Lecture Notes in
Artificial Intelligence

Edited by J. Siekmann

Subseries of Lecture Notes in Computer Science

383

“

K. Furukawa H. Tanaka
T. Fujisaki (Eds.)

Logic Programming '88

Proceedings of the 7th Conference
Tokyo, Japan, April 11—14, 1988

SpringerVerlag
Berlin Heidelberg New York London Paris Tokyo Hong Kong

Nonmonotonic Parallel Inheritance Network
Chiaki Sakama and Akira Okumura

Institute for New Generation Computer Técbno]ogy
Mita Kokusai Bldg. 21F, 1-4-28, Mita, Minato-ku
Tokyo 108, Japan

Abstract

This paper discusses a theory of nonmonotonic inheritance reasoning in a semantic

network and presents a parallel inheritance algorithm based on this approach.

1 Background

First, consider such an inheritance hierarchy in a semantic network.
Elephants are gray.
African elephants are elephants.
Clyde is an African elephant.

This hierarchy is represented by a set of first order formulae as follows.

W = {VzElephant(z) D Gray(z),
VzAfricanElephant(z) O Elephant(z),
AfricanElephant(clyde)}

In this case, Gray(clyde) is deducible from W. That is, inheritance is realized by the repeated
application of modus ponens.
However, when there are exceptions in the hierarchy, the case becomes somewhat more
complicated. Consider the following hierarchy.
Elephants are normally gray.
Royal elephants are elephants, but are not gray.
Clyde is a royal elephant.

This hierarchy can be represented by a set of first order formulae as follows.

W = {VzRoyal Elephant(z) O Elephant(z),

54

Vz RoyalElephant(z) D -~Gray(z),
Vz Elephant(z) A ~Royal Elephant(z) D Gray(z),
Royal Elephant(clyde)}

Suppose we add the fact, Elephant(taro), to W. When tarois not a royal elephant, the fact,
-~ RoyalElephant(taro), also has to be represented explicitly in W to deduce Gray(taro). Thus,
to represent such an inheritance hierarchy in first order formulae, all the negative information
has to be represented explicitly.

[ERSB,Eth87a.] represented such an inheritance hierarchy by Reiter’s default logic [Rei80).

For example, the above hierarchy is represented as:

W = {VzRoyalFElephant(z) D Elephant(z),
RoyalElephant(clyde)}

Elephant(z) : Gray(z) A ~Royal Elephani(z)

b= Gray(z) }

D is a set of defaults and read as: "when Elephant(z) holds, and Gray(z)A ~RoyalEl ephant(z)
is consistent with this, then infer Gray(z).” As a result, Elephant(clyde) is deduced from W,
but RoyalElephant(clyde) in W blocks the derivation of Gray(clyde) from the default D.
Besides, when Elephant(taro) is added to W and taro is not a royal elephant, Gray(taro) can
be deduced from D without ~RoyalElephant(taro). Such an inheritance hierarchy is called a
nonmonotonic inheritance hierarchy, and it enables us to treat exceptions implicitly.

This formulation, however, seems to have some drawbacks since it requires as many in-
heritance rules as exceptions in a hierarchy. Moreover, update of such a hierarchy requires
modification of all the affected default rules as well as the corresponding first order sta.e-
ments. It will become increasingly complex as the network grows, and does not make the most
of default reasoning:

The following sections present the formalization of nonmonotonic inheritance reasoning by
default logic in a different manner from Etherington, and also give a parallel algorithm based

on this approach.

2 Theory of Nonmonotonic Inheritance Reasoning

First, two predicates are introduced.

55
1. I5_A(z,y): an acyclic relation between an individual z and a class y, or a subclass z and
a superclass y; thatis, IS_A(z,y)iffz €y, orz Cy.

9. Property(z,y) (resp. ~Property(z,y)): a class or an individual z has (resp. has not) a
property y.

Now a nonmonotonic inheritance network is defined.

Definition 2.1 A nonmonotonic inheritance network A = (W, D) is defined as follows.

W : a consistent set of ground instances of either I15_A(z,y), Property(z,w),

or -~ Property(u,v).

D = {IS_A(a:,y) A Property(y, z) : Property(z, z)
Property(z, z) !
I15_A(z,y) A ~Property(y, z) : ~Property(z, z)
- Property(z, z) }

Example 2.1 Suppose the following classical hierarchy.
Molluscs are normally shellbearers.
Cephalopods are molluscs but are not normally shellbearers.
Nautili are cephalopods but are shellbearers.
Fred is a nautilus.
In this hierarchy, cephalopods become an exception to molluscs with respect to shellbearers,

and nautili also become an exception to cephalopods with respect to shellbearers.

Such a hierarchy is represented by A = (W, D), where

W = {IS_A(cephalopod, mollusc),
15_A(nautilus, cephalopod),
1S _A(fred,nautilus),
Property(mollusc, has_shell),
—~ Property(cephalopod, has_shell),
Property(nautilus, has_shell)}

As a result, the extension of A becomes:
E = W U{Property(fred, has_shell)}.

(Informally, an extension denotes a set of logical consequences of a default theory.) O

56

The same hierarchy is represented by [ER83,Eth87a] as:!

W = {VzCephalopod(z) D Mollusc(z),
Vz Nautilus(z) O Cephalopod(z),
Vz Nautilus(z) D Shellbearer(z),

Nautilus(fred)}

Mollusc(z) : Shellbearer(z) A ~Cephalopod(z)
Shellbearer(z) ’

Cephalopod(z) : ~Shellbearer(z) A ~Nautilus(z)

- Shellbearer(z) }

D = {

Compairing these two formulations, our approach describes the data in the network, W,
apart from the inheritance rules, D. This provides a simple description of inheritance hier-
archies, since default rules are independent of the network. It also facilitates updation of tue
network, since it requires changing only the corresponding data in W and does not need to
modify defaults.

Such a system, which consists of a set of classes and a set of inheritable properties associated
with each class, is called a class/property inheritance system [Tou86]. Our approach defines
exceptions as nonmonotonic properties of classes, while JS_A4 hierarchy defines a monotonic
relation between classes. In the I§_A hierarchy, transitivity is not assumed since it generates a
redundant link. For example, IS_A(fred, cephalopod) is deduced using transitivity in Example
2.1, then it leads to an extension which contains ~Property(fred, has_shell), which is an un-
desited result. To derive a transitive class-subclass relation, it is necesarry to add, for example,
Property(nautilus, upper(cephalopod)) to W, to derive Property(fred, upper(cephalopod)).

A is called a normal default theory and has at least one consistent extension for eve
consistent W [Rei80]. Nonmonotonic inheritance networks are classified by the number of

their extensions.

Definition 2.2 A nonmonotonic inheritance network A is definiteiff it has only one extension.

0

Example 2.1 is a definite case. However, there is a network with multiple extensions which
are inconsistent with each other. Consider the notorious example of Nizon diamond. The

problem is: Nizon is both a Quaker and a Republican, and Quakers are typically pacifists,

1{Eth87b] employs a different manner of representation, based on Touretzky’s approach.

57

while Republicans are typically not. Then, whether Nizon is a pacifist or not?
This. hierarchy is represented in A with W

W = {IS_A(nizon,quaker),
IS5_A(nizon,republican),
Property(quaker, paci fist),

- Property(republican, pacifist)}.

In this case, there exists the following two extensions which are inconsistent with each
other.
By = W U {Property(nizon, pacifist)}
E, = W U {~Property(nizon, pacifist)}

Such a network which has more than one extension is called indefinite, and there are two
attitudes for treating such an indefinite network [THT87]. A skeptical reasoner draws no
conclusion from ambiguous information, and hence offers no conclusion as to whether Nixon is
a pacifist or not. A credulous reasoner, on the other hand, tries to draw as many conclusions
as possible, and hence offers two alternatives: Nixon is a pacifist in one case, and is not in the
other.

From an algorithmic point of view, a skeptical reasoner always generates a unique extension,
then its algorithm seems to be simpler and more efficient than that of the credulous one, which
generates multiple possible extensions that grow expomnentially as ambiguity increases. The
credulous attitude, on the other hand, seems to be more expressive than the skeptical attitude,
since the explicit representation of ambiguities suggests that there is some disagreement in the
network structure.

To take advantage of each attitude, an algorithm which can treat ambiguities but does
not generate multiple extensions is considered. The next section discusses such an inheritance

algorithm and its parallel execution.

3 Parallel Inheritance Algorithm

Inheritance algorithms combined with parallelism have been studied over the past few
years. NETL [Fah79] is a pioneering semantic network system. In NETL, inheritance is
performed by parallel marker propagation over nodes in a network. However, as is pointed out

by [ER83,Eth87a}, NETL does not treat nonmonotonic cases correctly.

58

[Tou86] has proposed some inheritance algorithms for 2 nonmonotonic inheritance systen,_
Those algorithms are based on the choice of inference paths in multiple inheritance and limiteq
parallelism is achieved. They offer a2 credulous inference system and also a skeptical version ig
discussed in [HTT87]. These methods, however, require each derived path to contain its entire
derivation history and seem to become overloaded as the size of the network increases.

[ER83,Eth87a] have shown a parallel algorithm based on their formalization and proved itg
correctness, that is, all inferences lie within a single extension. However, this algorithm is not
complete in general; there might be some extensions which do not come out of the algorithm,
Related to this work, [Cot85] has shown a parallel connectionist architecture, but there is no
assurance of correctness.

The remainder of this section shows a 7 (parallel inheritance) algorithm for the nonmono-

tonic inheritance network presented in the previous section. First, notation in the algorithm

corresponding to A is given:

(a) property(class,®) iff Veprop, Property(class, cprop) § W and —Property(class, cprop) ¢
w.

Otherwise, property(class, CProps) iff VYeprop € CProps, Property(class,cprop) € W,
and Vnot(cprop) € C Props, ~Property(class,cprop) € W.

(b) ts.a(class, V) iff Vupper, IS_A(class,upper) & W.

Otherwise, ¢s_a(class, Uppers) iff Yupper € Uppers, IS_A(class,upper) € W.

Here, @ denotes an empty set and notation which begins with a capital letter denotes a set.

Now, the 7 algorithm is presented below.

procedure w(input : class, output : Props);
begin

call property(class, C Props);

call is_a(class, Uppers);

Temp « ;

while Uppers # 0 do

begin

select upper from Uppers;
call = (upper, U Props);
Temp + Temp U U Props;

59

Uppers «— Uppers — {upper}
end
call reverse(C Props, RevC Props);
- Props — CProps U (Temp — RevC Props)

end

procedure reverse(input : C Props, output : RevC Props);
begin '
RevCProps = §;
while CProps # 0 do
begin
select cprop from CProps;
if cprop = not(prop) then
RevC Props +— RevC Props U {prop}
else RevC Props «— RevC PropsU {not(cprop)};
CProps + CProps — {cprop}
end

end

Example 3.1 In Example 2.1, n(fred,{has_shell}) where
property(mollusc, {has_shell}), property(cephalopod,{not(has_shell)}),
property(nautilus, {has_shell}), property(fred,0), is.a(mollusc,(),
is_a(cephalopod, {mollusc}), is_a(nautilus,{cephalopod}), and is_a(fred,{nautilus}).

In Nixon Diamond, n(nizon, {pacifist, not(pacifist)}) where
property(quaker, {pacifist}), property(repubdlican,{not(pacifist)}), property(nizon,f),

is_a(quaker,0), is_a(republican,), and is_a(nizon,{quaker,republican}). O

The procedure = produces a set of inheritable properties for an input class downwards
from upper classes to their subclasses. Nonmonotonic inheritance is achieved through over-
riding higher properties by conflicting lower ones. When there is more than one upper class
at is.a(class, Uppers), each upper class calls the recursive = procedure independently. This
process will be executed in parallel on a massively parallel architecture, where each processor
will have cost proportional to the length of the inheritance path. The r algorithm is imple-

mented in the parallel logic programming language GHC (Guarded Horn Clauses) [Ued86],

-y

60

and is shown in Appendix A.

The next proposition assures the soundness and completeness of the 7 procedure with

respect to a nonmonotonic inheritance network A.

Proposition 3.1 Suppose a2 nonmonotonic inheritance network A then
Vclass, w(class, Props) iff
Props = {prop | 3E;, Property(class, prop) € E;}
U{not(prop) | 3E;, ~Property(class, prop) € E;},

where E; and F; are extensions of A.

Proof See Appendix B. O

4 Discussion

The previous sections presented a formalization of the nonmonotonic inheritance network
and its parallel execution algorithm. Our approach enables us to define inheritance rules apart
from data in a network, and simplifies description and maintenance of the network. The
problem is, as is mentioned in an earlier section, a redundant IS_A link often causes some
ambiguities in the network.

The 7 algorithm produces a set of inheritable properties for an input class, and parallel
execution is achieved in multiple inheritance. When a network is definite, the properties
generated by the algorithm are included in an extension, while in the case of an indefinite
network, it collects ambiguous information from multiple extensions. Note that the output of
the algorithm is not an extension itself, thus there is no problem of logical inconsistency in the
indefinite case. It may seem that such ambiguities give us no information, but they sugge.
the problem in the network structure and help us to reconstruct it.

In general, however, it is not straightforward to decide whether an inheritance network is

definite or not. Let us consider an example from [San86] (Figure (a)).

[San86) has defined some basic structure types for inheritance networks and given sound
inference rules for these structures. According to his inheritance system, Clyde is not gray in
the above network. Whereas Touretzky’s system [Tou86] yields two alternatives; Clyde is gray
in one case and is not in the other, and our system also returns gray and not(gray) for an
input class Clyde. This shows that the above network is interpreted as definite in Sandewall’s

system, and indefinite in Touretzky’s and ours. In this example, it seems to be more intuitive

61

(a) gray beer drinker

\ elephant }f\ man
royal / chaplain
/ african \ / marine

Clyde George

to infer that Clyde is not gray. However, as in shown in [THT87], there is a counter-example
which has the the same structure with (a), but the Sandewall’s inference seems to be doubtful
(Figure (b)). In this case, whether George drinks beer or not is not clear and it depends on
the rate of beer drinking among marines.

These examples suggest that it is difficult to infer the intended meaning of the network

from its structure alone.

Acknowledgment

We would like to thank David W. Etherington for his comments for improving earlier drafts
of this paper. We are also grateful to the colleagues at JCOT for useful discussions and

comments.

References

[Cot85] Cottrell,G.W.: "Parallelism in Inheritance Hierarchies with Exception”, IJCAI’83,
pp-194-202, 1985.

(ER83] Etherington,D.W. and Reiter,R.: ”"On Inheritance Hierarchies with Exceptions”, A4AI’83,
pp-104-108, 1983.

(Eth87a] Etherington,D.W.: ”Formalizing Nonmonotonic Reasoning Systems”, Artificial In-
telligence 81, pp.41-85, 1987.

Eth87b] Etherington,D.W.: "More on Inheritance Hierarchies with Exceptions”, AA4AI’87
p))
pp.352-357, 1987.

62

[Fa.h79] Fahlman,S.E.: "NETL: A System for Representing and Using Real- World Knowledge”,
MIT Press, Cambridge, MA, 1979.

[HTT87) Horty,J.F., Thomason,R.H. and Touretzky,D.5.: ”A Skeptical Theory of Inheri-
tance”, AAAI’87, pp.358-363, 1987.

[Rei80] Reiter,R.: " A Logic for Default Reasoning”, Artificial Intelligence 18, pp.81-132, 1980.

[San86) Sandewall,E.: "Nonmonotonic Inference Rules for Multiple Inheritance with Excep-
tions”, Proc. of IEEEF, vol.74, pp.1345-1353, 1986.

[Tou86) Touretzky,D.S.: "The Mathematics of Inheritance Systems”, Research Notes in Arti-
ficial Intelligence, Pitman, London, 1986.

[THT87) Touretzky,D.S., Horty,J.F. and Thomason,R.H.: A Clash of Intuitions”, IJCAI’87,
pp.476-482, 1987.

[Ued86) Ueda,K.: ”Guarded Horn Clauses”, Lecture Notes in Computer Sciences 221, Springer-
Verlag, Berlin, 1986.

Appendix A

Here, we show an implementation of the m algorithm in GHC. GHC is the parallel logic
programming language developed as the kernel language of fifth generation project at ICOT.

The syntax of a clause in GHC is in the following form:

H:-G1,G2y...;Gm | B1,B2,..., Bn.

where the part preceding ’|’ is called a guard, and the part succeeding it is called a body.
A clause with an empty guard is a goal clause. The declarative meaning of the clause is
same as Prolog.

The execution of a GHC program proceeds by reducing a given goal clause to the empty

clause as follows.

(a) The guard of a clause cannot export any bindings to the caller of that clause.

(b) The body of a clause cannot export any bindings to the guard of that clause before

commitment.

(c) When there are several candidate clauses for invocation, the clause whose guard first

succeeds is selected for commitment.

63

Under these conditions, the execution of goal reduction is done in parallel. Now the proce-

dure is shown with an example of shellbearers.

/*** Nonmonotonic Parallel Inheritance Network in GHC %**/
%44 inheritance procedure %%k

pi(Class,Props,Tail) :- true |
property(Class,Props,Temp),
is_a(Class,Uppers),
has_property(Uppers,UProps,Res),
filter (Props,UProps,Res,Temp,Tail).

has_property([UClass|Rest] ,UProps,Tail) :- true |
pi(UClass,UProps,Temp),
has_property(Rest,Temp,Tail).

has_property([], UProps,Tail):- true | UProps=Tail.

filter ([CProp|Rest], In,Taili,Out,Tail2):- CProp\=not() |
filter2(not(CProp),In,Taill,Temp,Tail3),
filter(Rest,Temp,Tail3,0ut,Tail2).

filter ([not(CProp) |Rest],In,Taill,Out,Tail2):- true |
filter2(CProp,In,Taill,Temp,Tail3),
filter(Rest,Temp,Tail3,0ut,Tail2).

filter(Out, In,Taill,0ut,Tail2):- true |
In=0ut,Taili=Tail2.

filter2(CProp, [P11P2],Taill,Temp,Tail2):~ P1\=CProp |
Temp=[P1]Rest],
filter2(CProp,P2,Taill,Rest,Tail2).

filter2(CProp, [P1|P2],Taill,Temp,Tail2):- P1=CProp |
filter2(CProp,P2,Taill,Temp,Tail2).

filter2(CProp,Taill, Taili,Temp,Tail2):- true |
Temp=Tail2.

W% data 4
is_a(mollusc, Uppers):- true | Uppers=[].

is.a(aquatic, Uppers):- true | Uppers=[].

is_a(cephalopod, Uppers):- true | Uppers=[mollusc,aquatic].

64

is_a(nautilus, Uppers):- true | Uppers=[cephalopod].

is_a(fred, Uppers):- true | Uppers=[nautilus].

property(mollusc, CProps,Tail):- true | CProps=[soft body,has_shell|Tail].
property(aquatic, CProps,Tail):- true | CProps=[swimming|Tail].
property(cephalopod,CProps,Tail):~ true | CProps=[not(has_shell),has legs|Tail],
property(nautilus, CProps,Tail):- true | CProps=[has_shell,not(swimming) |Tail].

property(fred, CProps,Tail):- true | CProps=[american|Tail].

%A% execution results %4
| ?- ghc pi(fred,Props,[).
21 msec. |
Props = [american,has_shell,not(swimming),has legs,soft body]

yes

This GHC program is easily translated into a Prolog program, which performs sequential

inheritance in a network.

Appendix B
First, some notation used in the proof is given. For an I5_A(z,y), the closure of z is defined

as a set, Upperi(z) (k > 0), as follows:

1. z € Uppery(z)
2. z € Uppers1(z) if f 3y,y € Upper(z) and IS _A(y, z).

Note that the IS_A hierarchy is acyclic, then = & Uy, Upperi(z). Now we show the proo

of the proposition.

Proposition 3.1 Suppose a nonmonotonic inheritance network A then
Vclass,w(class, Props) iff
Props = {prop | 3E;, Property(class,prop) € E;}
U{not(prop) | IE;, ~Property(class,prop) € E;}.

where E; and E; are the extensions of A.

Proof Suppose first that 3n,n + 1, Upper,(class) # @, Upperni1(class) = 0, then
Ve € Uppery(class) , is_a(cy, 0) holds.

65

Assume 7 (cq, Props,) and property(c,, C Props,) then
Propsp, = CProps, U (Temp, — RevC Propsy,)
= CProps, U (§ — RevC Props,)
= CProps,
= {cprop | Property(cs, cprop) € W} U {not(cprop) | ~Property(c,, cprop) € W}.

Next assume Veg € Upperi(class) (0 < k < n), w(ck, Propsk) where
Propsy = {prop | 3E;, Property(ck,prop) € E;}
U{not(prop) | 3E;, ~Property(c, prop) € E;} holds.

Let Vex—1 € Upperi_1(class), m(ck-1, Propsg—~1), then
Propsig_1 = CPropsg_1 U(Tempi_1 — RevC Propsi_1)
where property(ck—1,C Propsg—1).
(2) If uprop € CPropsi_y or not(uprop) € CProps_1, then
Property(cg—1,uprop) € W or ~Property(ck—1,uprop) € W.
(b) Otherwise, uprop € Tempy_; — RevC Propsi_,
or not(uprop) € Tempk_1 — RevC Propsg—_1, then
uprop € Tempg_y or not(uprop) € Tempy_; where Tempi_, = Props;.
By the assumption, Ycx € Upperi(class), then
3E;, Property(ck, uprop) € E; or 3E;, ~Property(ck, uprop) € E;.
In case uprop € Tempg_;, clearly uprop € RevC Propsg_1, then
- Property(ck—1, uprop) ¢ W and 3E;, Property(ck—1,uprop) € E;.
In case not(uprop) € Tempi_1, clearly not(uprop) ¢ RevC Propsi_;, then
Property(ck-1,uprop) ¢ W and 3E;, -~ Property(ck—1, uprop) € E;.
Therefore,
Propsg_y C {prop | 3E;, Property(ci—1, prop) € E;}
U{not(prop) | 3E;, ~Property(ck—1,prop) € E;} (*).

While, let Vex_y € Upperi—1(class), 3E;, Property(ck—1,uprop) € E;,

or 3E;, ~Property(ck-1,uprop) € E;.

(a) If Property(ck—1,uprop) € W or ~Properiy(ck—1,uprop) € W, then S
uprop € CPropsg—y or not(uprop) € C Propsi_;.

(b) Otherwise, 3E;, Property(ck, uprop) € E;, or IE;, -~ Property(ck, uprop) € E;.

By the assumption, Vi € Upperi(class), uprop € Propsy,

or not(uprop) € Propsk, where n(ck, Propsi).

66

In case 3E;, Property(ck—1, uprop) € E;, ~Property(ci—1,uprop) € W holds, then
uprop & RevC Propsg_y and uprop € Propsy — RevC Propsi_;.
So, uprop € CPropsi—y U (Tempi_; — RevC Propsg—1).
In case 3E;, ~Property(ck—1,uprop) € E;, Property(ck_1,uprop) € W holds, then
not(uprop) € RevC Props—, and not(uprop) € Props; — RevC Propsi_;.
So, not(uprop) € CPropsg—y U (Tempr_1 — RevC Propsi—_1).
Hence uprop € Props-1, or not(uprop) € Propsi_; holds, where 7 (cx—1, Propsi.1).
Therefore,
Propsy_y 2 {prop | 3E;, Property(ck-1,prop) € E;}
U{not(prop) | 3E;, ~Property(cx_y,prop) € E;} (1).

Together from (x) and (1),
Propsy_y = {prop | IE;, Property(ck-1,prop) € E;}
U{not(prop) | 3E;,~Property(ck—1,prop) € E;}.

By induction, we have the desired result. D

	img001.pdf
	img002.pdf
	img003.pdf
	img004.pdf
	img005.pdf
	img006.pdf
	img007.pdf
	img008.pdf
	img009.pdf
	img010.pdf
	img011.pdf
	img012.pdf
	img013.pdf
	img014.pdf
	img015.pdf

