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Abstract. This paper introduces a novel approach for computing logic program-
ming semantics based on multilinear algebra. First, a propositional Herbrand base
is represented in a vector space and if-then rules in a program are encoded in a
matrix. Then we provide methods of computing the least model of a Horn logic
program, minimal models of a disjunctive logic program, and stable models of
a normal logic program by algebraic manipulation of higher-order tensors. The
result of this paper exploits a new connection between linear algebraic computa-
tion and symbolic computation, which has potential to realize logical inference
in huge scale of knowledge bases.

1 Introduction

Logic programming (LP) provides languages for declarative problem solving and sym-
bolic reasoning, while proof-theoretic computation like Prolog turns inefficient in real-
world applications. Recent studies have developed efficient solvers for answer set pro-
gramming (ASP)—LP under the stable model semantics [1]. In this paper, we take a
different approach and introduce a new method of computing LP semantics in vec-
tor spaces. There are several reasons for considering linear algebraic computation of
LP. First, linear algebra is at the core of many applications of scientific computation,
and integrating linear algebraic computation and symbolic computation is considered
a challenging topic in AI [13]. Second, linear algebraic computation has potential to
cope with Web scale symbolic data, and several studies develop scalable techniques
to process huge relational knowledge bases [10, 11, 18]. Since relational KBs consist
of ground atoms, the next challenge is applying linear algebraic techniques to LP and
deductive DBs. Third, it would enable us to use efficient (parallel) algorithms of numer-
ical linear algebra for computing LP. Moreover, matrix/tensor factorization techniques
would be useful for approximation and optimization in LP.

Several studies attempt to realize logical reasoning using linear algebra. Grefen-
stette [5] introduces tensor-based predicate calculus in which elements of tensors rep-
resent truth values of domain objects and logical operations are realized by third-order
tensor contractions. Yang, et al. [18] introduce a method of mining Horn clauses from
relational facts represented in a vector space. Serafini and Garcez [16] introduce logic
tensor networks that integrate logical deductive reasoning and data-driven relational
� This work is supported by NII Collaborative Research Program.



learning. Sato [14] formalizes Tarskian semantics of first-order logic in vector spaces,
and shows how tensorization realizes efficient computation of Datalog [15]. These stud-
ies realize linear algebraic computation of predicate calculus over unary/binary relations
on a finite domain, while they do not target computing LP semantics. There are studies
that compute LP semantics in other computational paradigms (e.g. [8]). To the best of
our knowledge, however, there is no study that realizes LP using linear algebra.

In this paper, we develop a theory of LP based on multilinear algebra. First, a propo-
sitional Herbrand base is represented in a vector space and if-then rules in a program
are encoded in a matrix. Then the least model of a (propositional) Horn logic program
is computed using matrix products. Next disjunctive logic programs are represented in
third-order tensors and their minimal models are computed by algebraic manipulation
of tensors. Normal logic programs are also represented by third-order tensors in terms of
disjunctive logic programs, and their stable models are computed using tensor products.
The rest of this paper is organized as follows. Section 2 reviews notions in multilinear
algebra. Section 3 formulates LP semantics in vector spaces. Section 4 discusses related
issues and Section 5 concludes the paper.

2 Preliminaries

This section reviews basic notions of tensors used in this paper. The following defi-
nitions are from [6]. An N-th order tensor is an element of the tensor product of N
vector spaces. A first-order tensor is a vector v ∈ R

I , a second-order tensor is a ma-
trix M ∈ R

I×J , and a third-order tensor is a three-way array T ∈ R
I×J×K . The i-th

element of a vector is denoted by ai, an element (i, j) of a matrix is denoted by aij ,
and an element (i, j, k) of a third-order tensor is denoted by aijk. A tensor or matrix
is often written as T = (aijk) or M = (aij), respectively. A column vector is an
m × 1 matrix which is represented as (a1, . . . , am)T (m ≥ 1) where T is the trans-
pose operation. In this paper, a vector means a column vector unless stated otherwise.
Slices are two-dimensional sections of a tensor, defined by fixing all but two indices. A
third-order tensor T ∈ R

I×J×K is decomposed into (frontal) slices by fixing an index
k (1 ≤ k ≤ K). The k-th slice of a third-order tensor T is a matrix and is written as
T::k. Let T::1, . . . ,T::K be the slices of a third-order tensor T ∈ R

I×J×K such that⎛
⎜⎝

a111 · · · a1J1

...
. . .

...
aI11 · · · aIJ1

⎞
⎟⎠ · · ·

⎛
⎜⎝

a11K · · · a1JK

...
. . .

...
aI1K · · · aIJK

⎞
⎟⎠

Then T is flattened into the I × (J ×K) matrix as⎛
⎜⎝

a111 · · · a1J1

...
. . .

...
aI11 · · · aIJ1

· · ·
a11K · · · a1JK

...
. . .

...
aI1K · · · aIJK

⎞
⎟⎠

To distinguish slices in a matrix, we often introduce a vertical line between blocks
representing slices T::k and T::k+1.

Example 2.1 Consider a third-order tensor T ∈ R
2×3×2 which is decomposed into

two slices (
a1 b1 c1
d1 e1 f1

)
and

(
a2 b2 c2
d2 e2 f2

)



Then T is flattened into the 2× 6 matrix as(
a1 b1 c1 a2 b2 c2
d1 e1 f1 d2 e2 f2

)

The (2-mode) product of a tensor T ∈ R
I×J×K with a vector v ∈ R

J is denoted
by T •v. The result is the I ×K matrix that has the element (T •v)ik =

∑J
j=1 xijkvj

where T = (xijk) and v = (v1, . . . , vJ )
T. For example, let T ∈ R

2×3×2 be the tensor
of Example 2.1. Given the vector v = (α, β, γ)T, T • v becomes(

a1α+ b1β + c1γ a2α+ b2β + c2γ
d1α+ e1β + f1γ d2α+ e2β + f2γ

)

When M ∈ R
I×J is a matrix and v ∈ R

J , the product M • v is the standard matrix
multiplication that becomes a vector in R

I .

3 Tensor Logic Programming

We consider a language L that contains a finite set of propositional variables and the
logical connectives ¬, ∧, ∨ and ←. L contains � and ⊥ representing true and false,
respectively. Given a logic program P , the set of all propositional variables appearing
in P is the Herbrand base of P (written BP ). We assume {�,⊥} ⊆ BP .

3.1 Horn Logic Programs

A Horn (logic) program is a finite set of rules of the form:

h← b1 ∧ · · · ∧ bm (m ≥ 0) (1)

where h and bi are propositional variables (also called atoms) in L. In particular, the
rule (1) is a fact if “h ← �” and (1) is a constraint if “⊥ ← b1 ∧ · · · ∧ bm”. The fact
and the constraint are simply written as “h←” and “← b1∧· · ·∧bm”, respectively. For
each rule r of the form (1), the left-hand side of← is the head and the right-hand side
is the body. We write head(r) = h and body(r) = {b1, . . . , bm}. We assume that every
program (implicitly) contains the rule � ← �. A definite program is a Horn program
that contains no constraints. For a Horn program P , a set I satisfying {�} ⊆ I ⊆ BP is
an interpretation of P . An interpretation I is a model of P if {b1, . . . , bm} ⊆ I implies
h ∈ I for every rule (1) in P and⊥ �∈ I . We often omit� in a model, i.e., any model I is
semantically identified with I \{�}. A model I is the least model of P if I ⊆ J for any
model J of P . P is inconsistent if it has no model. A mapping TP : 2BP → 2BP is de-
fined as TP (I) = {h | h← b1∧· · ·∧bm ∈ P and {b1, . . . , bm} ⊆ I } if⊥ �∈ I . Other-
wise, TP (I) = BP .4 The powers of TP are defined as: T k+1

P (I) = TP (T
k
P (I)) (k ≥ 0)

and T 0
P (I) = I . Given {�} ⊆ I ⊆ BP , there is a fixpoint Tn+1

P (I) = Tn
P (I) (n ≥ 0).

For a definite program P , the fixpoint Tn
P ({�}) coincides with the least model of P

[17].5

4 The operator TP of [17] is applied to Horn programs by viewing each constraint as a rule with
the head ⊥. In this setting, every atom in BP is derived in TP (I) if I is inconsistent, i.e.,
⊥ ∈ I . Note that � ∈ TP (I) by (� ← �) ∈ P .

5 I = {�} is semantically identified with I = {}.



In this paper, we consider a Horn program P such that for any two rules r1 and r2
in P , head(r1) = head(r2) implies |body(r1) | ≤ 1 and |body(r2) | ≤ 1 (called the
multiple definitions (MD) condition). That is, if two different rules have the same head,
those rules contain at most one atom in their bodies. Every Horn program is converted
to this class of programs by a simple program transformation. Given a Horn program
P , define a set Qp ⊆ P such that Qp = { r ∈ P | head(r) = p and | body(r) |> 1 }.
Let Qp = { p← Γ1, . . . , p← Γk} where Γi (1 ≤ i ≤ k) is the conjunction in the body
of each rule. Then Qp is transformed to Q′

p = { p1 ← Γ1, . . . , pk ← Γk } ∪ { p ←
pi | 1 ≤ i ≤ k } where pi ( �= p) are new propositional variables associated with p and
pi �= pj if i �= j. Let P ′ be the program obtained from P by replacing Qp ⊆ P with Q′

p

for every p ∈ BP satisfying the condition: |{r ∈ P | head(r) = p}|> 1 and Qp �= ∅.
Then P has the least model M iff P ′ has the least model M ′ such that M ′ ∩BP = M .

Example 3.1 Consider P = { p ← q ∧ r, p ← r ∧ s, p ← t, r ← t, s ←, t ←}
where BP = {p, q, r, s, t}. Then P ′ = { p1 ← q ∧ r, p2 ← r ∧ s, p← t, r ← t,
s←, t←, p← p1, p← p2 } has the least model M ′ = {p, p2, r, s, t} and M ′∩BP =
{p, r, s, t} is the least model of P .

As such, every Horn program P is transformed to a semantically equivalent program P ′

that satisfies the MD condition. We then consider programs satisfying the MD condition
without loss of generality. Next we represent interpretations/programs in vector spaces.

Definition 3.1 (vector representation of interpretations) Let P be a Horn program
and BP = {p1, . . . , pn}. Then an interpretation I ⊆ BP of P is represented by a vector
v = (a1, . . . , an)

T where each element ai represents the truth value of the proposition
pi such that ai = 1 if pi ∈ I (1 ≤ i ≤ n); otherwise, ai = 0. The vector representing
I = {�} is written by v0. We write rowi(v) = pi.

Definition 3.2 (≤) Let P be a Horn program and BP = {p1, . . . , pn}. Suppose two
vectors v = (a1, . . . , an)

T and w = (b1, . . . , bn)
T representing interpretations I ⊆ BP

and J ⊆ BP , respectively. Then v ≤ w if ai ≤ bi for every 1 ≤ i ≤ n.

A vector v = (a1, . . . , an)
T representing an interpretation I is minimal if w ≤ v

implies w = v for any w representing an interpretation J .

Proposition 3.1 For v = (a1, . . . , an)
T and w = (b1, . . . , bn)

T, v ≤ w iff ai =
ai ∗ bi for i = 1, . . . , n where ∗ means algebraic multiplication.

Definition 3.3 (matrix representation of Horn programs) Let P be a Horn program
and BP = {p1, . . . , pn}. Then P is represented by a matrix MP ∈ R

n×n such that
for each element aij (1 ≤ i, j ≤ n) in MP , (i) aij = 1 if pi = � or pj = ⊥; (ii)
aijk = 1

m (1 ≤ k ≤ m; 1 ≤ i, jk ≤ n) if pi ← pj1 ∧ · · · ∧ pjm is in P ; (iii) otherwise,
aij = 0. We write rowi(MP ) = pi and colj(MP ) = pj .

In MP the i-th row corresponds to the atom pi appearing in the head of a rule, and
the j-th column corresponds to the atom pj appearing in the body of a rule. The first
condition (i) says that every element in the i-th row is 1 if rowi(MP ) = � and every
element in the j-th column is 1 if coli(MP ) = ⊥. The second condition (ii) says if
there is a rule pi ← pj1 ∧ · · · ∧ pjm in P , then each aijk in the i-th row and the jk-th
column has the value 1

m . The remaining elements are set to aij = 0 in (iii).



Example 3.2 Consider P = { p← q, p← r, q ← r ∧ s, r ←, ← q } with BP

= {p, q, r, s,�,⊥}. Then MP ∈R6×6 is the matrix
(right). The 1st row “011001” represents p ← q, p ← r
and p←⊥ (≡�). The 2nd row “00 1/2

1/2 01” represents
q ← r ∧ s and q←⊥ (≡�). The 3rd row “000011” rep-
resents r ← � (≡ r ←) and r←⊥ (≡�). The 4th row
“000001” represents s←⊥ (≡�). The 5th row “111111”
represents � ← p, � ← q, � ← r, � ← s, � ← �,
and � ← ⊥, which are all equivalent to �. The 6th row
“010001” represents ⊥ ← q (≡← q) and ⊥ ← ⊥ (≡ �).

p q r s � ⊥
p
q
r
s
�
⊥

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1
0 0 1/2

1/2 0 1
0 0 0 0 1 1
0 0 0 0 0 1
1 1 1 1 1 1
0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Suppose a matrix MP ∈ R
n×n representing a Horn program. Given a vector v ∈

R
n representing an interpretation I ⊆ BP , let MP • v = (a1, . . . , an)

T. We transform
MP •v to a vector w = (a′1, . . . , a

′
n)

T where a′i = 1 (1 ≤ i ≤ n) if ai ≥ 1; otherwise,
a′i = 0. We write w = MP •̄ v.

Example 3.3 Consider MP of Example 3.2. Given v = (0, 1, 1, 0, 1, 0)T representing
the interpretation I = {q, r,�}, it becomes MP • v = (2, 1/2, 1, 0, 3, 1)

T. Then w =
MP •̄ v = (1, 0, 1, 0, 1, 1)T represents J = {p, r,�,⊥}.
In Example 3.3, we can see that J = TP (I) is computed by w = MP •̄ v. Formally,
the next result holds.

Proposition 3.2 Let P be a Horn program and MP ∈ R
n×n its matrix representation.

Let v ∈ R
n be a vector representing an interpretation I ⊆ BP . Then w ∈ R

n is a
vector representing J = TP (I) iff w = MP •̄ v.
Proof. Suppose w = MP •̄ v. Then for w = (x′

1, . . . , x
′
n)

T, x′
k = 1 (1 ≤ k ≤ n)

iff xk ≥ 1 in MP • v. Let MP = (aij) and v = (y1, . . . , yn)
T. Then ak1y1 + · · · +

aknyn = xk ≥ 1. If rowk(MP ) = � then akj = 1 (1 ≤ j ≤ n). Otherwise, let
{b1, . . . , bm} ⊆ {ak1, . . . , akn} such that bi �= 0 (1 ≤ i ≤ m) and bi �= akj for
colj(MP ) = ⊥. Two cases are considered. (i) bi = 1 (1 ≤ i ≤ m) and b1yj1 + · · · +
bmyjm ≥ 1 (1 ≤ jl ≤ n, 1 ≤ l ≤ m). Then there are rules pk ← pi in P such that
pi = colj(MP ) for bi = akj (1 ≤ i ≤ m) and pi ∈ I implies pk ∈ TP (I) where
pk = rowk(w). (ii) bi = 1/m and b1yj1 + · · ·+ bmyjm = 1 (1 ≤ jl ≤ n, 1 ≤ l ≤ m).
Then there is a rule pk ← p1 ∧ · · · ∧ pm in P such that pi = colj(MP ) for bi = akj
(1 ≤ i ≤ m) and {p1, . . . , pm} ⊆ I implies pk ∈ TP (I) where pk = rowk(w).
By putting J = { rowk(w) | x′

k = 1}, J = TP (I) holds. Conversely, suppose J =
TP (I). Construct a matrix MP = (aij) ∈ R

n×n as Def. 3.3. For v = (y1, . . . , yn)
T

representing I , MP • v = (x1, . . . , xn)
T is a vector such that xk ≥ 1 (1 ≤ k ≤ n) iff

rowk(MP • v) = � or rowk(MP • v) ∈ TP (I). Define w = (x′
1, . . . , x

′
n)

T such that
x′
k = 1 (1 ≤ k ≤ n) iff xk ≥ 1 in MP • v. Then w represents J = TP (I). Hence,

w = MP •̄ v. ��

Proposition 3.3 Let P be a Horn program and MP ∈ R
n×n its matrix representation.

Let v ∈ R
n be a vector representing an interpretation I . Then I is a model of P iff (i)

w=MP •̄ v and w ≤ v, and (ii) ai = 1 implies rowi(v) �= ⊥ for any element ai in v.

Proof. I is a model of a Horn program P iff TP (I) ⊆ I and ⊥ �∈ I ([9]). Then the
result holds by Proposition 3.2. ��



Given a matrix MP ∈ R
n×n and a vector v ∈ R

n, define

MP •̄k+1 v = MP •̄ (MP •̄k v) and MP •̄1 v = MP •̄ v (k ≥ 1).

When MP •̄k+1 v = MP •̄k v for some k ≥ 1, we write FP(MP •̄ v) = MP •̄k v.
Theorem 3.4 Let P be a Horn program and MP ∈ R

n×n its matrix representation.
Then m ∈ R

n is a vector representing the least model of P iff m = FP(MP •̄ v0) and
ai = 1 implies rowi(m) �= ⊥ for any element ai in m.

Proof. Since the least model of P is computed by the fixpoint of T k
P ({�}) (k ≥ 0), the

result holds by Proposition 3.2. ��
Corollary 3.5 Let P be a Horn program and MP ∈ R

n×n its matrix representation.
Then P is inconsistent iff a vector w = MP •̄k v0 (k ≥ 1) has an element ai = 1
(1 ≤ i ≤ n) such that rowi(w) = ⊥.

Corollary 3.5 is used for query-answering by refutation in a definite program.

3.2 Disjunctive Logic Programs

A disjunctive (logic) program is a finite set of rules of the form:

h1 ∨ · · · ∨ hl ← b1 ∧ · · · ∧ bm (l,m ≥ 0) (2)

where hi and bj are propositional variables in L. A rule (2) is called a disjunctive rule
if l > 1. In particular, the rule is a (disjunctive) fact if the body of (2) is � and it
is a constraint if the head of (2) is ⊥. A disjunctive fact is simply written as “h1 ∨
· · · ∨ hl ←”. For each rule r of the form (2), we write head(r) = {h1, . . . , hl} and
body(r) = {b1, . . . , bm}. A disjunctive program reduces to a Horn program if l ≤ 1
for every rule (2) in a program. We assume that every program (implicitly) contains the
rule � ← � as before. An interpretation {�} ⊆ I ⊆ BP is a model of a disjunctive
program P if body(r) ⊆ I implies head(r)∩ I �= ∅ for every rule r in P and ⊥ �∈ I . A
model I is a minimal model of P if there is no model J of P such that J ⊂ I .

We consider a disjunctive program P satisfying the MD condition: for any two rules
r1 and r2 in P , head(r1) ∩ head(r2) �= ∅ implies |body(r1)| ≤ 1 and |body(r2)| ≤ 1.
That is, if two different rules share the same atom in their heads, those rules contain
at most one atom in their bodies. The condition coincides with the MD condition of
Horn programs when P contains no disjunctive rules. Every disjunctive program is
converted to this class of programs by a simple program transformation as the case of
Horn programs. Given a disjunctive program P , define a set Qp ⊆ P such that Qp =
{ r ∈ P | p ∈ head(r) and | body(r) |> 1 }. Let Qp = {Σ1 ← Γ1, . . . , Σk ← Γk }
where Σi (resp. Γi) (1 ≤ i ≤ k) is the disjunction (resp. conjunction) in the head
(resp. body) of each rule. Then Qp is transformed to Q′

p = {Σ′
1 ← Γ1, . . . , Σ

′
k ←

Γk } ∪ { p ← pi | 1 ≤ i ≤ k } where pi ( �= p) are new propositional variables
associated with p and pi �= pj if i �= j. Σ′

i is obtained from Σi by replacing p in Σi

by pi. Let P ′
p be the program obtained from P by replacing Qp ⊆ P with Q′

p for an
atom p ∈ BP satisfying the condition: | {r ∈ P | p ∈ head(r)} |> 1 and Qp �= ∅.
Repeat such replacement one by one until there is no atom p ∈ BP satisfying the above
condition. Let P ′ be the resulting program. Then P has a minimal model M iff P ′ has
a minimal model M ′ such that M ′ ∩BP = M .



Example 3.4 Consider P = { p ∨ q ← r ∧ s, p ∨ r ← t, r ← s, s ←} where
BP = {p, q, r, s, t}. Then P ′ = { p1∨q ← r∧s, p∨r ← t, r ← s, s←, p← p1 }
has two minimal models M ′

1 = {p, p1, r, s} and M ′
2 = {q, r, s} which correspond to

the minimal models M1 = {p, r, s} and M2 = {q, r, s} of P .

As such, every disjunctive program P is transformed to a semantically equivalent
program P ′ that satisfies the MD condition. We then consider disjunctive programs
satisfying the MD condition without loss of generality. Given a disjunctive program P ,
its split program is a Horn program obtained from P by replacing each disjunctive rule
of the form (2) in P with a Horn rule: hi ← b1 ∧ · · · ∧ bm (1 ≤ i ≤ l). By definition,
P has multiple split programs in general. When P has k split programs, it is written as
SP1, . . . , SPk (k ≥ 1).

Example 3.5 P = { p ∨ r ← s, q ∨ r ←, s ←} has the four split programs:
SP1 = { p ← s, q ←, s ←}, SP2 = { p ← s, r ←, s ←}, SP3 =
{ r ← s, q ←, s←}, and SP4 = { r ← s, r ←, s←}.
For a set I of interpretations, define the set of minimal elements as min(I) = { I | I ∈
I and there is no J ∈ I such that J ⊂ I }.
Proposition 3.6 Let P be a disjunctive program and SP1, . . . , SPk its split programs.
Also let LM be the set of least models of SP1, . . . , SPk. Then min(LM) coincides
with the setMM of minimal models of P .

Proof. Let M be the least model of some split program SPj . Then for each rule r :
hi ← b1 ∧ · · · ∧ bm in SPj , there is a rule r′ : h1 ∨ · · · ∨hl ← b1 ∧ · · · ∧ bm in P such
that hi ∈ head(r′). Since M satisfies r, M satisfies r′. Thus, M is a model of P . Then
a minimal set M in min(LM) is a minimal model of P . Hence, min(LM) ⊆MM.
Conversely, let M ∈MM. Then for each rule r : h1∨ · · · ∨hl ← b1∧ · · · ∧ bm in P ,
{b1, . . . , bm} ⊆M implies hi ∈M for some i (1 ≤ i ≤ l). In this case, there is a split
program SPj of P in which r is replaced by hi ← b1 ∧ · · · ∧ bm. Then M is the least
model of SPj . Since M is a minimal among models in LM,MM⊆ min(LM). ��
Example 3.6 Consider the program P in Example 3.5. The set of least models of
split programs is LM = {{ p, q, s }, { p, r, s }, { q, r, s }, { r, s }}. Then min(LM) =
{{p, q, s}, {r, s}}, which is the set of minimal models of P .

By definition, if a disjunctive program satisfies the MD condition, its split program
satisfies the MD condition for Horn programs. Next we introduce tensor representation
of a disjunctive program in terms of its split programs.

Definition 3.4 (tensor representation of disjunctive programs) Let P be a disjunc-
tive program that is split into SP1, . . . , SPk and BP = {p1, . . . , pn}. Then P is repre-
sented by a third-order tensor UP ∈ R

n×n×k as follows.

1. Each slice U::h (1 ≤ h ≤ k) of UP is a matrix Mh ∈ R
n×n representing a split

program SPh.
2. Each matrix Mh ∈ R

n×n has an element aij (1 ≤ i, j ≤ n) such that
(a) aij = 1 if pi = � or pj = ⊥ .
(b) aijl =

1
m (1 ≤ l ≤ m; 1 ≤ i, jl ≤ n) if pi ← pj1 ∧ · · · ∧ pjm is in SPh.

(c) Otherwise, aij = 0.



U::h represents a slice that is obtained by fixing an index h (1 ≤ h ≤ k). The index
h represents the h-th split program SPh of P . In this way, a disjunctive program is
represented by a third-order tensor by introducing an additional dimension to the matrix
representation of Horn programs.

Suppose a third-order tensor UP ∈ R
n×n×k of Def. 3.4. Given a vector v ∈ R

n

representing an interpretation I ⊆ BP , the (2-mode) product UP •v produces a matrix
(aij) ∈ R

n×k. We transform UP • v to a matrix WP = (a′ij) ∈ R
n×k in a way that

a′ij = 1 (1 ≤ i ≤ n; 1 ≤ j ≤ k) if aij ≥ 1 in UP • v; otherwise, aij = 0. We write
WP = UP •̄ v.

Example 3.7 The program P in Example 3.5 is represented by the 3rd-order tensor
UP ∈ R

5×5×4 such that6

p q r s �

U::1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠

p
q
r
s
�

U::2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠ U::3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠ U::4=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎠

where U::1, U::2, U::3 and U::4 represent SP1, SP2, SP3, and SP4, respectively. Given
the vector v0 = (0, 0, 0, 0, 1)T representing I = {�}, the product UP • v0 becomes
the matrix in R

5×4 where WP = UP •̄ v0 = UP • v0.

In the matrix WP (right), the 1st column (0, 1, 0, 1, 1)T repre-
sents the interpretation TSP1

({�}) = {q, s,�}, the 2nd column
(0, 0, 1, 1, 1)T represents TSP2

({�}) = {r, s,�}, the 3rd col-
umn (0, 1, 0, 1, 1)T represents TSP3

({�}) = {q, s,�}, and the
4th column (0, 0, 1, 1, 1)T represents TSP4

({�}) = {r, s,�}.

p
q
r
s
�

⎛
⎜⎜⎜⎜⎝

0 0 0 0
1 0 1 0
0 1 0 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎟⎟⎠

Given a matrix M = (aij) (1 ≤ i ≤ m; 1 ≤ j ≤ n), (a1j , . . . , amj)
T is said

a column vector in M . Let UP ∈ R
n×n×m and M ∈ R

n×m. The product UP •M
is then defined as the matrix in R

n×m such that each column vector in UP •M is
U::k • (a1k, . . . , ank)T (1 ≤ k ≤ m) where (a1k, . . . , ank)

T is a column vector in M .
Then UP •̄M is the matrix obtained from UP •M by replacing each element aij in
UP •M by a′ij = 1 if aij ≥ 1; otherwise, replacing aij by a′ij = 0. Given a tensor
UP ∈ R

n×n×m and a vector v ∈ R
n, define

UP •̄k+1 v = UP •̄ (UP •̄k v) and UP •̄1 v = UP •̄ v (k ≥ 1).

When UP •̄k+1 v = UP •̄k v for some k ≥ 1, we write FP(UP •̄ v) = UP •̄k v.

Theorem 3.7 Let P be a disjunctive program and UP ∈ R
n×n×k its tensor represen-

tation of Def. 3.4. Let MP = FP(UP •̄ v0) be a matrix where v0 represents I = {�}.
Then a vector m ∈Rn in MP represents a minimal model of P iff m is minimal among
all column vectors in MP and ai = 1 implies rowi(m) �= ⊥ for any element ai in m.

Proof. The result holds by Theorem 3.4 and Proposition 3.6. ��
6 Here we omit the row and the column representing⊥. When a program contains no constraints,

the row and the column representing ⊥ can be removed (see Section 4).



Example 3.8 In Example 3.7, MP = UP •̄k v0 (k ≥ 2) becomes the matrix (below).
The 1st column (1, 1, 0, 1, 1)T represents the minimal
model {p, q, s} of SP1, the 2nd column (1, 0, 1, 1, 1)T

represents the minimal model {p, r, s} of SP2, the 3rd
column (0, 1, 1, 1, 1)T represents the minimal model
{q, r, s} of SP3, and the 4th column (0, 0, 1, 1, 1)T rep-
resents the minimal model {r, s} of SP4.

p
q
r
s
�

⎛
⎜⎜⎜⎜⎝

1 1 0 0
1 0 1 0
0 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎟⎟⎠

Then two vectors (1, 1, 0, 1, 1)T and (0, 0, 1, 1, 1)T are minimal in MP , which repre-
sents two minimal models {p, q, s} and {r, s} of P .7

3.3 Normal Logic Programs

A normal (logic) program is a finite set of rules of the form:

h← b1 ∧ · · · ∧ bm ∧ ¬ bm+1 ∧ · · · ∧ ¬bn (n ≥ m ≥ 0) (3)

where h and bi are propositional variables in L. h and bi (1 ≤ i ≤ m) are positive
literals, and ¬bj (m + 1 ≤ j ≤ n) are negative literals. As before, a rule is a fact if
the body of (3) is � and it is a constraint if the head of (3) is ⊥. A program implicitly
contains � ← �. For each rule r of the form (3), we write head(r) = h, body+(r) =
{ b1, . . . , bm} and body−(r) = { bm+1, . . . , bn }. A normal program reduces to a Horn
program if it contains no negative literals. An interpretation {�} ⊆ I ⊆ BP is a model
of a normal program P if body+(r) ⊆ I and body−(r) ∩ I = ∅ imply head(r) ∈ I for
every rule r in P and ⊥ �∈ I . Given a normal program P , an interpretation I is a stable
model of P [4] if it coincides with the least model of the Horn program: P I = {h ←
b1∧· · ·∧bm | h← b1∧· · ·∧bm∧¬ bm+1∧· · ·∧¬bn ∈ P and {bm+1, . . . , bn}∩I =
∅ }. A stable model coincides with the least model if P is a Horn program. A normal
program may have no, one, or multiple stable models in general. A program is consistent
if it has at least one stable model; otherwise, the program is inconsistent.

In this paper, we consider a normal program P satisfying the following MD condi-
tion: for two rules r1 and r2 in P , (i) head(r1) = head(r2) implies |body+(r1)| ≤ 1
and |body+(r2)| ≤ 1, and (ii) body−(r1)∩ body−(r2) �= ∅ implies |body+(r1)| ≤ 1 and
|body+(r2)| ≤ 1. The condition reduces to the one of Horn programs when P contains
no negative literals. Every normal program is converted to this class of programs by a
simple program transformation. Given a normal program P , define a set Q+

p , Q
−
q ⊆ P

such that Q+
p = { r ∈ P | head(r) = p and | body+(r) |> 1 } and Q−

q = { r ∈
P | q ∈ body−(r) and | body+(r) |> 1 }. Let Q+

p = { p ← Γ1, . . . , p ← Γk }
and Q−

q = {h1 ← Υ1 ∧ not q, . . . , hl ← Υl ∧ not q } where Γi (1 ≤ i ≤ k) or Υj

(1 ≤ j ≤ l) is the conjunction in the body of each rule. Then Q+
p and Q−

q are respec-
tively transformed to R+

p = { p1 ← Γ1, . . . , pk ← Γk } ∪ { p ← pi | 1 ≤ i ≤ k } and
R−

q = {h1 ← Υ1∧not q1, . . . , hl ← Υl∧not ql }∪{ qj ← q | 1 ≤ j ≤ l }where pi ( �=
p) and qj ( �=q) are new propositional variables respectively associated with p and q, and
pi �=pj (qi �=qj) if i �= j. Let P ′ be the program obtained from P by replacing Q+

p ⊆ P
with R+

p for every p ∈ BP satisfying the condition: | {r ∈ P | head(r) = p} |>1 and
7 Here we omit � in each model.



Q+
p �= ∅. Next let P ′′

q be the program obtained from P ′ by replacing Q−
q ⊆ P ′ with

R−
q for an atom q ∈ BP satisfying the condition: | {r ∈ P ′ | q ∈ body−(r)} |> 1 and

Q−
q �= ∅. Repeat the replacement one by one until there is no atom q ∈ BP satisfying

the above condition. Let P ′′ be the resulting program. Then, P has a stable model M
iff P ′′ has a stable model M ′ such that M ′ ∩BP = M .

Example 3.9 Consider P = { p← q ∧ r ∧ not s, p← r ∧ t ∧ not s, q ← t, r ←,
t←}. First, it is converted to P ′ = { p1 ← q∧r∧not s, p2 ← r∧ t∧not s, q ← t,
r ←, t ←, p ← p1, p ← p2 }. Next, it is converted to P ′′ = { p1 ←
q∧r∧not s1, p2 ← r∧t∧not s2, q ← t, r ←, t←, p← p1, p← p2, s1 ← s,
s2 ← s }. Then P ′′ has the single stable model M ′ = {p, p1, p2, q, r, t} which corre-
sponds to the stable model M = {p, q, r, t} of P .

As such, every normal program P is transformed to a semantically equivalent pro-
gram P ′′ that satisfies the MD condition. We then assume normal programs satisfying
the MD condition without loss of generality. A normal program P is transformed to a
disjunctive program with integrity constraints as follows [3].

P ε = {h ∨ εbm+1 ∨ · · · ∨ εbn ← b1 ∧ · · · ∧ bm |
(h← b1 ∧ · · · ∧ bm ∧ ¬ bm+1 ∧ · · · ∧ ¬bn) ∈ P } ∪ { εp← p | p ∈ BP \ {�,⊥}},

ICP ={ εp⇒ p | p ∈ BP \ {�,⊥}}
where εp is a new atom associated with p. Let BP ε be the Herbrand base of P ε such that
{�,⊥} ⊆ BP ε . An interpretation {�} ⊆ I ⊆ BP ε satisfies ICP iff εp ∈ I implies
p ∈ I for every εp⇒ p in ICP .

Proposition 3.8 [3] Let P be a normal program. M is a stable model of P iff M ∪ εM
is a minimal model of P ε satisfying ICP where εM = { εp | p ∈M}.
Example 3.10 Consider P = { p← ¬q, q ← ¬p }. Then P ε= { p∨εq ←, q∨εp←,
εp ← p, εq ← q } and ICP = { εp ⇒ p, εq ⇒ q }. The program P ε has three
minimal models: M1 = {p, εp}, M2 = {q, εq}, and M3 = {εp, εq}. Of which M1 and
M2 satisfy ICP . Then {p} and {q} are two stable models of P .

By definition, if a normal program P satisfies the MD condition, P ε satisfies the MD
condition for disjunctive programs. Suppose that a disjunctive program P ε is split into
SP ε

1 , . . . , SP
ε
k . Then P ε is represented by a third-order tensor UP ε ∈ R

n×n×k as in
Def. 3.4, and we can compute stable models of P in terms of minimal models of P ε.

Definition 3.5 (vBP
, vεBP

) Let v ∈ R
n be a vector representing {�} ⊆ I ⊆ BP ε .

Then v is divided into two vectors vBP
∈ R

m and vεBP
∈ R

m (m ≤ n) where vBP

represents elements of BP ={p1, . . . , pm} (�,⊥ ∈ BP ) and vεBP
represents elements

of (BP ε \ BP ) ∪ {⊥,�}. Two vectors satisfy the condition: rowi(vBP
)= rowi(vεBP

)
iff rowi(vBP

)=� or ⊥; otherwise, pi= rowi(vBP
) iff εpi= rowi(vεBP

) (1 ≤ i ≤ m).

Proposition 3.9 Let P be a normal program and v ∈ R
n a vector representing {�} ⊆

I ⊆ BP ε . Then I satisfies ICP iff vεBP
≤ vBP

.

Proof. Let vBP
= (a1, . . . , am)T and vεBP

= (b1, . . . , bm)T (m ≤ n). Then, vεBP
≤

vBP
iff bi = 1 implies ai = 1 (1 ≤ i ≤ m) for any rowi(vεBP

) = εp and rowi(vBP
) =

p iff εp ∈ I implies p ∈ I . Hence, the result holds. ��



Theorem 3.10 Let P be a normal program and BP ε = {p1, . . . , pn}. Also let UP ε ∈
R

n×n×k be a tensor representation of a disjunctive program P ε where k is the number
of split programs of P ε. Then

1. m = vBP
represents a stable model of P iff v ∈ R

n represents a minimal model
of P ε and vεBP

≤ vBP
.

2. P is inconsistent iff vεBP
�≤vBP

for any v∈Rn representing a minimal model of P ε.
Proof. Since minimal models of P ε are computed by Theorem 3.7, the result holds by
Propositions 3.8 and 3.9. ��
Example 3.11 The program P ε of Example 3.10 has four split programs SP ε

1 =
{ p ←, q ←}∪R, SP ε

2 = { p ←, εp ←}∪R, SP ε
3 = { εq ←, q ←}∪R, and

SP ε
4 ={ εq ←, εp←}∪R where R={ εp← p, εq ← q }.

Then P ε is represented by the tensor UP ε ∈ R
5×5×4.

FP(UPε
•̄v0) is the matrix where v = (1, 0, 1, 0, 1)T, v′ =

(0, 1, 0, 1, 1)T and v′′ = (0, 0, 1, 1, 1)T are minimal (right).
Then vBP

= (1, 0, 1)T (representing p, q, �) and vεBP
=

(1, 0, 1)T (representing εp, εq,�) satisfy vεBP
≤ vBP

. Also,

p
q
εp
εq
�

⎛
⎜⎜⎜⎜⎝

1 1 0 0
1 0 1 0
1 1 0 1
1 0 1 1
1 1 1 1

⎞
⎟⎟⎟⎟⎠

v′
BP

= (0, 1, 1)T (representing p, q, �) and v′
εBP

= (0, 1, 1)T (representing εp, εq, �)
satisfy v′

εBP
≤ v′

BP
. By contrast, v′′ does not satisfy v′′

εBP
≤ v′′

BP
. Then vBP

=

(1, 0, 1)T and v′
BP

= (0, 1, 1)T represent two stable models {p} and {q} of P .

The result of this section is extended to normal disjunctive programs (i.e., programs
containing both disjunction and negation) by combining techniques of Sec. 3.2 and 3.3.

4 Discussion

It is known that the least model of a Horn program is computed in O(N) time and space
where N is the size of the program, i.e., the total number of occurrences of literals in the
program [2]. The proposed method requires O(n2) space and O(n4) time (i.e., O(n3)
for matrix multiplication and at most n-iteration of powers) in the worst case where n is
the number of propositional variables in BP . Since the size of a matrix is independent of
the size of a program, the proposed method would be advantageous in a large knowledge
base on a fixed language. Several optimization techniques are considered for efficient
computation in practice. When every element in the i-th row of a matrix MP is zero
except the element aij = 1 for colj(MP ) = ⊥, there is no rule deriving pi in P . In
this case, the i-th row and the i-th column can be removed from MP . For instance, let
M ′

P be the matrix obtained by removing the 4th row and the 4th column from MP in
Example 3.2. Then FP(M ′

P •̄ v0) produces the least model of P . In particular, when
a program P contains no facts (resp. constraints), the row and the column representing
� (resp. ⊥) could be removed from MP . In this way, we can reduce the size of vector
spaces when a program is represented in a sparse matrix/tensor. A technique of dividing
a program into subprograms [7] also helps to reduce the size of matrices/tensors in large
scale of programs. Tensor LP can also be extended to representing weight constraints
[12] for ASP. For instance, a weight constraint rule pi← l≤{pj1 =wj1 ,. . ., pjm =wjm}
(wjk≥0; 1≤k≤m) is represented by a matrix MP ∈Rn×n such that rowi(MP ) = pi,



colj(MP ) = pj (1 ≤ i, j ≤ n), and aijk = wjk/l. Given a vector v = (b1, . . . , bn)
T

representing an interpretation, pi becomes true if the i-th element of MP • v has a
value bj1wj1/l + · · · + bjmwjm/l ≥ 1, thereby computed by MP •̄ v. In this way,
weight constraints are effectively translated into linear algebraic calculation.

5 Conclusion
This paper introduced linear algebraic characterization of logic programs. The result
of this paper bridges logic programming and linear algebraic approaches, which would
contribute to a step for realizing logical inference in huge scale of knowledge bases.
This paper focuses on theoretical aspects of LP in vector spaces. Future research in-
cludes implementation and evaluation of the proposed approach as well as development
of techniques for robust and scalable inference in a huge scale of programs.
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