMLP and ILP cope with similar problems and have close
links to each other.

Comparing NMLP and ILP, NMLP performs default reasoning and derives
plausible conclusions from incomplete knowledge bases. Various types of infer-
ences and semantics are introduced to extract intuitive conclusions from a pro-
gram. NMLP may change conclusions by the introduction of new information,
but it has no mechanism of learning new knowledge from the input. By con-
trast, ILP extends a theory by constructing new rules from input examples and
background knowledge. Discovered rules reveal hidden laws between examples
and background knowledge, and are also used for predicting unseen phenom-
ena. However, the present ILP mostly considers Horn logic programs or classical
clausal programs as background knowledge, and has limited applications to non-
monotonic situations.

Thus, both NMLP and ILP have limitations in their present frameworks and
complement each other. Since both commonsense reasoning and machine learn-
ing are indispensable for realizing intelligent information systems, combining
techniques of the two fields in the context of nonmonotonic inductive logic pro-
gramming (NMILP) is meaningful and important. Such combination will extend
the representation language on the ILP side, while it will introduce a learning
mechanism to programs on the NMLP side. Moreover, linking different exten-
sions of logic programming will strengthen the capability of logic programming
as a knowledge representation tool in AI. From the practical viewpoint, the com-
bination will be beneficial for ILP to use well-established techniques in NMLP,
and will open new applications of NMLP.

NMLP realizes nonmonotonic reasoning using negation as failure (NAF).
Some researches in ILP, however, argue that negation as failure is inappropriate
in machine learning. In [8], the authors say:



For concept learning, negation as failure (and the underlying closed world
assumption) is unacceptable because it acts as if everything is known.
Clearly, in learning this is not the case, since otherwise nothing ought to
be learned.

Although the account is plausible, it does not justify excluding NAF in ILP.
Suppose that background knowledge is given as a Horn logic program, and the
CWA or NAF infers negative facts which are not derived from the program.
When a new evidence F which is initially assumed false under the CWA or NAF
is observed, this just means that the old assumption —F is rebutted. The task of
inductive learning is then to revise the old theory to explain the new evidence. On
the other hand, if one excludes NAF in a background program, she loses the way
of representing default negation in the program. This is a significant drawback in
representing knowledge and restricts the application of ILP. In fact, NAF enables
to write shorter and simpler programs and appears in many basic but practical
Prolog programs such as computing set differences, finding union/intersection of
two lists, etc [42]. Horn ILP precludes every program including these rules with
NAF. Thus, NAF is also important in ILP, and the use of NAF never invalidates
the need of learning.

In the field of ILP, it is often considered the so-called nonmonotonic problem
setting [18]. Given a background Horn logic program P and a set E of positive
examples, it computes a hypothesis H which is satisfied in the least Herbrand
model of P U E. This is also called the weak setting of ILP [11]. In this setting,
any fact which is not derived from P U F is assumed to be false under the closed
world assumption (CWA). By contrast, the strong setting of ILP computes a
hypothesis H which, together with P, implies F, and does not imply negative
examples. The strong setting is usually employed in ILP and is also considered
in this paper (see Section 2.2).! The nonmonotonic setting is called “nonmono-
tonic” in the sense that it performs a kind of default reasoning based on the
closed world assumption. Some systems take similar approaches using Clark’s
completion ([10], for instance). The above mentioned nonmonotonic setting is
clearly different from our problem setting. The former still considers an induc-
tion problem within clausal logic, while we extend the problem to nonmonotonic
logic programs.

This paper presents techniques for realizing inductive machine learning in
nonmonotonic logic programs. The paper is not intended to provide a compre-
hensive survey of the state of the art, but mainly consists of recent research
results of the author. The rest of this paper is organized as follows. Section 2
reviews frameworks of NMLP and ILP. Section 3 presents various techniques for
induction in nonmonotonic logic programs. Section 4 summarizes the paper and
addresses open issues.

! The weak setting is also called descriptive/confirmatory induction, while the strong
setting is called explanatory/predictive induction [15].



2 Preliminaries

2.1 Nonmonotonic Logic Programming

Nonmonotonic logic programs considered in this paper are mormal logic pro-
grams, logic programs with negation as failure.
A normal logic program (NLP) is a set of rules of the form:

A < By, ..., By, not By, ..., not B, (1)

where each A, B; (1 < i < n) is an atom and not presents negation as failure
(NAF). The left-hand side of < is the head, and the right-hand side is the
body of the rule. The conjunction in the body of (1) is identified with the set
{Bi,...,Bm,not By11,...,n0t By, }. For arule R, head(R) and body(R) denote
the head of R and the body of R, respectively. The conjunction in the body is
often written by the Greek letter I'. A rule with the empty body A < is called a
fact, which is identified with the atom A. A rule with the empty head < I" with
I" # () is also called an integrity constraint. Throughout the paper a program
means a normal logic program unless stated otherwise. A program P is Horn
if no rule in P contains NAF. A Horn program is definite if it contains no
integrity constraint. The Herbrand base HB of a program P is the set of all
ground atoms in the language of P. Given the Herbrand base HB, we define
HBT =HB U {not A | A€ HB}. Any element in HB" is called an LP-literal,
and an LP-literal of the form not A is called an NAF-literal. We say that two
LP-literals L; and Lo have the same sign if either (L1 € HB and Ly € HB) or
(L1 € HB and Ly ¢ HB). For an LP-literal L, pred(L) denotes the predicate in
L and const(L) denotes the set of constants appearing in L. A program, a rule,
or an LP-literal is ground if it contains no variable. A program/rule containing
variables is semantically identified with its ground instantiation, i.e., the set
of ground rules obtained from the program/rule by substituting variables with
elements of the Herbrand universe in every possible way.

An interpretation is a subset of H3. An interpretation I satisfies the ground
rule R of the form (1) if {B1,...,Bn} C I and {Bm+1,--.,Bn} NI =0 imply
A € I (written as I = R). In particular, I satisfies the ground integrity con-
straint < By, ..., B, not Byy1, - .., not B, if either {By,..., By} \ I # 0 or
{Bm+1;---,Bn} NI # 0. When a rule R contains variables, I = R means that I
satisfies every ground instance of R. An interpretation which satisfies every rule
in a program is a model of the program. A model M of a program P is minimal
if there is no model N of P such that N C M. A Horn logic program has at
most one minimal model called the least model.

For the semantics of NLPs, we consider the stable model semantics [17] in
this paper. Given a program P and an interpretation M, the ground Horn logic
program PM is defined as follows: the rule A < By,..., B,, is in PM iff there
is a ground rule of the form (1) in the ground instantiation of P such that
{Bmi1,--.,Bn}NM = (). If the least model of PM is identical to M, M is called
a stable model of P. A program may have none, one, or multiple stable models
in general. A program having exactly one stable model is called categorical [3].



A stable model coincides with the least model in a Horn logic program. A locally
stratified program [36] has the unique stable model which is called the perfect
model. Given a stable model M, we define M™ =M U{notA | A€ HB\ M }.

A program is consistent (under the stable model semantics) if it has a stable
model; otherwise a program is inconsistent. Throughout the paper, a program
is assumed to be consistent unless stated otherwise. If every stable model of a
program P satisfies a rule R, it is written as P |=; R. Else if no stable model of a
program P satisfies a rule R, it is written as P =5 not R. In particular, P =; A
if a ground atom A is true in every stable model of P; and P =5 not A if A is
false in every stable model of P. By contrast, if every model of P satisfies R,
it is written as P = R. Note that when P is Horn, the meaning of }= coincides
with the classical entailment.

2.2 Inductive Logic Programming

A typical ILP problem is stated as follows. Given a logic program B represent-
ing background knowledge and a set ET of positive examples and a set E~ of
negative examples, find hypotheses H satisfying?

1. BUH e for every e € ET.
2. BUH £ f for every f € E.
3. BU H is consistent.

The first condition is called completeness with respect to positive examples,
and the second condition is called consistency with respect to negative examples.
It is also implicitly assumed that B [~ e for some e € ET or B = f for some
f € E~, because otherwise there is no need to introduce H. A hypothesis H
covers (resp. uncovers) an example e if BUH = e (resp. BU H = e).

The goal of ILP is then to develop an algorithm which efficiently computes hy-
potheses satisfying the above three conditions. Induction algorithms are roughly
classified into two categories by the direction of searching hypotheses. A top-
down algorithm firstly generates a most general hypothesis and refines it by
means of specialization, while a bottom-up algorithm searches hypotheses by
generalizing (positive) examples. Each algorithm locally alternates search direc-
tions from general to specific and vice versa to correct hypotheses. Algorithms
presented in Sections 3.1-3.3 of this paper are bottom-up on this ground.

An induction algorithm is correct if every hypothesis produced by the algo-
rithm satisfies the above three conditions. By contrast, an induction algorithm is
complete if it produces every rule satisfying the conditions. Note that the correct-
ness is generally requested for algorithms, while the completeness is problematic
in practice. For instance, consider the background program B and the positive
example F such that

B: r(f(x)) « r(z),
q(a) <, r(b) +.
E: p(a).

2 When there is no negative example, EV is just written as E.



Then, any of the following rules

explains p(a). Generally, there exist possibly infinite solutions for explaining an
example, and designing a complete induction algorithm without any restriction
is of little value in practice. In order to extract meaningful hypotheses, additional
conditions are usually imposed on possible hypotheses to reduce the search space.
Such a condition is called an induction bias and is defined as any information
that syntactically or semantically influences learning processes.

In the field of ILP, most studies consider a Horn logic program as background
knowledge and induce Horn clauses as hypotheses. In this paper, we consider an
NLP as background knowledge and induce hypothetical rules possibly containing
NAF. In the next section, we give several algorithms which realize this.

3 Induction in Nonmonotonic Logic Programs

3.1 Least Generalization

Generalization is a basic operation to perform induction. In his seminal work [34],
Plotkin introduces generalization in clausal theories based on subsumption. Given
two clauses C7 and Cs, C; 6-subsumes Cy if C10 C Cs for some substitution 6.
Then, C is more general than Cs under 0-subsumption if Cy 6-subsumes Cs.
In normal logic programs, a subsumption relation between rules is defined as
follows.

Definition 3.1. (subsumption relations between rules) Let R; and Ry be two
rules. Then, R; 0-subsumes Ry (written as Ry »=¢ Rs) if head(R;)60 = head(Ry)
and body(R1)6 C body(R2) hold for some substitution 6. In this case, R; is said
more general than Re under 0-subsumption.

Thus subsumption is defined for comparison of rules with the same predicate
in the heads. The same definition is employed by Taylor [43]. Fogel and Zaverucha
[16] discuss the effect of subsumption to reduce the search space in normal logic
programs.

For generalization in clausal theories, least generalizations of clauses are par-
ticularly important. The notion is defined for nonmonotonic rules as follows.

Definition 3.2. (least generalization under subsumption) Let R be a finite set
of rules such that every rule in R has the same predicate in the head. Then, a
rule R is a least generalization of R under f-subsumption if R =y R; for every
rule R; in R, and for any other rule R’ satisfying R’ =y R; for every R; in R, it
holds that R’ =4 R.



In the clausal language every finite set of clauses has a least generalization.
In particular, every finite set of Horn clauses has a least generalization as a Horn
clause [33, 34].> When we consider normal logic programs, rules are syntactically
regarded as Horn clauses by viewing NAF-literal not p(z) as an atom not_p(x)
with the new predicate not_p. Then the result of Horn logic programs is directly
carried over to normal logic programs.

Theorem 3.1. (existence of a least generalization) Let R be a finite set of rules
such that every rule in R has the same predicate in the head. Then, every non-
empty set R C R has a least generalization under 0-subsumption.

A least generalization of two rules is computed as follows. First, a least gen-
eralization of two terms f(¢1,...,t,) and g(s1,...,8,) is a new variable v if
f # g¢; and is defined as f(lg(t1,81),...,19(tn,sn)) if f = g, where lg(t;,s;)
means a least generalization of ¢; and s;. Next, a least generalization of two
LP-literals L1 = (not)p(t1,...,t,) and Ly = (not)q(s1,...,Sn) is undefined if
L and Ly do not have the same predicate and sign; otherwise, it is defined as
lg(Lh LQ) = (nOt)p(lg(tlv 81)) s ,lg(tna Sn))

Then, a least generalization of two rules Ry = Ay < I'y and Ry = A < I,
where A; and As have the same predicate, is obtained as

lg(Al,Ag) «—TI

where I' = {lg(71,72) | M1 € I, 72 € I3 and lg(y1,72) is defined }. In partic-
ular, if A; and A, are empty, a least generalization of two integrity constraints
+ Il and « I7 is given by + I'. A least generalization of a finite set of rules is
computed by repeatedly applying the above procedure.

In ILP generalization is usually considered in relation to the background
knowledge. Plotkin [35] extends subsumption to relative subsumption for this
use. Given the background knowledge B as a clausal theory, a clause C subsumes
D relative to B if there is a substitution # such that B |= V(C6 — D).

We apply relative subsumption to normal logic programs. Let R = H < A, I
be a rule where A is an atom and I" is a conjunction. Suppose that there is a
rule A’ < I'" in a program P such that Af = A’6 for some substitution . Then,
we say that the rule (H < I, I")0 is obtained by unfolding R in P. We also say
that Ry is obtained by unfolding Ry in P if there is a sequence Ry, ..., Ry of
rules such that R; (1 <i < k) is obtained by unfolding R; ;1 in P.

Definition 3.3. (relative subsumption) Let P be an NLP, and R; and Ry be
two rules. Then, Ry 6-subsumes Ra relative to P (written as Ry tg Ry) if there
is a rule R that is obtained by unfolding R; in P and R #-subsumes Rs. In this
case, Ry is said more general than Ry relative to P under 0-subsumption.

The above definition reduces to Definition 3.1 when P is empty. By the
definition relative subsumption is also defined for two rules having the same

3 If two clauses have no predicate with the same sign in common, the empty clause
becomes the least generalization.



predicate in the heads. In clausal theories, Buntine [7] introduces generalized
subsumption which is defined between definite clauses having the same predicate
in the heads. Comparing two definitions, Buntine’s definition is model theoretic,
while our definition is operational. Taylor [43] introduces normal subsumption
which extends Buntine’s subsumption to normal logic programs and is defined
in a model theoretic manner.

Ezample 3.1. Suppose the background program P, and two rules Ry and Rs as
follows.

P : haswing(x) + bird(z), not ab(z),
bird(z) < sparrow(z),
ab(z) + broken-wing(z).
Ry : flies(x) < has_wing(x).
Ry : flies(x) < sparrow(x), full_grown(x),not ab(x).
From P and R, the rule
Rs : flies(x) < sparrow(x),not ab(z)
is obtained by unfolding. As R3 #-subsumes Rs, Ry if Rs.

In clausal theories, a least generalization does not always exist under relative
subsumption. However, when background knowledge is a finite set of ground
atoms, a least generalization of two clauses is constructed [33,35]. The result
is extended to nonmonotonic rules and is rephrased in our context as follows.
Let P be a finite set of ground atoms, and R; and Ry be two rules. Then, a
least generalization of these rules under relative subsumption is constructed as
a least generalization of R} and R where head(R}) = head(R;) and body(R}) =
body(R;) U B.

Ezample 3.2. Suppose the background program P, and two (positive) examples
R and R» as follows.

P : bird(tweety) <, bird(polly) + .
Ry : flies(tweety) < has_wing(tweety), not ab(tweety).
Ry : flies(polly) + sparrow(polly), not ab(polly).

Then, R| and R} becomes

Ry . flies(tweety) < bird(tweety), bird(polly), has_wing(tweety), not ab(tweety),
RY . flies(polly) < bird(tweety), bird(polly), sparrow(polly), not ab(polly).

The least generalization of R| and R} is
flies(z) + bird(tweety), bird(polly), bird(z), not ab(z).
Removing redundant literals, it becomes
R: flies(z) + bird(x), not ab(x).
In this case, it holds that PU{R} = R; (i = 1,2).



3.2 Inverse Resolution

Inverse resolution [29] is based on the idea of inverting the resolution step be-
tween clauses. There are two operators that carry out inverse resolution, ab-
sorption and identification, which are called the V-operators together. Each
operator builds one of the two parent clauses given the other parent clause and
the resolvent. Suppose two rules Ry : By < I7 and Ry : Ay < By, I5. When
B0, = Bs0s, therule Rg : Asf0y < 1161, I'5605 is produced by unfolding Ry with
R;. Absorption constructs Ro from R; and R3, while identification constructs
R; from Ry and R3 (see figure).

R1:Bl<—F1 RQIAQ(—BQ,FQ

01 02

Rs : As0s Flel, 156,

Given a normal logic program P containing the rules R; and R3, absorption
produces the program A(P) such that

A(P) = (P\{R3}) U{Rs}.

On the other hand, given an NLP P containing the rules R, and Rs, identification
produces the program I(P) such that

I(P) = (P\{Rs}) U{R1}.

Note that there are multiple A(P) or I(P) exist in general according to the
choice of the input rules in P. We write V(P) to mean either A(P) or I(P).
When P is a Horn logic program, any information implied by P is also implied
by V(P), namely
V(P)EP.

In this regard, the V-operators generalize a Horn logic program. In the presence
of negation as failure in a program, however, the V-operators do not work as
generalization operations in general.

Ezample 3.3. Let P be the program:
p(z) < notq(z), q(z) < r(z), s(z)r(z), s(a)<,

which has the stable model { p(a), s(a) }. Absorbing the third rule into the second
rule produces A(P):

p(x) < notq(z), ¢(z) < s(z), s(z)r(x), s(a) <+,

which has the stable model { g(a), s(a) }. Then, P |=5 p(a) but A(P) Fs p(a).



A counter-example for identification is constructed in a similar manner. The
reason is clear, since in nonmonotonic logic programs newly proven facts may
block the derivation of other facts which are proven beforehand. As a result, the
V-operators may not generalize the original program. Moreover, the next exam-
ple shows that the V-operators often make a consistent program inconsistent.

Ezample 3.4. Let P be the program:
p(xz) < q(z), notp(x), q(x) <+ r(z), s(z)<« r(z), s(a) <+,

which has the stable model {s(a)}. Absorbing the third rule into the second
rule produces A(P):

p(z) < q(z), notp(z), q(z) < s(z), s(z) <+ r(z), s(a)<,
which has no stable model.

The above example shows that the V-operators have destructive effect on
the meaning of programs in general. It is also known that they may destroy the
syntactic structure of programs such as acyclicity and local stratification [37].

These observations give us a caution to apply the V-operators to NMLP. A
condition for the V-operators to generalize an NLP is as follows.

Theorem 3.2. (conditions for the V-operators to generalize programs) [37] Let
P be an NLP, and Ry, Ra, Rs3 be rules at the beginning of this section. For any
NAF-literal not L in P,*

(i) if L does not depend on the head of R3 in P, then P =5, N implies A(P) =
N for any N € HB.

(i) if L does not depend on the atom Bz of Ry in P, then P |=5 N implies
I(P) =5 N for any N € HB.

Ezample 3.5. Suppose the background program P and a (positive) example E
as follows.
P: flies(z) + sparrow(z), notab(x),
bird(x) < sparrow(z),
sparrow(tweety) «, bird(polly) + .
E : flies(polly).
Initially, P =5 flies(tweety) but P [, flies(polly). Absorbing the second rule
into the first rule in P produces the program A(P) in which the first rule of P
is replaced by the next rule in A(P):
flies(z) + bird(x), not ab(x).
Then, A(P) =5 flies(polly). Notice that A(P) =, flies(tweety) also holds.

Taylor [43] introduces a different operator called normal absorption, which
generalizes normal logic programs.
4 Here, depends on is a transitive relation defined as: A depends on B if there is a

ground rule from P s.t. A appears in the head and B appears in the body of the
rule.



3.3 Inverse Entailment

Suppose an induction problem
BU{H}EEFE

where B is a Horn logic program and H and E are each single Horn clauses.
Inverse entailment (IE) [31] is based on the idea that a possible hypothesis H is
deductively constructed from B and E by inverting the entailment relation as

BU{-E} E ~H.

When a background theory is a nonmonotonic logic program, however, the IE
technique cannot be used. This is because IE is based on the deduction theorem
in first-order logic, but it is known that the deduction theorem does not hold in
nonmonotonic logics in general [41].

To solve the problem, Sakama [38] introduced the entailment theorem in
normal logic programs. A nested rule is defined as

A+ R

where A is an atom and R is a rule of the form (1). An interpretation I satisfies a
ground nested rule A <— Rif I = Rimplies A € I. Foran NLP P, P |=; (A < R)
if A <+ R is satisfied in every stable model of P.

Theorem 3.3. (entailment theorem [38]) Let P be an NLP and R a rule such
that P U {R} is consistent. For any ground atom A, PU{R} =s A implies
P ks A+ R. In converse, Pl=s A+ R and P =5 R imply PU{R} E; A.

The entailment theorem corresponds to the deduction theorem and is used
for inverting entailment in normal logic programs.

Theorem 3.4. (IE in normal logic programs [38]) Let P be an NLP and R a
rule such that PU{R} is consistent. For any ground LP-literal L, if PU{R} =, L
and P =5« L, then P |=5 not R.

Thus, the relation
PE=;notR 2

provides a necessary condition for computing a rule R satisfying P U {R} =5 L
and P =4« L. When L is an atom (resp. NAF-literal), it represents a positive
(resp. negative) example. The condition P =4+ L states that the example L is
initially false in every stable model of P. To simplify the problem, a program P
is assumed to be function-free and categorical in the rest of this section.

Given two ground LP-literals Ly and Lo, the relation Ly ~ Ly is defined if
pred(L1) = pred(Ls) with a predicate of arity > 1 and const(L1) = const(Ls).
Let L be a ground LP-literal and S a set of ground LP-literals. Then, L; in S is
relevant to L if either (i) Ly ~ L or (ii) L; shares a constant with an LP-literal
L5 in S such that Lo is relevant to L.



Let P be a program with the unique stable model M and A a ground atom
representing a positive example. Suppose that the relation P U {R} =5 A and
P =+ A hold. By Theorem 3.4, the relation (2) holds, thereby

M |~ R. 3)

Then, we start to find a rule R satisfying the condition (3). Consider the integrity
constraint < I" where I consists of ground LP-literals in M T which are relevant
to the positive example A.5 Since M does not satisfy this integrity constraint,

MW «T (4)

holds. That is, <— I' is a rule which satisfies the condition (3).

Next, by P =< A, it holds that A ¢ M, thereby not A € M. Since not A
is relevant to A, the integrity constraint <— I" contains not A in its body. Then,
shifting the atom A to the head produces

AT (5)

where I = I''\ {not A}.

Finally, the rule (5) is generalized by constructing a rule R* such that R*6 =
A « I for some substitution #. It is verified that the rule R* satisfies the
condition (2), i.e., P =5 not R*.

The next theorem presents a sufficient condition for the correctness of R* to
induce A.

Theorem 3.5. (correctness of the IE rule [39]) Let P be a function-free and
categorical NLP, A a ground atom, and R* a rule obtained as above. If PU{R*}
is consistent and pred(A) does not appear in P, then P U{R*} =5 A.

Ezxample 3.6. Let P be the program

bird(x) < penguin(x),
bird(tweety) <, penguin(polly) + .

Given the example L = flies(tweety), it holds that P |, < flies(tweety). Our
goal is then to construct a rule R satisfying P U {R} =5 L.
First, the set M~ of LP-literals becomes

M*={ bird(tweety), bird(polly), penguin(polly),
not penguin(tweety), not flies(tweety), not flies(polly) }.

From M picking up LP-literals which are relevant to L, the integrity constraint:

+ bird(tweety), not penguin(tweety), not flies(tweety)

5 Since P is function-free, I" consists of finite LP-literals.



is constructed. Next, shifting flies(tweety) to the head produces
flies(tweety) <+ bird(tweety), not penguin(tweety) .
Finally, replacing tweety by a variable z, the rule
R*: flies(x) < bird(z), not penguin(zx)
is obtained, where P U {R*} =, L holds.

The inverse entailment algorithm is also used for learning programs by neg-
ative examples [38].

3.4 Other Techniques

This section reviews other techniques for learning nonmonotonic logic programs.

Bain and Muggleton [2] introduce the algorithm called Closed World Spe-
cialization (CWS). In the algorithm, an initial program and an intended inter-
pretation that a learned program should satisfy are given. In this setting, any
atom which is not included in the interpretation is considered false. For instance,
suppose the program:

P flies(z) < bird(x),
bird(eagle) «, bird(emu) «,

and the intended interpretation:
M : { flies(eagle), bird(eagle), bird(emu) },

where flies(emu) is not in M and is interpreted false. As P implies flies(emu),
the CWS algorithm specializes P and produces

flies(z) « bird(x), not ab(z),
bird(eagle) «, bird(emu) <, ab(emu) + .

Here, ab(z) is a newly introduced atom.® In this algorithm NAF is used for
specializing Horn clauses and the CWS produces normal logic programs.

Inoue and Kudoh [19] propose an algorithm called LELP which learns ez-
tended logic programs (ELP) under the answer set semantics. The algorithm is
close to Bain and Muggleton’s method but is different from it on the point that
[19] uses Open World Specialization (OWS) rather than the CWS under the 3-
valued setting. The OWS does not use the closed world assumption to identify
negative instances of the target concept.

Given positive and negative examples, LELP firstly constructs (monotonic)
rules that cover positive examples by using an ordinary ILP algorithm,” then gen-
erates default rules to uncover negative examples by incorporating NAF literals
6 Such an atom is called invented.

" An “Ordinary ILP” means any top-down/bottom-up ILP algorithm which is used in
clausal logic.



to the bodies of rules. In addition, exceptions to rules are identified from neg-
ative examples and are then generalized to default cancellation rules. In LELP,
hierarchical defaults can be learned by recursively calling the exception identifi-
cation algorithm. Moreover, when some instances are possibly classified as both
positive and negative, nondeterministic rules can also be learned so that there
are multiple answer sets for the resulting program. Lamma et al. [22] formalize
the same problem under the well-founded semantics. In their algorithms, differ-
ent levels of generalization are strategically combined in order to learn solutions
for positive and negative concepts.

Dimopoulos and Kakas [12] construct default rules with exceptions. For in-
stance, suppose the background program:

P bird(z) + penguin(z),
penguin(z) < super_penguin(z),
bird(a) <, bird(b) +,
penguin(c) <, super_penguin(d) <,

and the positive and negative examples:

ET . flies(a), flies(b), flies(d).
E™ : flies(c).

Their algorithm first computes a rule which covers all the positive examples:
r1: flies(z) < bird(x).

This rule also covers the negative example, then the algorithm next computes a
rule which explains the negative example:

ro 1 —flies(z) < penguin(z) .

In order to avoid drawing contradictory conclusions on ¢, the rule ro is given
priority over 1. Likewise, the algorithm next computes the rule

r3: flies(x) < super_penguin(zx)

and r3 is given priority over ry. A unique feature of their algorithm is that
they learn rules using an ordinary ILP algorithm, and represent exceptions by a
prioritized hierarchy without using NAF.

Sakama [39] presents a method of computing inductive hypotheses using
answer sets of extended logic programs. Given an ELP P and a ground literal
L, suppose a rule R satisfying P U {R} FEas L, where =45 is an entailment
under the answer set semantics. It is shown that this relation together with
P [~ 45 L implies P [~ 45 R. This provides a necessary condition for any possible
hypothesis R which explains L. A candidate hypothesis is then obtained by
computing answer sets of P, and constructing a rule which is unsatisfied in an
answer set. The method provides the same result as [38] in a much simpler



Table 1. Comparison of Algorithms

|Learned Programs| Algorithms | References |
NLP Ordinary ILP + specialization 2
Selection from candidates 4
Top-down [16,25,40]
Inverse resolution [37,43]
Inverse entailment [38]
Least generalization Section 3.1
ELP Ordinary ILP [12]
Ordinary ILP + specialization| [19,22]
Computing Answer Sets [39]

manner. In function-free stratified programs the algorithm constructs inductive
hypotheses in polynomial-time.

Bergadano et al. [4] propose the system called TRACY ™ which learns NLPs
using the derivation information of examples. In this system candidate hypothe-
ses are given in input to the system, and from those candidates the system selects
hypotheses which cover/uncover positive/negative examples. Martin and Vrain
[25] introduce an algorithm to learn NLPs under the 3-valued semantics. Given a
3-valued model of a background program, it constructs (possibly recursive) rules
to explain examples. Seitzer [40] proposes a system called INDED. It consists
of a deductive engine which computes stable models or the well-founded model
of a background NLP, and an inductive engine which induces hypotheses using
the computed models and positive/negative examples. It can learn unstratified
programs. Fogel and Zaverucha [16] propose an algorithm for learning strict
and call-consistent NLPs, which effectively searches the hypotheses space using
subsumption and iteratively constructed training examples.

Finally, the algorithms presented in this paper are summarized in Table 1.

For related research, learning abductive logic programs [13,20,21,23] and
learning action theories [24] are important applications of NMILP.

4 Summary and Open Issues

We presented an overview of techniques for realizing induction in nonmonotonic
logic programs. Techniques in ILP have been centered on clausal logic so far,
especially on Horn logic. However, as nonmonotonic logic programs are different
from classical logic, existing techniques are not directly applicable to nonmono-
tonic situations. In contrast to clausal ILP, the field of nonmonotonic ILP is less
explored and several issues remain open. Such issues include:

- Generalization under implication: In Section 3.1, we introduced the sub-
sumption order between rules and provided an algorithm of computing a least
generalization, which is an easy extension of the one in clausal logic. On the



other hand, in clausal theories there is another generalization based on the im-
plication order which uses the entailment relation C; |= C between two clauses
C1 and (5. Concerning generalizations under implication in NMLP, however, the
result of clausal logic is not directly applicable to NMLP. This is because the
entailment relation in NMLP is considered under the commonsense semantics,
which is different from the classical entailment relation. For instance, under the
stable model semantics, the relation =, is used instead of |=. Generality rela-
tions under implication would have properties different from the subsumption
order, and the existence of least generalizations and their computability are to
be examined.

- Generalization operations in nonmonotonic logic programs: In clausal the-
ories, operations by inverting resolution generalize programs, but as presented
in Section 3.2, they do not generalize programs in nonmonotonic situations in
general. Then, it is important to develop program transformations which gen-
eralize nonmonotonic logic programs (under particular semantics) in general.
Such transformations would serve as fundamental operations in nonmonotonic
ILP. An example of this kind of transformations is seen in [43].

- Relations between induction and other commonsense reasoning: Induction
is a kind of nonmonotonic inference, hence theoretical relations between induc-
tion and other nonmonotonic formalisms, including nonmonotonic logic pro-
gramming, are of interest. Such relations will enable us to implement ILP in
terms of NMLP, and also open possibilities to integrate induction and common-
sense reasoning. Researches in this direction are found in [1,14].

Ten years have passed since the first LPNMR conference was held in 1991.
In [32] the preface says:

... there has been growing interest in the relationship between logic pro-
gramming semantics and non-monotonic reasoning. It is now reasonably
clear that there is ample scope for each of these areas to contribute to
the other.

As a concluding remark, we rephrase the same sentence between NMLP and
ILP. Combining NMLP and ILP in the framework of nonmonotonic inductive
logic programming is an important step towards a better knowledge representa-
tion tool, and will bring fruitful advance in each field.
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