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Abstract. In Hollis’ paradox, A and B each chose a positive integer and whisper
their number to C. C then informs them, jointly, that they have chosen different
numbers and, moreover, that neither of them are able to work out who has the
greatest number. A then reasons as follows: B cannot have 1, otherwise he would
know that my number is greater, and by the same reasoning B knows that I don’t
have 1. But then B also cannot have 2, otherwise he would know that my number
is greater (since he knows I don’t have 1). This line of reasoning can be repeated
indefinitely, effectively forming an inductive proof, ruling out any number – an
apparent paradox. In this paper we formalise Hollis’ paradox using public an-
nouncement logic, and argue that the root cause of the paradox is the wrongful
assumption that A and B assumes that C’s announcement necessarily is success-
ful. This resolves the paradox without assuming that C can be untruthful, or that
A and B are not perfect reasoners, like other solutions do. There are similarities
to the surprise examination paradox. In addition to a semantic analysis in the tra-
dition of epistemic logic, we provide a syntactic one, deriving conclusions from
a set of premises describing the initial situation – more in the spirit of the litera-
ture on Hollis’ paradox. The latter allows us to pinpoint which assumptions are
actually necessary for the conclusions resolving the paradox.
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1 Introduction

In A paradoxical train of thought [9], Martin Hollis describes the following situation.

A thinks of a number and whispers it privately to C. B does the same. C tells
them, ‘You have each thought of a different positive whole number. Neither
of you can work out whose is the greater’. . . . Sitting alone in his homebound
train, A muses as follows. ’I picked 157 and have no idea what B picked. So,
assuming that he indeed chose a different positive whole number, C is right.
. . . Well, clearly B did not choose 1, as he would then be able to work out that
mine is greater; and by the same token he knows that I did not choose 1. So
he did not choose 2, since he could then use the previous reasoning to prove
that my number is greater. Similarly, he can know that I did not choose 2 either.
With 2 out of the way, I infer that he did not choose 3; and he can infer that
I did not choose 3. . . . I can keep this up for ever. But that is absurd. It means
that I cannot have picked 157, which I certainly did.
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Several solutions attempting to resolve the apparent paradox have been proposed
[14, 11, 17] (see also Hollis’ response to the two first in [10]). What they have in com-
mon is that they argue that the announcement by C might not be truthful, and even if it
were A and B might not have justified belief in that. Like most well known epistemic
puzzles, Hollis’ paradox leaves many assumptions implicit or ambiguous, so let us in
this paper assume the following: (a) all agents always tell the truth (if they say some-
thing it is true and they know that it is true) and (b) this is common knowledge among
all agents. Thus, we will be modelling knowledge rather than belief, and at any point
in time an agent’s knowledge is a result of the information she has received. We also
assume that it is common knowledge that everyone is a perfect reasoner4.

As far as we are aware, no formal analysis of Hollis’ paradox appears in the liter-
ature, unlike most other well known epistemic or doxastic puzzles or paradoxes which
have been studied using dynamic epistemic logic – see [19, 18] for an overview and
references. Indeed, the precision and clarity of formal logic has been crucial in under-
standing these puzzles and clarify hidden premises (and these puzzles have again been
a driving force as case studies in the development of dynamic epistemic logic).

In this paper we use public announcement logic [15] to model and analyse Hollis’
paradox. This allows us to untangle subtleties in the alleged paradox, and in particular
to be precise about the distinction between truth before an announcement and after, a
distinction often lost in other analyses of the paradox. We argue that the root cause of
the paradoxical situation is a wrongful assumption that the announcements by C always
are successful, i.e., that they always remain true after they are announced. In Hollis’ ar-
gument, this assumption is used as a premise in the inductive “proof”. This has, as far as
we know, not been pointed out in other studies of the paradox, and we believe this is the
first solution to the paradox that does not rely on weakening the assumptions outlined
above. However, it should come as no surprise. As pointed out already in [14], Hollis’
paradox is similar5 to the surprise examination paradox6 which was first analysed using
dynamic epistemic logic by Gerbrandy [7, 8]. Gerbrandy pointed out that the root cause
of that paradox is the same phenomenon that lies behind many other epistemic puzzles
with counter-intuitive solutions, the muddy children (or three wise men) problem [5]
being the most well known, namely that announcements can become false as a result
of being announced 7 – they are not necessarily successful. Olin [14] also points out
that there are still “important differences” between the two paradoxes. We discuss the
connection further in the last section of the paper.

In addition to arguing why, under the assumptions outlined above, Hollis’ paradox
is actually not a paradox, we shed light on other epistemic aspects of the puzzle, such
as whether common knowledge must be assumed (it must not) or how many layers
of nested knowledge are relevant (two). We provide two alternative and complemen-
tary analyses: a semantic analysis (in the style of Gerbrandy) where we give a single

4 Hollis [9] already hints at this assumption: “. . . each of us has to assume that the other is not
stupid. . . ”.

5 Olin [14] claims that it is “a version of surprise examination”; Hollis [10] on the other hand
argues that his paradox is “wider”.

6 See [12] for an overview of different variants and a discussion of historic origins.
7 In muddy children, that happens in the last joint announcement by the children.
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model of the initial situation described in the story and show that it has certain logical
properties (Section 3), as well as a syntactic analysis (more in the style of Hollis and
his respondents in Analysis, but formalised) where we describe the situation using a
set of logical formulas and show that the same properties can be derived (Section 4).
First, we give a brief technical introduction to epistemic logic and the logic of public
announcements (see [19] for more details).

2 Background

2.1 Epistemic Logic

The most popular epistemic logic (i.e., logic for reasoning about knowledge) is modal
propositional epistemic logic [5]. It extends propositional logic over a set of primitive
propositions P with modalities Ka, where a is one of the agents in a given finite set
Ag of agents. Intuitively, Kaϕ means that agent a knows ϕ. Formally, the language is
defined by the following grammar:

φ ::= p | ¬φ | φ1 ∧ φ2 |Kaφ

where p ∈ P and a ∈ Ag. It is interpreted in (epistemic) models M = (S,∼, V ) where
S is a non-empty set of states (or worlds); ∼ gives an equivalence relation ∼a on S for
each a ∈ Ag, a’s accessibility relation; and V : P → ℘(S) is a valuation function,
saying which primitive propositions are true in which states. Intuitively, s ∼a t models
that agent a cannot discern between the states s and t; if the state of the world is s she
considers it possible that it is actually t, and vice versa.

We write M, s |= ϕ to denote the fact that formula ϕ is true in state s of model M ,
defined recursively as follows:

M, s |= p ⇔ s ∈ V (p) M, s |= Kaφ ⇔ (∀t ∈ S)(s ∼a t⇒M, t |= φ)
M, s |= ¬φ⇔M, s ̸|= φ M, s |= φ ∧ ψ ⇔M, s |= φ &M, s |= ψ

Thus, Kaφ is true if and only if φ is true in all indiscernible (for a) states. We use
the usual derived propositional connectives, in addition to K̂aϕ for ¬Ka¬ϕ, intuitively
meaning that agent a considers that ϕ possible, i.e., that φ is true in at least one indis-
cernible state.

2.2 Public Announcement Logic

Public announcement logic (PAL) [15] extends epistemic logic in order to be able to
reason about change in agents’ knowledge and ignorance, resulting from a specific type
of events: public announcements (such as the ones made by C in Hollis’ paradox). Syn-
tactically PAL extends epistemic logic with modalities of the form [ϕ] where ϕ is a
formula. A formula [ϕ]ψ intuitively means that after ϕ is truthfully8 and publicly an-
nounced, ψ becomes true. Formally, the language is defined by the following grammar:

φ ::= p | ¬φ | φ1 ∧ φ2 |Kaφ | [φ1]φ2

8 Here and in the following we mean “truthful” in the strong sense that the announcement is in
fact true (rather than only believed to be true).
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where p ∈ P and a ∈ Ag. This language is also interpreted in epistemic models,
extending the interpretation of the epistemic language with a clause for the public an-
nouncement operators. Informally, [ϕ]ψ is true in a state s in a modelM (M, s |= [ϕ]ψ)
if ψ is true in state s (M ′, s |= ψ) in the model (call it M ′) resulting from removing
all states t in M where ϕ is false (M, t |= ¬ϕ). This captures the epistemic effects
of a public announcement of ϕ: after the announcement, no-one considers it possible
that ¬ϕ was9 true, no-one considers it possible that anyone considered ¬ϕ possible, and
so on (it becomes common knowledge that ϕ was true, capturing the word “publicly”
above). Formally:

M, s |= [φ]ψ ⇐⇒ (M, s |= φ⇒M |φ, s |= ψ)

where M |φ = (S′,∼′, V ′) is a model such that for any a ∈ Ag and p ∈ P , S′ = {t ∈
S |M, t |= φ}, ∼′

a=∼a ∩(S′ × S′), and V ′(p) = V (p) ∩ S′.
The precondition M, s |= ϕ in the interpretation of [ϕ]ψ is needed because without

it the definition would not be well-defined: if ϕ is false in s then s itself would be
removed in the model update. This captures the “truthful” in the informal reading “after
ϕ is truthfully and publicly announced, ψ becomes true” - or, alternatively, “if ϕ is true
then ψ will become true after ϕ is publicly announced”. The dual, ⟨ϕ⟩ψ = ¬[ϕ]¬ψ,
means that ϕ is true and ψ will become true after ϕ is publicly announced.

We writeM |= ϕ to denote the fact that ϕ is true in all states in modelM . A formula
ϕ is valid if M |= ϕ for all models M . When Γ is a set of formulas, Γ |= ϕ means that
for all M, s, if M, s |= Γ then M, s |= ϕ (ϕ is logically entailed by Γ ).

We say that a formula ϕ is an (un)successful update in M, s iff M, s |= ⟨ϕ⟩ϕ
(M, s |= ⟨ϕ⟩¬ϕ); ϕ is a successful formula iff [ϕ]ϕ is valid and an unsuccessful for-
mula if not.

2.3 Axioms

Axiomatisations of epistemic logic and Public Announcement Logic are shown in Table
1. These axiomatisations are sound and complete [15, 19], in the sense that any formula
is valid if and only if it can be derived using these axioms and rules.

We write ⊢ ϕ to denote that formula ϕ is derivable (is a theorem), i.e., that there is
a finite sequence of formulas ending with ϕ where every formula is either an instance
of an axiom schema or the result of applying an inference rule to formulas earlier in the
sequence. When Γ is a set of formulas, Γ ⊢ ϕ (“ϕ can be derived from Γ ”) means that
there is a finite subset {γ1, . . . , γk} of Γ such that ⊢

∧
1≤i≤k γi → ϕ.

3 A Semantic Analysis

Hollis’ paradox is well suited to a semantic (model theoretic) analysis, because the story
intuitively and implicitly completely describes a single epistemic model. Figure 1 shows

9 If ϕ is, e.g., a primitive proposition, then “was true” is the same as “is true”. However, this is
not the case in general: it could be that ϕ was true in a certain state before the announcement,
but became false in the same state as a result of the announcement. The canonical example of
the latter is the so-called Moore sentence ϕ = p ∧ ¬Kap.
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Propositional tautology instances Prop
Ka(ϕ→ ψ) → (Kaϕ→ Kaψ) KD [ϕ]p↔ (ϕ→ p) APerm
Kaϕ→ ϕ T [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) ANeg
Kaϕ→ KaKaϕ 4 [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ) AConj
¬Kaϕ→ Ka¬Kaϕ 5 [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ) AKnow
From ϕ and ϕ→ ψ, infer ψ MP [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ AComp
From ϕ, infer Kaϕ Nec

Table 1. Axiomatisation of epistemic logic (left) and PAL (left and right).

the epistemic model of the agents’ knowledge after they have chosen their numbers but
before C makes any announcement. A state corresponds to each agent having selected
a number, we will refer to the combination as a selection. We only model A and B (as
agents a and b respectively); C’s knowledge is not relevant for the paradox beyond the
assumption that his two announcements are actually true when they are made. Let 7a
be an atomic proposition meaning that agent a has chosen the number 7, and similarly
for other numbers and for agent b. Also, let pa mean that agent a’s number is strictly
greater than agent b’s, and pb that agent b’s number is strictly greater than agent a’s.
We can now formalise the two announcements “you have each thought of a different
number” and “neither of you can work out whose is the greater”, respectively as:

ann1 = pa ∨ pb ann2 = ¬Kapa ∧ ¬Kapb ∧ ¬Kbpa ∧ ¬Kbpb

While ann1 is straightforward, the formalisation ann2 of the second announcement
deserves comment. In this formalisation we interpret “work out” as “deduce”. “Work
out” doesn’t seem to imply, e.g., waiting for further information, asking questions, or
guessing. Indeed, this is a common interpretation: informal descriptions of Hollis’ para-
dox that have appeared after the original statement [9] explicitly use “deduce” instead
of “work out”; e.g., [16] (“Neither of you can deduce which number is greatest”). It is
worth noting that this formalisation is similar to Gerbrandy’s formalisation of the the
announcement in the surprise exam paradox [8], and that it has been argued [2] that the
latter does not capture the intended meaning and that a stronger self-referential propo-
sition is needed. In Section 5 we discuss why the same argument does not apply to our
case. Also note that this formalisation is made in the context of the assumptions made
in the introduction (common knowledge of truthfulness, perfect reasoners). A formula
Kaϕ holds iff ϕ follows from the information agent a currently has, and can thus be de-
duced by a perfect reasoner. ¬Kaϕ holds if a cannot deduce ϕ (work out that ϕ holds).

In this initial model, agents a and b each only know their own number and consider
any possibility for the other agent’s number. They have no additional information (yet).
For example, we have that M1, (2, 3) |= ¬Kapb: if A has selected 2 and B has selected
3, then A does not know that B’s number is highest. In fact, in all states, i.e., no matter
what the selection is, it holds that none of the agents know which number is greatest:
M1 |= ann2. However, note that if the selection, e.g., is (1, 1), A knows that her number
cannot be strictly greater than B’s: M1, (1, 1) |= Ka¬pa.

Let us now consider the situation immediately after C makes the announcement
ann1. This announcement is informative for A and B; they learn something from it.
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Fig. 1. Initial model M1. In state (2, 3) agent a has chosen the number 2 and agent b has chosen
the number 3, and so on for the other states. The accessibility relation for agent a is depicted
using dotted lines. Reflexive loops and transitive “jumps” are not shown; the actual accessibility
relation is the reflexive, transitive closure of the relation in the picture. More intuitively: agent a
cannot discern between states on the same row. Similarly for agent b, solid lines, and the same
column. Atom pais true in all states to the left of the underlined diagonal; pb in all states to the
right of the diagonal. States where ann1 is false are underlined. ann2 is true in all states.

Thus we have to update the model M1 with the new information ann1 which is jointly
received by a and b. We do that by removing the states in model M1 where ann1 is
false. The resulting model, M2, is shown in Figure 2.

As mentioned, the agents’ knowledge has now changed, and in particular we have
that M2 |= 1a → Kapb. Similarly, M2 |= 1b → Kbpa. In words: if A has chosen the
number 1, she now knows that she has a strictly lower number than B. Written another
way: M1 |= 1a → [ann1]Kapb.

As a consequence, we now (after the first announcement) have that the statement
ann2 is not true in, e.g., state (1, 3): M2, (1, 3) |= ¬ann2.

Consider now the announcement of ann2 by C. The consequence of this announce-
ment is that no one no longer considers states where ann2 was false (at the moment
the announcement was made) possible (i.e., the bold states in the figure), and we up-
date model M2 by removing those states. The resulting model, M3, is also illustrated
in Figure 2. Observe that we now have that, e.g., M3, (2, y) |= Kapb for all y > 2,
and M3, (x, 2) |= Kbpa for all x > 2. In other words, M2 |= 2a → [ann2]Kapb, or:
M1 |= 2a → [ann1][ann2]Kapb – no matter what the selection is, if A’s number is 2
then she will know that B’s number is highest after both announcements.

Let us consider the claims in the statement of the paradox. “clearly B did not choose
1": this is true; M1 |= [ann1][ann2]Ka¬1b.“. . . and by the same token he knows that
I did not choose 1”: also true; M1 |= [ann1][ann2]Kb¬1a. “So he did not choose 2,
since he could then use the previous reasoning to prove that my number is greater”: no,
this is in fact not true. In fact, no matter what the selection is, each of the two agents
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Fig. 2. M2 (top), the result of announcing ann1 in M1. M3 (bottom), the result of announcing
ann2 in M2. States where ann2 is false are in bold. ann1 is true in all states.
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considers it possible that the other agent has 2 unless she has it herself:

M1 |= ¬2a → [ann1][ann2]¬Ka¬2b

and similarly with a and b swapped. This shows that the inductive argument in the
“proof” of the paradox halts. The reason that the argument in the “proof” of the paradox
doesn’t work is that while the announcement ann2 might have been successful, A and B
cannot know that:M1 |= (¬2a∧¬2b) → [ann1][ann2](ann2∧¬Kaann2∧¬Kbann2).

So why do we still have states (2, y) and (x, 2) in the model after the second
announcement? Observe that the second announcement removed all states (1, y) and
(x, 1). What enabled this was that ann1 was announced first – without that ann2 would
not have removed those states. ann2 plays a similar role for the states (2, y) and (x, 2):
after the announcement of ann2, ann2 becomes false in those states. However, it was
true in the same states before the announcement, which is why they are not removed.

It could perhaps be argued that C implicitly meant something stronger than just that
ann2 was true at the moment it was announced, for example that it would also stay
true after the announcement (and that this was clear to A and B)10. That would be mod-
elled explicitly by the announcement ann2′ = ann2 ∧ [ann2]ann2 = ⟨ann2⟩ann2.
The effect of that announcement would in fact be identical to the effect of announc-
ing ann2 twice in a row. As argued above, the third announcement (announcing ann2
a second time) would remove the (2, y) and (x, 2) states. Now, after this annouce-
ment, ann2 becomes false in all (3, y) and (x, 3) states. Formally: M1 |= 3a →
[ann1][ann2][ann2]Kapb (while M1 |= 3a → [ann1][ann2]¬Kapb). We can con-
tinue this argument: repeating the announcement “Neither of you can deduce which
number is greatest” removes more and more states. It is only in this sense that “you
can extend this line of reasoning to include any number you like” is true: extending this
line of reasoning implies that the announcement has to be made again to exclude the
number 2, and again for the number 3, and so on. If repeated enough times, we will
reach a point where either A or B has learned who has the greatest number, and the
announcement is unsuccessful and cannot be repeated any more11. In the statement of
the paradox, the announcement is only made once, which explains why the reasoning
cannot be extended beyond the number 1. This resolves the paradox.

4 A Syntactic Analysis

We now turn to analyse the paradox syntactically, by describing the situation as a set of
formulas Γ , and deriving conclusions from them. In particular, we will show, similarly
to in the model theoretic analysis, that

Γ ⊢ [ann1][ann2]Ka¬1b
10 Gerbrandy [8, pp. 27–29] discusses the same point in the context of surprise examination.
11 This can be expressed elegantly by the iterated announcement operator in [13]: M1 |=
⟨ann2∗⟩¬ann2, which is true iff M1 |= ⟨ann2⟩ · · · ⟨ann2⟩︸ ︷︷ ︸

n

¬ann2 for some n ≥ 1. See

also [20] for a further disucssion of this and related operators.
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– after the two announcements A knows that B does not have 1, but

Γ ⊢ 157a → [ann1][ann2]¬Ka¬2b

– she does not know that B does not have 2 (in the case that A has 157 as in the
description of the paradox), stopping the inductive train of thought in its tracks.

4.1 Describing the initial situation

We start by defining Γ , describing A’s and B’s initial knowledge and ignorance. For the
purpose of the two derivations mentioned above we basically only need two premises
(more discussion on this perhaps surprising fact below).

The first is that everyone knows their own number. For any i ∈ {a, b}:

xi → Kixi (A0)

and furthermore that this is known by both A and B. For any i, j ∈ {a, b}:

Kj(xi → Kixi) (A1)

Since (A1) implies (A0) (see epistemic logic axiom T ), we actually only need (A1). We
will use axiom T in the same way implicitly in the following.

The second is that initially (before any announcements) each agent considers it
possible that the other has chosen any number (and this is known by both). For any
i, j ∈ {a, b} and any number y, we write i for “the other agent”, i.e., a = b and b = a:

KjK̂iyi (A2)

In addition to these two12 premises we need some bookkeeping: the logic of the
linear order of the natural numbers and the agents’ knowledge of that. This is captured
by the following three premises.

First, the relationship betwen pb and pa. If i’s number is greatest, then the other
agent’s number is not (and this is known). For any i, j ∈ {a, b}:

Kj(pi → ¬pi) (A3)

Second, we need two premises describing the relationship between atoms of the
form 156a and pa. The first says that one is the lowest number (and anyone knows
this, and anyone knows that anyone knows this13). The second is that if agent i has the
greatest number then pi holds (and this is known). For any i, j, k ∈ {a, b} and numbers
x > y:

KjKk(1i → ¬pi) (A4)

KjKk((xi ∧ yi) → pi) (A5)

12 There are two schemas but actually infinitely many formulas.
13 We could assume that these premises are common knowledge, writing e.g.,C{a,b}(1i → ¬pi).

However, it turns out that assuming common knowledge is not needed, and it is of interest to
illucidate exactly how many levels of nested knowledge is sufficient: e.g., two levels for (A4).
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Thus, we let Γ be all instances of (A1)–(A5):

Γ =



Kj(xi → Kixi),

KjK̂iyi,

Kj(pi → ¬pi),
KjKk(1i → ¬pi),
KjKk((xi ∧ yi) → pi)

: i, j, k ∈ {a, b}, x, y ∈ N, x > y


where N is the set of natural numbers. Note that, while Γ is an infinite set of premises,
any derivation Γ ⊢ ϕ of ϕ from Γ can only use a finite number of those premises.

4.2 Simplifying announcements

It is a straightforward exercise in PAL to show that, for any ϕ,

⊢ [ann1][ann2]ϕ↔ [β]ϕ (1)

where

β = (pb ∨ pa)∧
¬Kb(pa → pb) ∧ ¬Kb(pb → pa) ∧ ¬Ka(pa → pb) ∧ ¬Ka(pb → pa)

From Kb(pb → ¬pa) ∈ Γ (A3) and similarly for the other combinations, we also
have14:

Γ ⊢ α↔ β (2)

where
α = (pb ∨ pa) ∧ K̂bpa ∧ K̂bpb ∧ K̂apa ∧ K̂apb

4.3 I know that she does not have 1

We now show that Γ ⊢ [ann1][ann2]Ka¬1b. Here and in the following we often com-
bine several proof steps. In particular, we liberally use known epistemic logic and PAL
theorems – referred to as “S5” and “PAL” respectively.

1 Γ ⊢ Ka(1b → Kb1b) (A1)
2 Γ ⊢ KaKb(1b → ¬pb) (A4)
3 Γ ⊢ Ka(Kb1b → Kb¬pb) 2, S5
4 Γ ⊢ Ka(1b → Kb¬pb) 1, 3, S5
5 Γ ⊢ Ka(1b → ¬α) 4, Prop
6 Γ ⊢ Ka(α→ ¬(α→ 1b)) 5, Prop
7 Γ ⊢ Ka(α→ ¬[α]1b) 6, APerm
8 Γ ⊢ Ka[α]¬1b 7, ANeg
9 Γ ⊢ α→ Ka[α]¬1b 8, Prop
10 Γ ⊢ [α]Ka¬1b 9, AKnow
11 Γ ⊢ [ann1][ann2]Ka¬1b 10, Eq. (1), Eq. (2), Prop

14 Observe that α expresses that (1) the two numbers are different, and (2) both agents consider
each of the numbers to be the greatest (α implies ann1∧ann2 but not the other way around).
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4.4 But I don’t know that she does not have 2

We show thatΓ ⊢ 157a → [ann1][ann2]¬Ka¬2b. “x/y” means “replace x with y”.
1 Γ ⊢ K̂a2b (A2), S5
2 Γ ⊢ 157a → Ka157a (A1), S5
3 Γ ⊢ Ka((157a ∧ 2b) → pa) (A5), S5
4 Γ ⊢ Ka157a → Ka(2b → pa) 3, S5, Prop
5 Γ ⊢ 157a → K̂a(2b ∧ (2b → pa)) 1, 2, 4, S5
6 Γ ⊢ 157a → K̂a(2b ∧ (pb ∨ pa)) 5, Prop
7 Γ ⊢ KaK̂a2b (A2)
8 Γ ⊢ Ka157a → KaK̂a(2b ∧ 157a) 7, S5
9 Γ ⊢ Ka((2b ∧ 157a) → pa) (A5), S5
10 Γ ⊢ Ka157a → KaK̂apa 8, 9, S5
11 Γ ⊢ 157a → KaK̂apa 2, 10, Prop
12 Γ ⊢ 157a → KaK̂apb Like 7-11: 2b/158b and pa/pb
13 Γ ⊢ KaK̂b3a (A2)
14 Γ ⊢ Ka(2b → Kb2b) (A1)
15 Γ ⊢ Ka(2b → K̂b(3a ∧ 2b)) 13, 14, S5
16 Γ ⊢ KaKb(3a ∧ 2b → pa) (A5)
17 Γ ⊢ Ka(2b → K̂bpa) 15, 16, S5
18 Γ ⊢ Ka(2b → K̂bpb) Like 13-17: 3a/1a and pa/pb
19 Γ ⊢ 157a → K̂a(2b ∧ α) 6, 11, 12, 17, 18, S5
20 Γ ⊢ 157a → (α→ ¬Ka(α→ ¬2b)) 19, Prop
21 Γ ⊢ 157a → (α→ ¬Ka(α→ ¬(α→ 2b))) 20, Prop
22 Γ ⊢ 157a → (α→ ¬Ka(α→ ¬[α]2b)) 21, APerm
23 Γ ⊢ 157a → (α→ ¬Ka[α]¬2b) 22, ANeg
24 Γ ⊢ 157a → (α→ (α ∧ ¬Ka[α]¬2b)) 23, Prop
25 Γ ⊢ 157a → (α→ ¬(α→ Ka[α]¬2b)) 24, Prop
26 Γ ⊢ 157a → (α→ ¬[α]Ka¬2b) 25, AKnow
27 Γ ⊢ 157a → [α]¬Ka¬2b 26, ANeg
28 Γ ⊢ 157a → [ann1][ann2]¬Ka¬2b 29, Eq. (1), Eq. (2)

4.5 Dealing with infinite disjunction

In the previous section we showed how to derive Γ ⊢ 157a → [ann1][ann2]¬Ka¬2b,
and which assumptions were sufficient for that derivation. The number 157, taken from
the original formulation of the paradox, is of course arbitrary – it could be replaced
with 15 or 1570 or indeed any number different from 2 itself. So we get Γ ⊢ 15a →
[ann1][ann2]¬Ka¬2b and so on in the same way. By this reasoning, it seems that we
should be able to get the more general Γ ⊢ ¬2a → [ann1][ann2]¬Ka¬2b. However,
this does in fact not hold – the assumptions in Γ turn out to not be strong enough to
make ¬2a → [ann1][ann2]¬Ka¬2b derivable. To see this, consider the model M4

and its transformations as a result of the two announcements in Figure 3. It is easy to
see that M4, (−, 3) |= Γ , but since M6, (−, 3) |= Ka¬2b we have that M4, (−, 3) ̸|=
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(−, 1)pa a

b

(−, 2) a

b

(−, 3)pa a

b

(−, 4)pb a

b

· · ·

(1, 1)
a

b

(1, 2)
a

b

(1, 3)
a

b

(1, 4)
a

b

· · ·

(2, 1)
a

b

(2, 2)
a

b

(2, 3)
a

b

(2, 4)
a

b

· · ·

(3, 1)
a

b

(3, 2)
a

b

(3, 3)
a

b

(3, 4)
a

b

· · ·

(4, 1)
a

b

(4, 2)
a

b

(4, 3)
a

b

(4, 4)
a

b

· · ·

(5, 1)
a

b

(5, 2)
a

b

(5, 3)
a

b

(5, 4)
a

b

· · ·

...
...

...
...

⇓ann1

(−,1)pa a

b

(−, 3)pa a

b

(−, 4)pb a

b

· · ·

(1,2)
a

b

(1,3)
a

b

(1,4)
a

b

· · ·

(2,1)
a

b

(2, 3)
a

b

(2, 4)
a

b

· · ·

(3,1)
a

b

(3, 2)
a

b

(3, 4)
a

b

· · ·

(4,1)
a

b

(4, 2)
a

b

(4, 3)
a

b

· · ·

(5,1)
a

b

(5, 2)
a

b

(5, 3)
a

b

(5, 4)
a

b

· · ·

...
...

...
...

⇓ann2

(−, 3)pa a

b

(−, 4)pb a

b

· · ·

(2,3)
a

b

(2,4)
a

b

· · ·

(3,2)
a

b

(3, 4)
a

b

· · ·

(4,2)
a

b

(4, 3)
a

b

· · ·

(5,2)
a

b

(5, 3)
a

b

(5, 4)
a

b

· · ·

...
...

...

Fig. 3. Models M4 (top), as well as M5 (middle) and M6 (bottom) – the results of announcing
ann1 in M4 and ann2 in M5, respectively. States where ann1/ann2 is false are underlined/in
bold. The valuation is the same as inM1 for corresponding states. For the “new” states (first row),
the valuation is as follows: xb is given by the state, e.g., 3b is true in state (−, 3); xa is false in
all these states; the truth values of pa and pb are indicated in the figure.
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[ann1][ann2]¬Ka¬2b. In other words, Γ ̸|= ¬2a → [ann1][ann2]¬Ka¬2b, and thus
Γ ̸⊢ ¬2a → [ann1][ann2]¬Ka¬2b.

So, Γ must be strengthened if we want to derive ¬2a → [ann1][ann2]¬Ka¬2b,
so that models like M4 are ruled out. That model contains states where one agent (a)
has not chosen any number, clearly conflicting with the description of the puzzle15.
However, the assumption that A has chosen some number corresponds to an infinite
disjunction of the form

∨
x≥1 xa, which cannot be written as a formula.

It turns out, however, that a weaker assumption is sufficient. Notice that if we have
that ¬1a and ¬2a and 2b, it follows that pa – if A doesn’t have 1 or 2 she must have
a number greater than B’s number 2. ¬1a ∧ ¬2a ∧ 2b → pa does not follow from Γ
(to see this observe that it is false in state (−, 2) in M4). We now strengthen Γ with a
generalisation of that assumption, namely, for any i, j ∈ {a, b}, k ≥ 1 and m ≤ k:

Kj(¬1i ∧ ¬2i ∧ · · · ∧ ¬ki ∧mi → pi) (A6)

We will also need a negative variant of A1 (everyone knows their own number),
saying that if I have not chosen x then I know that. For any i, j ∈ {a, b}:

Kj(¬xi → Ki¬xi) (A1’)

Finally, we will need to assume the following as a first principle (any i ∈ {a, b}):

Ki(K̂apb ∧ K̂bpa) (A7)

– in the initial situation (before any announcements), A considers it possible that B has
chosen a greater number, and conversely for B (note that we cannot assume, e.g., K̂apa
– because if A has 1 she does not consider it possible that her number is greater than
B’s).

Let Γ ′ be Γ extended with premises (A6), (A1’) and (A7), i.e., Γ ′ = Γ ∪{Kj(¬1i∧
¬2i∧· · ·∧¬ki∧mi → pi),Kj(¬xi → Ki¬xi),Ki(K̂apb∧K̂bpa) : i, j ∈ {a, b}, k ≥
1,m ≤ k}. We now show that Γ ′ ⊢ ¬2a → [ann1][ann2]¬Ka¬2b.

In the following, by “L. 4.4:x-y” we mean “like in lines x to y in the proof in Sec.
4.4”.

15 Nevertheless, that was no problem for 157a → [ann1][ann2]¬Ka¬2b, which happens to
hold in those models too.
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1 Γ ′ ⊢ (¬1a ∧ ¬2a) → K̂a(2b ∧ (pb ∨ pa)) L. 4.4:1-6; 157a/(¬1a ∧ ¬2a),
(A1)/(A1’), (A5)/(A6)

2 Γ ′ ⊢ (¬1a ∧ ¬2a) → KaK̂apa L. 4.4:7-11; 157a/(¬1a ∧ ¬2a)
(A5)/(A6)

3 Γ ′ ⊢ K̂apb (A7)
4 Γ ′ ⊢ (¬1a ∧ ¬2a) → KaK̂apb 3, Prop
5 Γ ′ ⊢ KaK̂bpa (A7)
6 Γ ′ ⊢ Ka(2b → K̂bpa) 5, S5
7 Γ ′ ⊢ Ka(2b → K̂bpb) L. 4.4:13-18; 3a/1a, pa/pb
8 Γ ′ ⊢ (¬1a ∧ ¬2a) → K̂a(2b ∧ α) 1, 2, 4, 6, 7, S5
9 Γ ′ ⊢ (¬1a ∧ ¬2a) → [α]¬Ka¬2b L. 4.4:19-27
10 Γ ′ ⊢ (¬1a ∧ ¬2a) → (α→ ⟨α⟩¬Ka¬2b) 9, PAL
11 Γ ′ ⊢ (¬1a ∧ ¬2a ∧ α) → ⟨α⟩¬Ka¬2b 10, Prop
12 Γ ′ ⊢ α→ ¬1a as in Sec. 4.3
13 Γ ′ ⊢ (¬2a ∧ α) → ⟨α⟩¬Ka¬2b 11, 12, Prop
14 Γ ′ ⊢ ¬2a → (α→ ⟨α⟩¬Ka¬2b 13, Prop
15 Γ ′ ⊢ ¬2a → [α]¬Ka¬2b 14, PAL ([19, Prop. 4.13])
16 Γ ′ ⊢ ¬2a → [ann1][ann2]¬Ka¬2b 15, Eq. (1), Eq. (2)

5 Discussion

We have argued that under assumptions about common knowledge of truthfulness and
perfect reasoners, Hollis’ paradox can be resolved by observing that the second an-
nouncement is not neccessarily successful. Note that it will actually be a successful
update – except in the cases that either A or B has chosen 1 or 2. Thus, a more precise
explanation is that the agents don’t know whether the announcement was successful. As
is well known in dynamic epistemic logic, an announcement can be unsuccessful yet
informative, a likely source of the confusion behind the so-called paradox.

As mentioned in the introduction, there are similarities between Hollis’ paradox
and the surprise examination paradox. In particular, they are built on the same fallacy:
that announcements always are successful. This was first pointed out for the surprise
examination paradox by Gerbrandy [8], using a variant of public announcement logic,
in a similar way to the semantic analysis in this paper. Several other logical analyses
have since appeared [4, 3, 12, 2]. While it can be argued that the root cause behind the
two “paradoxes” is the same (unsuccessful formulas), the logical modelling is quite
different. Gerbrandy’s formalisation has in common with our formalisation of Hollis’
paradox that there is an initial announcement that eliminates some states in the model
and that the (false) assumption that the initial announcement would stay true after that
initial elimination would eliminate yet more states and that this can be repeated in sev-
eral steps eventually leading to a paradoxical situation where all states have been elimi-
nated. In both cases the "paradox" can be seen as an inductive "proof" that actually fails
after the first step due to the false premise that the initial announcement is successful. A
significant difference is that in the surprise examination paradox the state space is finite,
while in Hollis’ paradox the state space is infinite and an inductive argument is crucial.
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Other significant differences is that the state space in Gerbrandy’s solution is very sim-
ple, consisting of only three states, and our model of Hollis’ paradox is more complex,
while on the other hand the announcement of “the exam date will be a surprise” in the
former16, is more complex than ann2. The reason for the latter is the iterative opening
of the doors which has no correspondent in Hollis’ paradox. In fact, from a modelling
perspective Hollis’ paradox has more in common with Sum and Product [6], with a
state space that is a (in that case finite) subset of the cartesian product of the natural
numbers and where states are eliminated in a sequence of announcements. In that case
the announcements are given explicitly and there is no paradox.

It has however, been forcefully argued [2] that Gerbrandy’s non-self-referential for-
malisation of the announcement is not a very natural interpretation of the sentence “the
exam date will be a surprise” nor is it indeed the interpretation most commenters on the
paradox agree with. This argument hinges on the word “will” which refers to the future
and in particular, it is argued, to the actual future immediately after the announcement
is made, and thus that a self-referential interpretation of the statement to mean “you will
not know in advance the exam day (i.e., after hearing this very announcement”) 17. This
is indeed convincing, but we argue that the same argument does not apply to Hollis’
paradox where the announcement is “neither of you can work it out” (or “neither of you
can deduce it” [16]). Granted, “can work out” (or “deduce”) seem to refer to the future
as well, but a perfect reasoner has at any point already “worked out” (deduced) all pos-
sible consequences of her knowledge. The operative word here is “can”, referring to the
present, the announcement is not “neither of you will be able to work out”.

Our formalisation hinges on the two assumptions of common knowledge of truth-
fulness and perfect reasoners, both of which it would be interesting to relax in future
work on formalisations. Modeling non-perfect reasoners (see, e.g., [1]) might seem par-
ticularly relevant since it gives more meaning to the phrase “can work out”, but there are
no clues in the description of the paradox how the agents abilities to “work out” things
are limited (indeed, on the contrary, as mentioned in the introduction Hollis hinted at
joint knowledge of good reasoning abilities).

While the semantic modelling of the initial situation in Hollis’ paradox allowed us to
pinpoint exactly where the inductive argument breaks down, existing discourse on Hol-
lis’ paradox [9, 14, 11, 10, 17] typically employ (informal) derivations of conclusions
from premises in some implicit epistemic/doxastic logic. In keeping with this tradition
we also provided a “syntactic” analysis where we modelled the initial situation as a set
of premises and derived our conclusions from them – albeit in a more detailed, formal
way. This furthermore allowed us to pinpoint which of the facts in the initial situation
were sufficient for the conclusions. It turned out that we did not need to completely
describe the grid model from the semantic analysis. Furthermore, while it can clearly
be argued that it is implicitly assumed that it is common knowledge that A and B each
know their own number, the derivation of the fact that none of the agents can rule out

16 (we∧¬Kwe)∨ (th∧ [¬we]¬Kth)∨ (fr∧ [¬we][¬th]¬Kfr)∨K⊥. Note that Gerbrandy
assumes that the knowledge modalities are K45 rather than S5.

17 Note that this kind of self-reference is not the same as saying that “you don’t know it now and
you still don’t know it after it is announced that you don’t know it now” as briefly discussed at
the end of Section 3.
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that the other one has 2 only relies on general knowledge (everybody-knows) of that
fact. That conclusion only relies on up to 2 levels of nested knowledge of any of the
premises (everybody knows that everybody knows).

The fact that we don’t need to assume common knowledge of the premises has
an interesting corollary. Intuitively, a “static” epistemic or doxastic logic seems to be
insufficient to deal with the paradox, because we need to be able to reason about knowl-
edge/beliefs at different time points – in particular “before” and “after” announcements.
Indeed, failure to make that distinction is exactly what lies behind the original paradox
as well as other attempts to resolve it. However, the fact that we don’t need common
knowledge means that the premises, conclusions and the whole derivation can be trans-
lated into pure (static!) epistemic logic [15]! So, Hollis’ paradox can be resolved by
pure “static” epistemic reasoning about the initial situation after all.
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