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Abstract. This paper presents a partial deduction method for disjunc-

tive logic programs. We first show that standard partial deduction in

logic programming is not applicable as it is in the context of disjunctive

logic programs. Then we introduce a new partial deduction technique for

disjunctive logic programs, and show that it preserves the minimal model

semantics of positive disjunctive programs, and the stable model seman-

tics of normal disjunctive programs. Goal-oriented partial deduction is

also presented for query optimization.

1 Introduction

Partial deduction or partial evaluation is known as one of the optimization tech-

niques in logic programming. Given a logic program, partial deduction derives

a more specific program through performing deduction on a part of the pro-

gram, while preserving the meaning of the original program. Such a specialized

program is usually more efficient than the original program when executed.

Partial deduction in logic programming was firstly introduced by Komorowski

[Kom81] and has been developed by several researchers from various viewpoints

(for an introduction and bibliographies, see [Kom92] and [SZ88], for example).

From semantic points of view, Lloyd and Shepherdson [LS91] formalized partial

evaluation for normal logic programs and showed its correctness with respect

to Clark’s program completion semantics. On the other hand, Tamaki and Sato

[TS84] showed that partial deduction preserves the least Herbrand model se-

mantics of definite logic programs in the context of unfold/fold transformation.

The result is extended by Seki to the perfect model semantics for stratified logic
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programs [Seki91], and the well-founded semantics for normal logic programs

[Seki93].

Recent studies of logic programming extended its framework to include indef-

inite information in a program. Disjunctive logic programs are such extensions

of logic programming, which possibly include disjunctive clauses in programs. A

disjunctive logic program enables us to reason with indefinite information in a

program, and its growing importance in logic programming and artificial intelli-

gence is recognized these days. Disjunctive logic programs increase expressiveness

of logic programming on the one hand, but their computation is generally ex-

pensive on the other hand. Then optimizations of disjunctive logic programs are

important issues for practical usage, however, there have been few studies on the

subject.

In this paper, we develop partial deduction techniques for disjunctive logic

programs. We first show that standard partial deduction is not useful in the

presence of disjunctive information in a program, and introduce new partial

deduction for disjunctive logic programs. We prove that the proposed partial

deduction method preserves the minimal model semantics of positive disjunc-

tive programs, and the disjunctive stable model semantics of normal disjunctive

programs.

The rest of this paper is organized as follows. In Section 2, we introduce nota-

tions of disjunctive logic programs. In Section 3, we present new partial deduction

for positive disjunctive programs and show its correctness with respect to the

minimal model semantics. Section 4 extends the result to normal disjunctive pro-

grams containing negation as failure, and shows that proposed partial deduction

also works well for the disjunctive stable model semantics. Section 5 discusses

some connections between normal partial deduction and the proposed one. In

Section 6, partial deduction techniques are applied to goal-oriented partial de-

duction for query optimization. Section 7 summarizes the paper and addresses

future work.

2 Disjunctive Logic Programs

A normal disjunctive program is a finite set of clauses of the form:

A1∨ . . .∨Al ← B1∧ . . .∧Bm∧notBm+1∧ . . .∧notBn (l ≥ 0, n ≥ m ≥ 0) (1)

where Ai’s and Bj ’s are atoms and not denotes the negation-as-failure operator.

The left-hand side of the clause (1) is called the head , while the right-hand

side of the clause is called the body . The clause (1) is called disjunctive (resp.

normal ) if l > 1 (resp. l = 1). Else if l = 0 and n 6= 0, it is called an integrity

constraint . A normal disjunctive program containing no not is called a positive
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disjunctive program, while a program containing no disjunctive clause is called

a normal logic program. A normal logic program containing no not is called a

Horn logic program, and a Horn logic program without integrity constraints is

called a definite logic program.

In this paper, when we write A ∨Σ ← Γ , Σ denotes a disjunction (possibly

false) in the head, and Γ denotes a conjunction (possibly true) in the body.3

In logic programming, a program is semantically identified with its ground

program, which is the set of all ground clauses from the program. Then we

consider ground programs throughout this paper. We also assume without loss

of generality that a disjunction in the head of a ground clause is already factored ,

that is, each atom in the disjunctive head of a clause is different.

An interpretation of a program is a subset of the Herbrand base of the pro-

gram. For a positive disjunctive program P , an interpretation I is called a mini-

mal model of P if there is no smaller interpretation J satisfying the program. A

program is consistent if it has a minimal model, otherwise a program is incon-

sistent . The minimal model semantics [Min82] of a positive disjunctive program

P is defined as the set of all minimal models of P (denoted by MMP ).

For a normal disjunctive program P , an interpretation I is called a stable

model of P if I coincides with a minimal model of the positive disjunctive pro-

gram P I obtained from P as follows:

P I = {A1 ∨ . . . ∨Al ← B1 ∧ . . . ∧Bm | there is a ground clause of the form (1)

from P such that {Bm+1, . . . , Bn} ∩ I = ∅ }.

A normal disjunctive program has no, one, or multiple stable models in general.

A program which has no stable model is called incoherent .

The disjunctive stable model semantics [Prz91] of a normal disjunctive pro-

gram P is defined as the set of all stable models of P (denoted by ST P ). The

disjunctive stable model semantics coincides with Gelfond and Lifschitz’s stable

model semantics [GL88] in normal logic programs.

3 Partial Deduction of Positive Disjunctive Programs

Partial deduction in logic programming is usually defined as unfolding of clauses

in a program.4 For a Horn logic program P , partial deduction is formally pre-

sented as follows.

3 When we write a clause as A ∨Σ ← Γ , it does not necessarily mean that A should

be the leftmost atom in the head of the clause. That is, any two clauses are identified

modulo the permutation of disjuncts/conjuncts in their heads/bodies.
4 Partial deduction is also called partial evaluation. However, we prefer to use the term

partial deduction since partial evaluation often includes non-deductive procedures.
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Given a Horn clause C from P :

C : H ← A ∧ Γ ,

suppose that C1, . . . , Ck are all of the clauses in P such that each of which has

the atom A in its head:

Ci : A← Γi (1 ≤ i ≤ k) .

Then normal partial deduction of P (with respect to C on A) is defined as

the program πN{C;A}(P ) (called a residual program) such that

πN{C;A}(P ) = (P \ {C}) ∪ {C ′1, . . . , C ′k}

where each C ′i is defined as

C ′i : H ← Γ ∧ Γi .

When we simply say normal partial deduction of P (written πN (P )), it means

normal partial deduction of P with respect to any clause on any atom.

Example 3.1 Let P be the program:

P = { a← b, b← c, b← a, c← }.

Then normal partial deduction of P with respect to a← b on b becomes

πN{a←b;b}(P ) = { a← c, a← a, b← c, b← a, c← }. 2

In the context of unfold/fold transformation of logic programs, Tamaki and

Sato [TS84] showed that normal partial deduction preserves the least Herbrand

model semantics of definite logic programs.

Lemma 3.1 ([TS84]) Let P be a definite logic program and MP be its least

Herbrand model. Then, for any residual program πN (P ) of P , MP = MπN (P ).

2

The result also holds for Horn logic programs, that is, programs containing

integrity constraints.

Theorem 3.2 Let P be a Horn logic program and πN (P ) be any residual pro-

gram of P . Then MP = MπN (P ).

Proof. By identifying each integrity constraint ← G with false ← G, MP con-

tains false iff MπN (P ) contains false. In this case, both programs are inconsis-

tent. Then the result follows from Lemma 3.1.
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Thus, in what follows we do not take special care for the treatment of in-

tegrity constraints, that is, they are identified with normal clauses during partial

deduction as presented above.

Now we consider partial deduction in disjunctive logic programs. If we con-

sider to extend normal partial deduction to a program possibly containing dis-

junctive clauses, however, normal partial deduction does not preserve the mini-

mal models of the program in general.

Example 3.2 Let P be the program:

P = { a ∨ b←, a← d, c← a }

where MMP = {{a, c}, {b}}. On the other hand,

πN{c←a;a}(P ) = { a ∨ b←, a← d, c← d }

where MMπN
{c←a;a}(P ) = {{a}, {b}}. 2

The problem is that normal partial deduction of logic programs is defined

as unfolding between normal clauses. In the above example, however, there is

the disjunctive clause a ∨ b ← containing the atom a in its head, so unfolding

between c← a and a ∨ b← would be needed.

Then our first task is to extend the normal partial deduction method to the

one which supplies unfolding for disjunctive clauses.

Definition 3.1 Let P be a positive disjunctive program and C be a clause in

P of the form:

C : Σ ← A ∧ Γ . (2)

Suppose that C1, . . . , Ck are all of the clauses in P such that each of which

includes the atom A in its head:

Ci : A ∨Σi ← Γi (1 ≤ i ≤ k) . (3)

Then disjunctive partial deduction of P (with respect to C on A) is defined

as the program πD{C;A}(P ) (called a residual program) such that

πD{C;A}(P ) = (P \ {C}) ∪ {C ′1, . . . , C ′k}

where each C ′i is defined as

C ′i : Σ ∨Σi ← Γ ∧ Γi , (4)

in which Σ ∨Σi is factored. 2
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Disjunctive partial deduction is a natural extension of normal partial deduc-

tion. In fact, the clause (4) is a resolvent of the clauses (2) and (3). In Horn logic

programs, disjunctive partial deduction coincides with normal partial deduction.

Now we show that disjunctive partial deduction preserves the minimal model

semantics of positive disjunctive programs. We first present a preliminary lemma.

Lemma 3.3 Let P be a positive disjunctive program and M be its minimal

model. Then an atom A is in M iff there is a clause C : A ∨Σ ← Γ in P such

that M \ {A} |= Γ and M \ {A} 6|= Σ.

Proof. (⇒) Suppose that for some atom A in M , there is no clause C in P such

that M \ {A} |= Γ and M \ {A} 6|= Σ. Then, for each clause C, M \ {A} 6|= Γ

or M \ {A} |= Σ, and hence it holds that M \ {A} |= Γ implies M \ {A} |= Σ.

In this case, since M \ {A} satisfies each clause C, it becomes a model of P ,

which contradicts the assumption that M is a minimal model. Hence the result

follows.

(⇐) Assume that A is not in M . Then M \ {A} = M , and for a clause C in

P , M |= Γ and M 6|= Σ imply A ∈M , contradiction.

Theorem 3.4 Let P be a positive disjunctive program and πD(P ) be any resid-

ual program of P . Then MMP =MMπD(P ).

Proof. (⊆) Let M be a minimal model of P . Since the clause (4) is a resolvent of

the clauses (2) and (3) in P , M also satisfies each clause (4) in πD(P ). Then M is

a model of πD(P ). Assume that there is a minimal model N of πD(P ) such that

N ⊂ M . Since N is not a model of P , N does not satisfy the clause (2). Then

N |= Γ , N |= A, and N 6|= Σ. As a minimal model N of πD(P ) implies A, it

follows from Lemma 3.3 that there is a clause C of the form (3) or (4) in πD(P )

such that C contains A in its head. (i) Suppose first that C is of the form (3).

Then N |= A implies N \ {A} |= Γi and N \ {A} 6|= Σi (by Lemma 3.3). Here

N \ {A} |= Γi implies N |= Γi. Besides, the disjunctive head A ∨Σi is assumed

to be already factored, then Σi does not include A. Thus N \ {A} 6|= Σi also

implies N 6|= Σi. In this case, however, N does not satisfy the clause (4). This

contradicts the assumption that N is a model of πD(P ). (ii) Next suppose that

C is of the form (4) such that Σ = A∨Σ′. Then N |= A implies N |= Σ, which

contradicts the fact N 6|= Σ. Hence, M is also a minimal model of πD(P ).

(⊇) Let M be a minimal model of πD(P ). If M is not a model of P , M does

not satisfy the clause (2). In this case, M 6|= Σ, M |= A, and M |= Γ . Since a

minimal model M of πD(P ) implies A, it follows from Lemma 3.3 that there is

a clause C of the form (3) or (4) in πD(P ) such that C contains A in its head.

When C is of the form (3), M |= A implies M |= Γi and M 6|= Σi (by Lemma 3.3

and the discussion presented above). Thus M does not satisfy the corresponding

clause (4), which contradicts the assumption that M is a model of πD(P ). Else
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when C is of the form (4) such that Σ = A∨Σ′, M |= A implies M |= Σ, which

contradicts the fact M 6|= Σ. Hence M is a model of P . Next assume that there

is a minimal model N of P such that N ⊂ M . By (⊆), N is also a minimal

model of πD(P ), but this is impossible since M is a minimal model of πD(P ).

Corollary 3.5 Let P be a positive disjunctive program. Then P is inconsistent

iff πD(P ) is inconsistent. 2

Example 3.3 (cont. from Example 3.2) Given the program P , its disjunctive

partial deduction πD{c←a;a}(P ) becomes

πD{c←a;a}(P ) = { a ∨ b←, a← d, c← d, b ∨ c← },

and MMπD
{c←a;a}(P ) = {{a, c}, {b}}, which is exactly the same as MMP . 2

4 Partial Deduction of Normal Disjunctive Programs

In this section, we extend disjunctive partial deduction to normal disjunctive

programs.

The definition of disjunctive partial deduction of normal disjunctive programs

is the same as Definition 3.1, except that in this case each clause possibly contains

negation as failure.

Example 4.1 Let P be the normal disjunctive program:

P = { a ∨ b← not c, a← d, c← a }.

Then disjunctive partial deduction of P with respect to c← a on a becomes

πD{c←a;a}(P ) = { a ∨ b← not c, a← d, c← d, b ∨ c← not c }. 2

As shown in the above example, disjunctive partial deduction is not affected

by the presence of negation as failure in a program. Thus we can directly apply

previously defined disjunctive partial deduction to normal disjunctive programs

and the following result holds.

Theorem 4.1 Let P be a normal disjunctive program. Then ST P = ST πD(P ).

Proof. Let M be a stable model of P . Then M is a minimal model of PM . Since

PM is a positive disjunctive program, by Theorem 3.4, M is also a minimal

model of πD(PM ). Now let us consider the clauses:

Σ ← A ∧ Γ ∧ not Γ ′ (∗)

and

A ∨Σi ← Γi ∧ not Γ ′i (1 ≤ i ≤ k) (†)
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in P , where not Γ ′ is the conjunction of negation-as-failure formulas in the body.

(i) If M 6|= Γ ′ and M 6|= Γ ′i for some i (1 ≤ i ≤ k), the clauses:

Σ ← A ∧ Γ (∗′)

and

A ∨Σi ← Γi (†′)

are in PM . From these clauses, disjunctive partial deduction generates the clauses:

Σ ∨Σi ← Γ ∧ Γi (‡′)

in πD(PM ). On the other hand, from (∗) and (†) in P , there are the clauses:

Σ ∨Σi ← Γ ∧ Γi ∧ not Γ ′ ∧ not Γ ′i (‡)

in πD(P ), which become (‡′) in πD(P )M .

(ii) Else if M |= Γ ′ or M |= Γ ′i for any i (1 ≤ i ≤ k), the clauses (∗) or

(†) is respectively eliminated in PM . Then the clauses (‡′) are not included in

πD(PM ). In this case, each clause (‡) in πD(P ) is also eliminated in πD(P )M .

Thus, there is a one-to-one correspondence between the clauses in πD(PM )

and the clauses in πD(P )M , hence πD(PM ) = πD(P )M . Therefore M is also a

minimal model of πD(P )M , and a stable model of πD(P ).

The converse is also shown in the same manner.

Corollary 4.2 Let P be a normal disjunctive program. Then P is incoherent

iff πD(P ) is incoherent. 2

The above theorem also implies that in normal logic programs, normal partial

deduction preserves Gelfond and Lifschitz’s stable model semantics.

Corollary 4.3 Let P be a normal logic program. Then ST P = ST πN (P ). 2

The above result is also presented in [Seki90].

5 Connections between Normal and Disjunctive Partial

Deduction

In this section, we consider connections between normal and disjunctive partial

deduction. We first give a sufficient condition such that normal partial deduction

preserves the meaning of disjunctive logic programs.

Theorem 5.1 Let P be a normal disjunctive program and C be a clause of the

form Σ ← A ∧ Γ from P . If A does not appear in the head of any disjunctive

clause in P , then ST P = ST πN
{C;A}(P ). That is, normal partial deduction of P

with respect to C on A preserves the disjunctive stable model semantics.
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Proof. In this case, disjunctive partial deduction coincides with normal one,

hence the result follows from Theorem 4.1.

Next we present a method to compute disjunctive partial deduction in terms

of normal partial deduction.

Definition 5.1 Let P be a normal disjunctive program. The nlp-transformation

transforms P into the normal logic program η(P ) which is obtained from P by

replacing each disjunctive clause:

C : A1 ∨ . . . ∨Al ← Γ (5)

with l normal clauses:

C−i : Ai ← Γ ∧A−1 ∧ . . . ∧A
−
i−1 ∧A

−
i+1 ∧ . . . ∧A

−
l (1 ≤ i ≤ l) . (6)

where each A−j is a new atom introduced for each Aj .

In particular, C = C−i if l ≤ 1. 2

Now we show that disjunctive partial deduction of a normal disjunctive pro-

gram P with respect to a clause C is obtained through normal partial deduction

of η(P ) with respect to each C−i . In the following, the function η−1 is the re-

verse transformation which shifts each atom A−j appearing in the body of each

clause in a program to the atom Ai in the head of the clause. Also Σ− means

A−1 ∧ . . . ∧A
−
l where Σ = A1 ∨ . . . ∨Al.

Theorem 5.2 Let P be a normal disjunctive program. Then πD{C;A}(P ) =

η−1(πN{C−
i
;A}(η(P ))) where πN{C−

i
;A}(η(P )) means normal partial deduction of

η(P ) with respect to each normal clause C−i on A.

Proof. Corresponding to the clauses (2) and (3) in P , there are the clauses:

A′ ← A ∧ Γ ∧Σ′− (where Σ = Σ′ ∨A′ ) (∗)

and

A← Γi ∧Σ−i (1 ≤ i ≤ k) (†)

in η(P ), respectively. Then the clauses:

A′ ← Γ ∧ Γi ∧Σ′− ∧Σ−i (‡)

are obtained from (∗) and (†) by normal partial deduction in η(P ). In this

case, by the reverse transformation η−1, each clause of the form (‡) becomes a

disjunctive clause of the form (4). Hence, πD{C;A}(P ) = η−1(πN{C−
i
;A}(η(P ))).
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Example 5.1 Let P be the program:

P = { a ∨ b←, a← b, b← a }.

Then,

πD{a←b;b}(P ) = { a ∨ b←, a←, a← a, b← a }.

On the other hand, the nlp-transformation of P becomes

η(P ) = { a← b−, b← a−, a← b, b← a },

and

πN{a←b;b}(η(P )) = { a← b−, b← a−, a← a−, a← a, b← a }.

Thus,

η−1(πN{a←b;b}(η(P ))) = { a ∨ b←, a←, a← a, b← a }.

Therefore, πD{a←b;b}(P ) = η−1(πN{a←b;b}(η(P ))). 2

The above theorem presents that disjunctive partial deduction πD{C;A}(P )

is obtained by the transformation sequence: P → η(P ) → πN{C−
i
;A}(η(P )) →

η−1(πN{C−
i
;A}(η(P ))). That is, together with the nlp-transformation, normal par-

tial deduction can also be used for normal disjunctive programs.

6 Goal-Oriented Partial Deduction

In this section, we present goal-oriented partial deduction in disjunctive logic

programs. Goal-oriented partial deduction specializes a program with respect to

a given goal, which is useful to optimize programs for query-answering. Lloyd

and Shepherdson [LS91] discuss a framework of goal-oriented partial evaluation

for normal logic programs and provide conditions to assure its correctness with

respect to Clark’s completion semantics and SLDNF proof procedures. In our

framework, goal-oriented partial deduction is presented as follows.

Let us consider a query of the form:

Q : Q(x)← B1 ∧ . . . ∧Bm ∧ notBm+1 ∧ . . . ∧ notBn (7)

where Q(x) is a new atom not appearing elsewhere in a program and x represents

variables appearing in the body of the clause.

Then, given a normal disjunctive program P , partial deduction of P with

respect to Q is defined as πD{Q;Bi}(PQ) where Bi is any atom occurring positively

in the body of Q and PQ is the program P ∪ {Q}. When a query contains

variables, we consider partial deduction with respect to its ground instances.
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An answer to a query is defined as a ground substitution σ for variables in

Q(x). When Q contains no variable, σ is the empty substitution.

A query Q is true in P under the disjunctive stable model semantics if for

every stable model I of PQ there is an answer σ such that Q(x)σ is included in

I. Else if for some stable model I of PQ there is an answer σ such that Q(x)σ is

included in I, the query is possibly true. Otherwise, if there is no such answer,

the query is false. By Theorem 4.1, the following results hold.

Theorem 6.1 Let P be a normal disjunctive program and Q be a query. Then,

under the disjunctive stable model semantics,

(i) Q is true in P iff Q is true in πD{Q;Bi}(PQ).

(ii) Q is possibly true in P iff Q is possibly true in πD{Q;Bi}(PQ).

(iii) Q is false in P iff Q is false in πD{Q;Bi}(PQ). 2

Example 6.1 Let P be the program:

{ p(a) ∨ p(b)← },

in which the query Q : q(x)← p(x) is true. Then,

πD{Q;p(x)}(PQ) = { q(a)∨p(b)←, q(b)∨p(a)←, q(a)∨q(b)←, p(a)∨p(b)← }

and Q is also true in πD{Q;p(x)}(PQ) under the disjunctive stable model semantics.

2

Note that in the above example, we assume that the ground queries

q(a)← p(a) and q(b)← p(b) are unfolded consecutively in the program. That is,

πD{Q;p(x)}(PQ) means πD{Q;p(b)}(π
D
{Q;p(a)}(P ∪ { q(a) ← p(a), q(b) ← p(b) })). In

this case, the order of unfolding does not affect the result of partial deduction

since each partial deduction preserves the stable models of the program PQ.

7 Summary

This paper presented a method of partial deduction for disjunctive logic pro-

grams. We first showed that normal partial deduction is not applicable to dis-

junctive logic programs in its present form. Then we introduced disjunctive par-

tial deduction for disjunctive logic programs, which is a natural extension of

normal partial deduction for normal logic programs. Disjunctive partial deduc-

tion was shown to preserve the minimal model semantics of positive disjunctive

programs, and the disjunctive stable model semantics of normal disjunctive pro-

grams. We also showed a method of translating disjunctive partial deduction into

normal partial deduction, and presented an application to goal-oriented partial

deduction for query optimization.
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The partial deduction technique presented in this paper is also directly appli-

cable to disjunctive logic programs possibly containing classical negation [GL91].

Moreover, since positive disjunctive programs are identified with first-order the-

ories, disjunctive partial deduction has potential application to first-order theo-

rem provers. Recently, Brass and Dix [BD94] independently developed a partial

deduction technique for disjunctive logic programs which is equivalent to ours.

They discuss several abstract properties of disjunctive logic programs and con-

clude partial deduction as one of the fundamental properties that logic program-

ming semantics should satisfy.

In this paper, we have mainly concerned with declarative aspects of partial

deduction and considered propositional programs as a first step. Then our next

step is to apply the partial deduction method to programs containing variables

and investigate the procedural aspect of disjunctive partial deduction.
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