
Computing Preferred Answer Sets in Answer

Set Programming

Toshiko Wakaki1, Katsumi Inoue2, Chiaki Sakama3, and Katsumi Nitta4

1 Shibaura Institute of Technology, Department of Electronic Information Systems,
307 Fukasaku, Minuma-ku, Saitama-City, Saitama 337–8570 Japan

twakaki@sic.shibaura-it.ac.jp
2 Kobe University, Department of Electrical and Electronics Engineering,

Rokkodai, Nada, Kobe 657–8501 Japan
inoue@eedept.kobe-u.ac.jp

3 Wakayama University, Center for Information Science,
930 Sakaedani, Wakayama 640–8510, Japan

sakama@sys.wakayama-u.ac.jp
4 Tokyo Institute of Technology, Department of Computational Intelligence

and Systems Science, 4259 Nagatsuta, Midori-ku, Yokohama 226–8502, Japan
nitta@dis.titech.ac.jp

Abstract. A framework of prioritized logic programs (PLPs) is useful to
represent explicit priorities between literals of logic programs. With its
expressive power, PLPs theoretically enable us to realize various frame-
works of nonmonotonic reasoning as well as preference abduction. How-
ever, its implementation issues have scarcely been studied and no sound
procedure is known for computing preferred answer sets of PLPs. In this
paper, we present a procedure to compute all preferred answer sets of a
PLP in answer set programming. We show soundness and completeness
theorems for the procedure. Finally we show that not only our proce-
dure makes PLPs practically available but also it has the capability of
representing dynamic preferences in addition to static ones.

1 Introduction

A framework of prioritized logic programs [18] (PLPs) introduces explicit repre-
sentation of priorities between literals and negation-as-failure formulas to logic
programs. A PLP is defined as a pair (P, Φ),where P is a (nonmonotonic) logic
program and Φ is a set of priorities between literals and negation-as-failure for-
mulas in the language. The semantics of PLP is given as preferred answer sets
which are defined as the answer sets of P that are selected with respect to the
priorities in Φ. It was shown that PLPs can realize various frameworks of non-
monotonic reasoning such as default reasoning [16], prioritized circumscription
[13, 14] as well as preference abduction [12].

To realize prioritized reasoning in logic programming, there are several dif-
ferent frameworks and implementation techniques such as ordered logic pro-
grams [5], Logic Programs with Ordered Disjunctions [1], ordered default theo-
ries [4] and and preferred answer sets of extended logic programs [2]. As for the

2 Toshiko Wakaki et al.

procedure of PLPs, on the other hand, Sakama and Inoue [18] provided a naive
procedure for computing preferred answer sets of a PLP, but the procedure is
applicable to a limited class of PLPs and it is turned unsound.

In this paper, we present a more efficient procedure to compute all preferred
answer sets for a PLP in answer set programming (ASP) and show soundness and
completeness theorems for the procedure. Our procedure is based on a generate-
and-test algorithm and uses the technique of meta-programming. The basic idea
of our approach is to translate a PLP (P, Φ) and any answer set S of a program
P , into a single logic program T [P, Φ, S] whose answer sets represent answer sets
of P preferable to S. More precisely, if T [P, Φ, S] is consistent, answer sets of P
preferable to S can be obtained from the respective answer sets of T [P, Φ, S];
otherwise we can conclude that such S is a “strictly” preferred answer set of
(P, Φ). Thanks to our theorems, our procedure can compute all preferred answer
sets of a given PLP, making use of preferences generated from such a translated
logic program T [P, Φ, S] to decide whether an answer set S of P is preferred
or not. Thus, our procedure can be easily implemented using answer set solvers
(ASP solvers) such as dlv [6], smodels [15] and MGTP [10]. Moreover, we show
that not only our procedure makes PLPs practically available but also our ap-
proach can accommodate dynamic preferences [3] in addition to the original
static ones which significantly widen the class of PLPs and further increase their
expressiveness.

The structure of the paper is as follows. In Section 2, we review some def-
initions and notation related to PLPs. In Section 3, we present two theorems
and our sound and complete procedure of computing preferred answer sets. In
Section 4, we give a brief discussion on applying our approach to a legal rea-
soning example. Section 5 provides some comparisons with related works and
concluding remarks.

2 Preliminaries

We review some definitions and notations about PLP [17, 18].

2.1 General Extended Disjunctive Logic Programs

A general extended disjunctive logic program (GEDP) [11] is a set of rules of the
form:

L1 | · · · | Lk | not Lk+1 | not Ll ← Ll+1 , . . . , Lm , not Lm+1 , . . . , not Ln, (1)

where n ≥ m ≥ l ≥ k ≥ 0, each Li is a literal, that is either an atom A or its
negation ¬A, and “ |” represents a disjunction. The rule with the empty head
is called an integrity constraint. A rule with variables stands for the set of its
ground instances (i.e. ground rules).

The semantics of a GEDP P is given by the answer sets [7, 11] as follows.

Computing Preferred Answer Sets in Answer Set Programming 3

Definition 1 Let LitP be a set of all ground literals in the language of P .
First, let P be a not-free GEDP (i.e., for each rule k = l, m = n). Then,

S ⊆ LitP is an answer set of P if S is a minimal set satisfying the conditions:

1. For each ground rule L1 | · · · | Ll ← Ll+1 , . . . , Lm in P , if {Ll+1, . . . , Lm} ⊆
S, then Li ∈ S for some i (1 ≤ i ≤ l); In particular, for each integrity
constraint ← L1 , . . . , Lm in P , {L1, . . . , Lm} �⊆ S holds;

2. If S contains a pair of complementary literals, then S = LitP .

Second, let P be any GEDP and S ⊆ LitP . The reduct of P by S is a not-free
GEDP PS obtained as follows:

A rule L1 | · · · |Ll ← Ll+1 , . . . , Lm is in PS

iff there is a ground rule of the form (1) from P such that
{Lk+1, . . . , Ll} ⊆ S and {Lm+1, . . . , Ln} ∩ S = ∅.

For PS , its answer sets have already been defined. Then, S is an answer set of
P if S is an answer set of PS .

An answer set is consistent if it is not LitP . The answer set LitP is said
contradictory. A GEDP is consistent if it has a consistent answer set; otherwise,
the program is inconsistent.

2.2 Prioritized Logic Programs

Given a GEDP P and the set of ground literals LitP , let L∗P be the set defined
as LitP ∪ {notL | L ∈ LitP}. A prioritized logic program (PLP) is defined as
follows.

Definition 2 (Priorities between literals)
A reflexive and transitive relation � is defined on L∗P . For any element e1 and
e2 from L∗P , e1 � e2 is called a priority, and we say e2 has a higher priority than
e1. We write e1 ≺ e2 if e1 � e2 and e2 �� e1, and say e2 has a strictly higher
priority than e1. A nonground priority stands for the set of its ground instances.
That is, for tuples x and y of variables, e1(x) � e2(y) stands for any priority
e1(t) � e2(s) for any instance t of x and instance s of y.

Definition 3 (Prioritized Logic Programs: PLPs)
A prioritized logic program (PLP) is defined as a pair (P, Φ), where P is a GEDP
and Φ is a set of priorities on L∗P .

The declarative semantics of PLP is given by preferred answer sets as follows.

Definition 4 (Preferences between answer sets)
Given a PLP (P, Φ), the preference relation
 on answer sets of P is defined as
follows: Let S1 and S2 be two answer sets of P . Then, S2 is preferable to S1 with
respect to Φ, written as S1
 S2, if for some element e2 ∈ S2 \ S1,
(i) there is an element e1 ∈ S1 \S2 such that e1 � e2, and (ii) there is no element
e3 ∈ S1 \ S2 such that e2 ≺ e3.

4 Toshiko Wakaki et al.

Besides, the relation
 on answer sets is also defined as reflexive and transitive.
We write S1 � S2 if S1
 S2 and S2 �
 S1. Hereafter, each S1
 S2 is called
preference.

Definition 5 (Preferred answer sets)
An answer set S of P is called a preferred answer set (or p-answer set, for short)
of P (with respect to Φ) if S
 S′ implies S′
 S for any answer set S′ of P .

Example 1. Let (P, Φ) be the PLP such that

P : p← not q, Φ: p � not q,

q ← not p,

where P has two answer sets {p} and {q}. Of these, {q} becomes the unique
preferred answer set of (P, Φ).

Generally, NAF formulas in Φ are eliminated without changing the meaning
of a PLP [18]. In the above example, a PLP (P, Φ) is transformed to the seman-
tically equivalent (P ′, Φ′) such that P ′ = P ∪ {p′ ← not p}, Φ′ = Φ ∪ {p � p′}.
As a result, (P ′, Φ′) has the unique p-answer set {p′, q} which coincides with
{q} wrt literals from Litp.

Then, without loss of generality in the following sections we consider a PLP
(P, Φ) in which Φ contains no NAF formula.

3 Computing Preferred Answer Sets

In this section, we introduce a sound and complete procedure for computing
preferred answer sets of PLPs. In this section, we consider a ground PLP, i.e.,
a PLP (P, Φ) such that P is a ground GEDP and Φ is a set of priorities over
ground literals.

3.1 Translation for Preference Generation

As is mentioned in the introduction, our procedure of computing preferred an-
swer sets of a PLP is regarded as a generate-and-test algorithm, which constructs
a logic program T [P, Φ, S] translated from both a given PLP (P, Φ) and any an-
swer set S of a program P in order to generate preferences between answer sets
of P in answer set programming.

First, we encode a given answer set S and another answer set S′ of P in the
single answer set of a program T [P, Φ, S], which is used for judging whether S′

is preferable to S. To this end, we use renaming of literals such that each literal
L ∈ LitP in S is renamed by the newly introduced literal L∗ respectively. This
technique symbolically enables us to embed one answer set S ⊆ LitP as a set S∗

of renamed literals L∗, together with another one S′ ⊆ LitP in the same answer
set E of T [P, Φ, S].

Second, to compare a literal c ∈ S and another literal d ∈ S′ according to
(i) and (ii) of Definition 4, we use meta-programming techniques. That is, to

Computing Preferred Answer Sets in Answer Set Programming 5

compare literals, a new ground term Lt is introduced for every literal L ∈ LitP .
Note that both a literal L ∈ LitP and its renamed literal L∗ mentioned above
are expressed using the same ground term Lt introduced for the corresponding
literal L.

Third, we provide predicate symbols m1 and m2 such that, for the term ct

which corresponds to some literal c ∈ LitP as well as its renamed literal c∗,
m1(ct) means c ∈ S for a given answer set S, while m2(ct) means c ∈ S′ for any
answer set S′ of P .

In the following, we define two sets, Lit∗P and C where Lit∗P is a set of renamed
literals L∗s and C is a set of newly introduced ground terms Lts mentioned
above. Due to the restriction of answer set programming, we suppose that LitP
is finite, and ground terms Lts in C are individual constants which have no
function symbols.

Definition 6 Lit∗P and C are defined as follows.

Lit∗P
def
= {L∗|L ∈ LitP}

C def
= {Lt|L ∈ LitP}

Next we define T [P, Φ, S] which is a meta-program constructed using a PLP
(P, Φ) and an answer set S.

Definition 7 Given a PLP (P, Φ) and an answer set S of P , T [P, Φ, S] is the
GEDP defined as:

T [P, Φ, S]
def
= P ∪ Γ ∪Π,

where Γ is the set of domain dependent rules constructed from Φ and S as
follows,

1. L∗ ←, for each L ∈ S,
where each L∗ ∈ Lit∗P is a renamed literal corresponding to L ∈ S
respectively,

2. � (at, bt)←, for any a � b ∈ Φ
where at, bt ∈ C are respective ground terms expressing literals a, b ∈
LitP ,

3. m1(Lt)← L∗, m2(Lt)← L,
for every L ∈ LitP , its renamed literal L∗ ∈ Lit∗P and a ground term
Lt ∈ C expressing a literal L,

and Π is the set of domain independent rules as follows:

4. � (x, x)←,

5. � (x, z)←� (x, y), � (y, z),

6 Toshiko Wakaki et al.

6. ≺ (x, y)←� (x, y), not � (y, x),

7. gr1(x, y)← m1(x), � (x, y), m2(y), not m2(x), not m1(y),

8. gr2(y, z)← m2(y), ≺ (y, z), m1(z), not m1(y), not m2(z),

9. attacked(y)← gr2(y, z),

10. defeated(x)← gr1(x, y), not attacked(y),

11. better← defeated(x),

12. ← not better.

Remark 1. � and ≺ in the above rules are predicate symbols.

Remark 2. The rule 2 enables us to express rules of P and priorities in Φ in the
same logic program. The rule 4 and the rule 5 represent the reflexive and transi-
tive laws of � respectively. The rule 5 and the rule 6 calculate the closure of the
priority relation � and that of the strict priority relation ≺ respectively. Rules
7 ∼ 10 compute preference between S and another answer set of P according to
(i) and (ii) of Definition 4. Thus, the rule 10 means that defeated(x) is true if
there exists some answer set S′ of P such that, for an element x ∈ S \ S′, there
exists some element y ∈ S′ \S which has a higher priority than a element x and
any element z ∈ S \ S′ does not have a strictly higher priority than y. Rule 11
means that better is true if defeated(x) is true for such x ∈ S \ S′.

Example 2. Let (P, Φ) be the PLP such that

P : p | q ←,

q | r ← .

Φ: p � q, q � r.

P has two answer sets S1 = {p, r} and S2 = {q}. With respect to the answer set
S1, T [P, Φ, S1] = P ∪ Γ1 ∪Π, is constructed with the following Γ1,

Γ1 : p∗ ←, r∗ ←, � (pt, qt)←, � (qt, rt)←,

m1(pt)← p∗, m1(qt)← q∗, m1(rt)← r∗,

m1(npt)← ¬p∗, m1(nqt)← ¬q∗, m1(nrt)← ¬r∗,
m2(pt)← p, m2(qt)← q, m2(rt)← r,

m2(npt)← ¬p, m2(nqt)← ¬q, m2(nrt)← ¬r.
where LitP = {p, q, r,¬p,¬q,¬r}, Lit∗P = {p∗, q∗, r∗,¬p∗,¬q∗,¬r∗},

C = {pt, qt, rt, npt, nqt, nrt}.

Now, we define two kinds of preferred answer sets and show two theorems
with respect to T [P, Φ, S], which guarantee the soundness and completeness of
our procedure to compute all preferred answer sets of (P, Φ).

Computing Preferred Answer Sets in Answer Set Programming 7

Definition 8 (tie-preferred, and strictly preferred answer set)
A preferred answer set S of a PLP (P, Φ) is called tie-preferred if there is another
preferred answer set S′ of (P, Φ) such that S
 S′ and S′
 S. S is called strictly
preferred if S �
S′ for any preferred answer set S′.

Theorem 1. (soundness/completeness of the procedure) Let T [P, Φ, S] be a GEDP
constructed from a PLP (P, Φ) and an answer set S of P . Then it holds that,

if T [P, Φ, S] is consistent, S′ def
= E ∩ LitP is another answer set of P such that

S
 S′ for any answer set E of T [P, Φ, S]. Conversely, if there is another answer
set S′ of P such that S
 S′, then T [P, Φ, S] is consistent.
Proof: See Appendix.

Theorem 2. Let T [P, Φ, S] be a GEDP constructed from a PLP (P, Φ) and an
answer set S of P . Then it holds that, T [P, Φ, S] is inconsistent if and only if S
is a strictly preferred answer set of (P, Φ).
Proof: See Appendix.

Example 3. Consider the PLP (P, Φ) in Example 2. According to Theorem 2,
we can conclude that S1 = {p, r} is a strictly preferred answer set of (P, Φ) since
T [P, Φ, S1] is inconsistent. By contrast, for S2 = {q},

T [P, Φ, S2] = P ∪ Γ2 ∪Π

where Γ2 = Γ1 \ {p∗ ←, r∗ ←} ∪ {q∗ ←},
becomes consistent and has only one answer set E such that E∩LitP ={p, r}, i.e.
S1. Thus we can obtain preference such that S2
 S1 according to Theorem 1.

Example 4. Let (P, Φ) be the PLP such that

P : p← not q,

q ← not p,

r ← p, ¬s← q.

Φ: p � q, ¬s � r. where LitP = {p, q, r, s,¬p,¬q,¬r,¬s}
P has two answer sets S1 = {p, r} and S2 = {q,¬s}.
With respect to S1 = {p, r}, T [P, Φ, S1] = P ∪ Γ1 ∪Π has rules of Γ1 as follows:

Γ1: p∗ ←, r∗ ←, � (pt, qt)←, � (nst, rt)←,
m1(pt)←p∗, m1(qt)←q∗, m1(rt)←r∗, m1(st)←s∗,
m1(npt)←¬p∗, m1(nqt)←¬q∗, m1(nrt)←¬r∗, m1(nst)←¬s∗,
m2(pt)←p, m2(qt)←q, m2(rt)←r, m2(st)←s,
m1(npt)←¬p, m1(nqt)←¬q, m1(nrt)←¬r, m1(nst)←¬s.

where Lit∗P = {p∗, q∗, r∗, s∗,¬p∗,¬q∗,¬r∗,¬s∗}, C = {pt, qt, rt, st, npt, nqt, nrt, nst}.
In this case, T [P, Φ, S1] is consistent and has only one answer set E1 such that
E1∩LitP ={q,¬s}, i.e. S2. Similarly, for S2, T [P, Φ, S2] is consistent and has only

8 Toshiko Wakaki et al.

one answer set E2 such that E2 ∩ LitP ={p, r}, i.e. S1. As a result, preferences
such that S1
 S2 and S2
 S1 are obtained according to Theorem 1. Thus
according to Definition 8, we can decide that both S1 and S2 are tie-preferred
answer sets.

3.2 A Procedure of Computing Preferred Answer Sets

We introduce a procedure CompPAS which computes all preferred answer sets
of a PLP (P, Φ) based on Theorem 1 as follows. The procedure CompPAS uses
a translated program T [P, Φ, S] to generate preferences with respect to a given
answer set S. In addition, it uses a program Ψ shown in Table.1, to find all
preferred answer sets of (P, Φ) from preferences generated by T [P, Φ, S].

Moreover, every answer set S of P is assigned a newly introduced individual
constant s called an answer set ID respectively. Now, the procedure is as follows.

Procedure 1 CompPAS(P, Φ, Δ)

Input: a PLP (P, Φ)
Output: the set Δ of all preferred answer sets of (P, Φ)

In the following, AS is the set of answer sets of P , S and S′ are answer sets
of P , Ω is the set of answer set IDs, Δ is a set of preferred answer sets and Σ is
a set of preferences which is initially an empty set φ.

1. Compute the set AS of all answer sets of P .
2. If Φ is an empty set ∅,

(a) then Δ := AS, return Δ.
(b) otherwise,

i. let Ω be a set of answer set IDs such that |Ω| = |AS| 1,
ii. for each answer set S ∈ AS, assign the corresponding answer set ID.

3. If T [P, Φ, S] is consistent for any answer set S ∈ AS whose answer set ID is
s, do from (a) to (c) for each answer set E of T [P, Φ, S].
(a) put S′ := E ∩ LitP ,
(b) find the answer set ID s′ ∈ Ω for S′ where S′ ∈ AS by Theorem 1,
(c) put Σ := Σ ∪ {
 (s, s′)←}.

4. Compute an answer set U of the following logic program,

Ψ ∪Σ ∪ {as(s)← |s ∈ Ω}

where Ψ is a set of rules shown in Table 1.
5. Return Δ which is given by

Δ = {S ∈ AS | S is an answer set whose answer set ID s satisfies
p-as(s) ∈ U}.

1 For any set A, |A| denotes the cardinality of A.

Computing Preferred Answer Sets in Answer Set Programming 9

Table 1. A set Ψ of rules

� (x, x)← as(x),
� (x, z)← � (x, y), � (y, z),
� (x, y)← � (x, y), not � (y, x),
worse(x)← � (x, y),
p-as(x)← as(x), not worse(x).

Remark 3.
 and � are predicate symbols denoting preference relations defined
in Definition 4 .
Remark 4. as(s) and p-as(s) represent that there exists some answer set of P
whose answer set ID is s, and there exists some preferred answer set of (P, Φ)
whose answer set ID is s, respectively.

Example 5. Let (P, Φ) be the PLP such that

P : p← not q, not r,

q ← not p, not r,

r ← not p, not q,

s← q.

Φ: p � q, q � p, s � r.

Here LitP , Lit∗P and C are the same as those of Example 4. Preferred answer
sets of this (P, Φ) can be computed using Procedure 1 as follows. P has three
answer sets such as S1 = {p}, S2 = {q, s}, and S3 = {r}, whose answer set IDs
are s1, s2 and s3, respectively. Then, in step 3, since T [P, Φ, S] is inconsistent
only for S = S3,

Σ = {
(s1, s2)←,
(s2, s1)←,
 (s2, s3)←}
is obtained from preferences which are S1
 S2 generated by T [P, Φ, S1] as well
as S2
 S1, S2
 S3 by T [P, Φ, S2]. In step 5, Δ = {{r}} is returned, since
p-as(s3) ∈ U , p-as(s1) �∈ U , p-as(s2) �∈ U for an answer set U of a program:
Ψ ∪ Σ ∪ {as(s1) ←, as(s2) ←, as(s3) ←}. Thus, using the procedure, we can
obtain the result that only {r} is a preferred answer set of (P, Φ). 2

Example 6. Let us compute the tie-preferred answer sets of the PLP in Exam-
ple 4 using Procedure 1. Suppose that in step 2 of the procedure, s1 and s2 are
assigned to answers sets S1 = {p, r} and S2 = {q,¬s} as their IDs respectively.

In step 3, Σ is obtained as {
 (s1, s2)←,
 (s2, s1)←} wrt preferences S1

S2 and S2
 S1 shown in Example 4. Thus, in step 4, we obtain p-as(s1) ∈ U
and p-as(s2) ∈ U for the answer set U of Ψ ∪Σ ∪ {as(s1)←, as(s2)←}.

Therefore, we can decide both {p, r} and {q,¬s} as preferred answer sets of
(P, Φ) using our procedure.
2 Sakama and Inoue’s procedure for selecting p-answer sets [18] computes both {p}

and {r} as preferred answer sets of this (P, Φ). So, their procedure is not sound.

10 Toshiko Wakaki et al.

4 Dynamic Preferences and Application to Legal
Reasoning

Our approach can accommodate dynamic preferences [3] by slightly extending
the framework of PLPs though the original PLPs are limited to the static ones.

4.1 Expressing Dynamic Preferences

In this section, we show that our procedure enables to express a priority with pre-
conditions keeping both Theorem 1 and Theorem 2, which significantly increases
the expressiveness of PLPs to accommodate dynamic preferences.

Definition 9 Let a PLP be a pair (P , Φ̃) where P is a GEDP and Φ̃ is a
stratified logic program whose rules have the form:

A← B1, . . . , Bm, not Cm+1, . . . , not Cn, (n ≥ m ≥ 0)

where A, Bi, and Cj (1 ≤ i ≤ m, m + 1 ≤ j ≤ n) are atoms. In Φ̃, there is
at least one rule whose head atom A is � (at, bt) where at, bt ∈ C are ground
terms expressing respective literals a, b ∈ LitP . Besides, any predicate symbol
occurring in Φ̃ is newly introduced except �. Each rule containing variables
stands for the set of all its ground instances such that any variable is replaced
by any ground term from C. The stratification [8] of Φ̃ is P 1; . . . ; P k such that,
for every predicate p from P i (1 ≤ i ≤ k), (a) all predicates that occur in
the definition of p belong to P 1; . . . ; P i, and (b) all predicates that occur in
the definition of p under not belong to P 1; . . . ; P i−1. For i < j, we call that a
stratum P i is higher than a stratum P j . In particular, � should belong to the
stratum P k, whose predicates have the lowest priority.

Definition 10 Given a PLP (P , Φ̃) and an answer set S of P , T [P, Φ̃, S] is

the GEDP defined as T [P, Φ̃, S]
def
= P ∪ Γ̃ ∪Π , where Γ̃ is is the same as Γ in

Definition 7 except that each rule � (at, bt) ← in the item 2 is replaced by the
set of rules Φ̃.

Theorem 3. Let T [P, Φ̃, S] be a GEDP constructed from a PLP (P , Φ̃) and
an answer set S of P . Then, both Theorem1 and Theorem2 hold if T [P, Φ, S] is
replaced by T [P, Φ̃, S] in these theorems.

4.2 Application to Legal Reasoning

We discuss an application of our procedure to a legal reasoning example with
dynamic preferences. It is shown that a predicate expressing the conflict between
higher meta-level priorities belongs to a higher stratum in Φ̃ as follows.

The legal problem [9] is as follows. The domain knowledge is about the per-
son’s ship and laws of the Uniform Commercial Code (UCC) and the Ship Mort-
gage Act (SMA), which are expressed by a set P of the following rules,

Computing Preferred Answer Sets in Answer Set Programming 11

P : perfected← posses, not ab1, (UCC)
¬perfected← ship,¬filstate, not ab2, (SMA)
posses←, ship←, ¬filstate←,

ab1|not ab1←, ab2|not ab2←, ← ab1, ab2,

ucc← not ab1, sma← not ab2.

Since the two laws are in conflict with one another, they lead to two answer
sets S1 and S2 of P as follows.

S1 = {perfected, posses, ship,¬filstate, ab2, ucc}.
S2 = {¬perfected, posses, ship,¬filstate, ab1, sma}.

Now, there are two well-known legal principles for resolving such conflict
between laws as follows.
The principle of Lex Posterior gives precedence newer laws, and the principle of
Lex Superior gives precedence to laws supported by the higher authority. In our
case, UCC is newer than the SMA, and the SMA has higher authority since it
is a federal law.

The above knowledge is described as a set Φ̃1 which consists of priorities with
preconditions. Then, we can represent it as the following stratified logic program,
which corresponds to the extended rule 2 of Γ in Definition 7 as follows.

Φ̃1: moreRecent(ucct, smat)←,

fed(smat)←, state(ucct)←,

lp(Y, X)← moreRecent(X, Y),
ls(Y, X)← fed(X), state(Y),
� (Y, X)← lp(Y, X), not conf1(Y, X), (LP)
� (Y, X)← ls(Y, X), not conf1(Y, X), (LS)

where conf1 is a predicate symbol denoting conflict between the legal principles
with respect to laws X and Y . In this case of (P, Φ̃1), T [P, Φ̃1, S1] has only one
answer set E1 such that E1 ∩ LitP = S2, and T [P, Φ̃1, S2] has only one answer
set E2 such that E2 ∩ LitP = S1. These lead to S1
 S2 and S2
 S1. As a
result, we obtain two tie-preferred answer sets S1 and S2 of this PLP due to the
conflict between two legal principles, i.e. Lex Posterior and Lex Superior.

Next, suppose we have a new preference information such that Lex Superior
has a higher priority than Lex Posterior as follows.

LexPosterior (X, Y) � LexSuperior(U, V).

In our framework, such an additional meta-priority can be expressed by a
tie-breaking rule (2) as follows.

conf1(X, Y)← lp(X, Y), ls(Y, X), not conf2(Y, X), (2)

where conf2 denotes the conflict of one level higher priorities than that of conf1.
Let Φ̃2 be Φ̃1∪{rule (2)}. It should be noted that conf2 belongs to the one level
higher stratum than that of conf1 in the stratification of Φ̃2. Then, this case is

12 Toshiko Wakaki et al.

expressed by a PLP (P, Φ̃2) where T [P, Φ̃2, S2] is inconsistent. Thus we obtain
the result that S2 is a strictly preferred answer set of (P, Φ̃2), but S1 is not
preferred in similar way. Therefore, ¬perfected is determined.

5 Related Works and Conclusion

In this paper, we present a sound and complete procedure to compute all pre-
ferred answer sets of a given PLP based on answer set programming. Moreover,
we introduce the capability of representing not only static preference but also
dynamic one by slightly extending the framework of PLPs. With respect to com-
plexity, our procedure calls the ASP solver polynomial order times in step 3. We
are now going to implement our procedure by using dlv and C++.

In the following, we compare our approach with related works in the aspects
of the methodology, preference representation and complexity.

(1) Sakama and Inoue’s naive procedure
Sakama and Inoue [18] firstly provided the procedure for selecting preferred

answer sets of a PLP. Their procedure computes all answer sets and then finds
preferred answer sets by means of comparing all answer sets pairwise with re-
spect to the “strict” priority relation ≺ obtained from Φ. According to their
Theorem 4.1 in [18], they claim that their procedure is sound, and completeness
of the procedure also holds if preferred answer sets of a given PLP are cycle-free.
But Example 5 of this paper shows that their procedure is not sound. To fix
the problem, it is necessary to use the pre-order priority relation � which is
reflexive and transitive instead of using irreflexive “strict” priority relation ≺
from Φ. With this consideration, their procedure can compute the correct pre-
ferred answer set of Example 5. However, even if their procedure is corrected to
become sound in this way, there still exists such a problem in the corrected pro-
cedure that it cannot find any tie-preferred answer set but only compute strictly
preferred answer sets.

By contrast, without comparing all answer sets pairwise, our procedure
CompPAS can obtain all strictly preferred answer sets immediately by checking
the inconsistency of T [P, Φ, S] for each answer set of P in step 3. In addition, our
procedure can find any strictly preferred answer set as well as any tie-preferred
answer of a given PLP in step 4 and step 5 of CompPAS based on Theorem 1.
Furthermore, in our approach, both P and Φ are represented in the same logic
program T [P, Φ, S], it enables us to handle dynamic preferences in PLP though
it is originally limited to the static ones.

(2) Delgrande and Schaub’s approach
Delgrande and Schaub proposed the framework of a ordered logic program

[5]. It is represented by an extended logic program in which rules are named
by terms and preferences among rules are given by a set of preference atoms
representing preference relations over a set of rule names. According to their
methodology, since each preference between rules is specified as a strict partial
order, preferred answer sets of an ordered logic program Π can be obtained as

Computing Preferred Answer Sets in Answer Set Programming 13

answer sets which are <X -preserving, of the standard extended logic program
τ(Π) translated from Π. This feature is a little similar to our case that the
strictly preferred answer set of PLP can be decided directly when our translated
program T [P, Φ, S] is inconsistent. However, in our case, tie-preferred answer
sets can be also found after such translation, since priorities are represented by
a pre-order relation �. The complexity of our approach (see Lemma 4.4 in [18])
lies in the one level higher of the polynomial hierarchy than theirs. With respect
to dynamic preferences, their framework can treat them as well as ours.

(3) Brewka, Niemelä and Syrjänen’s approach
Brewka et al.[1] proposed logic programs with ordered disjunction(LPODs).

According to their approach, an ordered disjunction appears in the head of a rule
which enables to represent knowledge above preference. Their implementation
is based on two normal (non-disjunctive) logic programs, a generator and a
tester in order to compute preferred answer sets efficiently. Our procedure also
consists of a generator which generates answer sets in step 1, and a tester which
checks whether each answer set is preferred or not in step 4 using the preferences
generated in step 3.

References

1. G. Brewka, I. Niemelä and T. Syrjänen: Implementing Ordered Disjunction Using
Answer Set Solvers for Normal Programs, Proc. 8th European Conference on Logics
in Artificial Intelligence (JELIA’02), LNAI 2424, Springer (2002) 445-455.

2. G. Brewka and T. Eiter: Preferred Answer Sets for Extended Logic Programs, Ar-
tificial Intelligence 109 (1999) 297-356.

3. G. Brewka: Well-founded Semantics for Extended Logic Programs with Dynamic
Preferences, Journal of Artificial Intelligence Research 4 (1996) 19-36.

4. J. P. Delgrande and T. Schaub T: Expressing Preferences in Default Logic, Artificial
Intelligence 123 (2000) 41-87.

5. J. P. Delgrande, T. Schaub and H. Tompits: A Framework for Compiling Preferences
in Logic Programs, Theory and Practice of Logic Programming 3(2) (2003) 129-187.

6. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, F. Scarcello: A deductive system for
nonmonotonic reasoning, Proc. LPNMR-97, LNCS 1265, Springer (1997) 364-375.

7. M. Gelfond and V. Lifschitz: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9 (1991) 365-385.

8. Gelfond, M. and Lifschitz, V.: Compiling Circumscriptive Theories into Logic Pro-
grams, Proc. AAA1-88, 455-459. Extended version in: Proc. 2nd Int. Workshop on
Nonmonotonic Reasoning, LNAI 346 (1988) 74-99.

9. T. F. Gorden: The Pleadings Game: An Artifical Intelligence Model of Procedural
Justice. Ph.D. thesis, TU Darmstadt (1993).

10. K. Inoue, M. Koshimura and R. Hasegawa: Embedding negation as failure into
a model generation theorem prover, In: Deepak Kapur, editor, Proceedings of the
Eleventh International Conference on Automated Deduction, LNAI 607, Springer
(1992) 400-415.

11. K. Inoue and C. Sakama: On Positive Occurrences of Negation as Failure. Proc.
KR’94 (1994) 293-304.

12. K. Inoue and C. Sakama: Abducing Priorities to Derive Intended Conclusions Proc.
Sixteenth International Joint Conference on Artificial Intelligence (1999) 44-49.

13. V. Lifschitz: Computing Circumscription. Proc. IJCAI-85 (1985) 121-127.

14 Toshiko Wakaki et al.

14. J. McCarthy: Applications of Circumscription to Formalizing Commonsense
Knowledge. Artificial Intelligence 28 (1986) 89-116.

15. I. Niemelä and P. Simons: Smodels: An implementation of the stable model and
well-founded semantics for normal logic programs. Proc. the Fourth International
Conference on Logic Programming and Nonmonotonic Reasoning, Springer-Verlag,
(1997) 420-429.

16. D. Poole: A Logical framework for default reasoning, Artificial Intelligence 36
(1988) 27-47.

17. C. Sakama and K. Inoue: Representing Priorities in Logic Programs. Proc. Joint
International Conference and Symposium on Logic Programming (1996) 82-96.

18. C. Sakama and K. Inoue: Prioritized logic programming and its application to
commonsense reasoning, Artificial Intelligence 123 (2000) 185-222.

Appendix: Proofs of Theorems

Proof of Theorem 1
Proof: (=⇒) Since T [P, Φ, S] = P ∪Γ ∪Π is consistent, it holds that better ∈ E
for any answer set E of T [P, Φ, S], and E is also an answer set of T [P, Φ, S]\ {←
not better}. Now, it is easily shown that E should be an augmented answer set
of P which not only includes an answer set of P but also has ground head literals
of the rules from Γ ∪ Π \ {← not better}. Thus S′ = E ∩ LitP should be an
answer set of P . According to the rule 1, it is obvious that S∗ = E ∩ Lit∗P is a
renamed answer set of a given answer set S such that each L∗ ∈ S∗ is a renamed
literal wrt L ∈ S. Then, according to rule 3,

m1(ct) ∈ E iff c∗ ∈ S∗ (i.e. c ∈ S)

m2(dt) ∈ E iff d ∈ S′ def
= E ∩ LitP

where ct ∈ C wrt c and dt ∈ C wrt d. Let Φ∗ be a closure of Φ. Due to rules 2 ,
4 and 5, it holds that,

� (at, bt) ∈ E iff a � b ∈ Φ∗

In addition, let Ψ∗ be a closure of strict priorities defined as follows:
Ψ∗ def

= {a ≺ b|a � b ∈ Φ∗ ∧ b � a �∈Φ∗}
Then, according to rule 6, it holds that,

≺ (at, bt) ∈ E iff a ≺ b ∈ Ψ∗.
Now, according to rules 7 ∼ 11, it holds that,

better ∈ E for any answer set E of T [P, Φ, S]
iff defeated(ct) ∈ E for ∃ct

iff gr1(ct, dt) ∈ E ∧ attacked(dt)�∈E for ∃ct∃dt

iff for ∃ct s.t. m1(ct) ∈ E ∧m2(ct)�∈E and
∃dt s.t. m2(dt) ∈ E ∧m1(dt)�∈E,
� (ct, dt) ∈ E∧ ≺ (dt, et)�∈E

for ∀et s.t. m1(et) ∈ E ∧m2(et)�∈E
iff for ∃c ∈ S \ S′, ∃d ∈ S′ \ S such that c � d ∈ Φ∗,

there is no e ∈ S \ S′ such that d ≺ e ∈ Ψ∗

iff S
 S′ where S′ def
= E ∩ LitP and S �=S′

(⇐=) Suppose that there is another answer set S′ of P such that S
 S′. Then,
S
 S′ should be derived in a way of either case 1. or 2. as follows.

Computing Preferred Answer Sets in Answer Set Programming 15

1. S
 S′ is directly decided only using priorities in Φ∗.

2. S
 S′ is not directly decided using priorities in Φ∗, but is indirectly decided
via the transitive law as follows.
For some other answer set U of P , the following (a) and (b) should be
satisfied:
(a) S
 U is directly decided using priorities in Φ∗.

(b) U
 S′ is decided inductively in a way of either case 1. or case 2..

Then S
 S′ is transitively derived from S
 U and U
 S′ according to
(a) and (b).

Thus, in the case of either 1. or 2., there exists some answer set V of P which
is directly decided to be preferable to S due to priorities in Φ∗. Then, according
to Definition 4, there exists some element d ∈ V \ S such that

(i) there is an element c ∈ S \ V such that c � d, and
(ii) there is no element e ∈ S \ V such that d ≺ e.

So, due to the existence of such an element d ∈ V \ S, it is easily shown that
for such another answer set V of P , {L← |L ∈ V } ∪ Γ ∪Π becomes consistent.

Therefore, T [P, Φ, S]
def
= P ∪ Γ ∪Π also becomes consistent. �

Proof of Theorem 2
Proof: (=⇒) The contrapositive is proved. That is, in the following, we prove
that if S is not a strictly preferred answer set of (P, Φ); T [P, Φ, S] is consistent.

Suppose that S is not a strictly preferred answer set of (P, Φ). Then S is
either (i) a tie-preferred answer set, or (ii) not a preferred answer set. In case
of (i), there exists some preferred answer set S′ of (P, Φ) such that S
 S′ and
S′
 S where S′ �=S according to Definition 8. In case of (ii), since S is not a
preferred answer set of (P, Φ), there should exist some answer set S′ of P such
that S
 S′ and S′ �
S according to Definition 5. Thus in both cases, there
exists another preferred answer set S′ of P such that S
 S′. As a result, we
can conclude that T [P, Φ, S] is consistent according to the proof of ⇐ part of
Theorem 1.

(⇐=) Suppose that S is a strictly preferred answer set of (P, Φ). In the following,
assuming that T [P, Φ, S] is consistent, we show that the contradiction is derived.

Since T [P, Φ, S] is consistent according to the assumption, S′ = E ∩ LitP
should be another answer set of P such that,

S
 S′ (3)

for any answer set E of T [P, Φ, S] according to the proof of⇒ part of Theorem 1.
Then S
 S′ for a preferred answer set S of (P, Φ) leads to S′
 S due to

Definitions 5. Thus S′ def
= E ∩ LitP should be also another preferred answer set

of (P, Φ). On the other hand, since S is a strictly preferred answer set of (P, Φ),
it holds that,

S �
S′′ (4)

16 Toshiko Wakaki et al.

for any preferred answer set S′′ such that S �=S′′ according to Definition 8, which
contradicts (3). �

