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Abstract  

The class of logic programs with negation as failure in the head is a subset of the logic of 
MBNF introduced by Lifschitz and is an extension of the class of extended disjunctive pro- 
grams. An interesting feature of such programs is that the minimality of answer sets does 
not hold. This paper considers the class of general extended disjunctive programs (GEDPs) 
as logic programs with negation as failure in the head. First, we discuss that the class of GE- 
DPs is useful for representing knowledge in various domains in which the principle of minim- 
ality is too strong. In particular, the class of abductive programs is properly included in the 
class of GEDPs. Other applications include the representation of inclusive disjunctions and 
circumscription with fixed predicates. Secondly, the semantic nature of GEDPs is analyzed 
by the syntax of programs. In acyclic programs, negation as failure in the head can be shifted 
to the body without changing the answer sets of the program. On the other hand, supported 
sets of any program are always preserved by the same transformation. Thirdly, the computa- 
tional complexity of the class of GEDPs is shown to remain in the same complexity class as 
normal disjunctive programs. Through the simulation of negation as failure in the head, com- 
putation of answer sets and supported sets is realized using any proof procedure for extended 
or positive disjunctive programs. Finally, a simple translation of GEDPs into autoepistemic 
logic is presented. © 1998 Elsevier Science Inc. All rights reserved. 

1. I n t r o d u c t i o n  

Logic  p r o g r a m m i n g  has  been regarded  as an a p p r o p r i a t e  tool  for  knowledge  rep- 
resen ta t ion  in art if icial  intell igence. F r o m  this v iewpoint ,  theories  o f  logic p r o g r a m -  
ming  with negation as failure (or  default negation), classical negation (or  explicit 
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negation) and disjunctive information have been developed (a comprehensive survey is 
found in [4]). This paper is concerned with such a theory of an extended class of logic 
programs as a knowledge representation language. Our extension of logic programs 
is called general extended disjunctive programs (GEDPs). Such programs allow nega- 
tion as failure not only in the body of a rule as negative premises but in the head as 
negative conclusions. That is, a rule in a GEDP is in the form 

L, I ' "  ILk lnotLk~ I . . .  InotL, ~ L,+I,... ,Lm,notLm+,,... ,notL,, 

where each Li is a positive or negative literal, not is the negation-as-failure operator, 
and " r '  represents a disjunction. The class of GEDPs has the following nice proper- 
ties: 
• The syntax of  programs is general enough to strictly include the class of extended 

disjunctive programs (EDPs). The class of  GEDPs is a quite natural extension of 
EDPs in the sense that negation as failure appears symmetrically in a rule. 

• The semantics of programs is also a natural generalization of the answer set se- 
mantics for EDPs by Gelfond and Lifschitz [22], thus coincides with the stable 
model semantics [21] for normal logic programs. 

• The class of GEDPs is more expressive than the class of EDPs in the sense that a 
program can have a non-minimal answer set. 

Furthermore, we will show that the introduction of negation as failure in the head to 
logic programming is useful and important in the following sense: 
• A lot of new applications to knowledge representation can be properly described 

using GEDPs. 
* The class of GEDPs offer a theoretical tool for investigating a theory of existing 

framework of  logic programming. Specifically, it enables us to better understand 
the supported model semantics [3,45] and to have a proof  procedure for it. 

• There is a procedural semantics for GEDPs that is an extension of existing proof  
procedures for EDPs. 

• There are close relationships between the class of GEDPs and existing non-mono- 
tonic formalisms, which are also natural extensions of previously known results 
[19,39,12]. 

1.1. Historical background 

Historically, the class of GEDPs 2 was introduced by Lifschitz and Woo [41] as a 
subset of  the logic of minimal belief and negation as failure (MBNF). MBNF was pro- 
posed by Lifschitz [38] as a general non-monotonic logic that includes the class of 
logic programs permitting both classical negation and negation as failure. In fact, 
MBNF is one of  the most expressive logics and can serve as common framework that 
unifies several non-monotonic formalisms. As Lifschitz noted, however, MBNF is 
purely semantical and too intractable to be used directly for representing knowledge. 
Then, Lifschitz and Woo investigated a large subset of  propositional MBNF called 
PL-theories - theories with "protected literals". In brief, protected literals are for- 
mulas of  the forms BL and not L, where L is a literal and B and not are two non- 
monotonic modal operators, respectively, meaning minimal belief and negation as 

2 The  n a m e  G E D P  was in t roduced  in [29]. 
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failure. Then, a PL-theory is defined as a set of  PL- formulas which are formed by 
protected literals using ~ B, not and A. 

The semantics of PL-theories is similar to the answer set semantics for EDPs, and 
can be described in terms of  sets of objective literals. Moreover, each PL-theory is 
shown to be replaced with an equivalent set of formulas of  the form 

BLI V • • • V BLk v notLk+i V . .  • V notL~ 

V ~BLt_i V . . .  V ~BLm V ~notLm+l V "" V -~notL,, 

which is interpreted as the rule 

L I I . . .  [Lk I not  Lk+l I " .  I no t  LI +-- L I + I , . . . ,  Lm, not  L m + l . . . .  , Hot L n 

in the logic programming context. Hence, the class of GEDPs is such a "logic pro- 
gramming" fragment of MBNF. 

Lifschitz and Woo consider the possibility of positive occurrences o f  negation as 

failure (positive not, in short) in GEDPs. 3 Syntactically, this extension is quite nat- 
ural and attractive, and each rule with negation as failure in the head can be regarded 
as a bisequent [8], that is, a pair of positive and negative beliefs appears in both the 
antecedent and the succedent of a sequent. 

The semantics of GEDPs is also clearly defined in terms of the notion of  answer 
sets [41]. A unique feature of  GEDPs, which distinguishes them from other tradition- 
al logic programs, is that the minimality of answer sets for EDPs [22] does not hold 
in general. For  example, the program consisting of the rule 

p[not  p ~-- 

has two answer sets: one containing p and the other containing neither p nor -~p. In 
this paper, we will analyze this peculiar property of GEDPs in detail from the two 
important viewpoints: 

(i) applications of non-minimal answer sets in knowledge representation; 
(ii) semantical and computational properties of  non-minimal answer sets. 

1.2. Non-minimality in knowledge representation 

Most of  the semantics of  logic programs proposed so far satisfy the principle o/ 

minimality in some sense. For  example, the least model semantics for definite Horn 
programs, the minimal model semantics for positive disjunctive programs, the per- 
fect model semantics for stratified (disjunctive) programs, and the stable model se- 
mantics for normal (disjunctive) programs satisfy the principle in the sense that 
every canonical model of  a logic program is its minimal model. The answer set se- 
mantics for EDPs also satisfies the principle since no answer set of a program is 
smaller than any other answer set. Hence, it has been argued that the principle of 
minimality is one of  the most important criteria that each semantics should obey 
if it is used as "commonsense" semantics [59]. 

3 There had been some at tempts to allow negation as failure in the head before GEDPs  appeared in the 
literature. For example, Gelfond showed such a rule in Example 2 of  [20] and Kowalski and Kim 
considered the possibility in [35], p. 237. However, they did not discuss much about  the effect of  such rules, 
and their semantics are different from that o f  GEDPs.  
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The situation is similar in research on non-monotonic formalisms. Circumscrip- 
tion [47] is directly based on minimal models, and (disjunctive) default logic 
[52,23] has the property that an extension of  a (disjunctive) default theory is not a 
subset of  any other extension. While an exception can be seen in autoepistemic logic 
[49], the definition of  stable expansions has been modified so that each obtainable ex- 
pansion "rationally" satisfies the principle of  minimality. For  example, {Bp ~ p} has 
two stable expansions, one containing p and the other not in their objective parts, 
but only the latter is the moderately (or strongly) grounded expansion [33]. 

On the other hand, recent advances on theories of logic programming and non- 
monotonic reasoning have revealed the declarative meaning of negation as failure 
as a non-monotonic modal operator. MBNF is a non-monotonic bimodal logic that 
directly allows the negation-as-failure operator not along with the B operator for 
minimal belief in a theory. Once not is allowed positively in a PL-theory or a GEDP, 
the principle of  minimality does not hold any more. This observation gives a justifi- 
cation of the introduction of not in the head in logic programs. Namely, the class of 
GEDPs strictly includes the class of EDPs both in the syntactical and semantical 
senses. 

Then, a question arises about the use of negation as failure positively in MBNF or 
logic programming. Namely, one may feel a resistance to the existence of  non-min- 
imal answer sets. From the traditional viewpoint, a non-minimal answer set contains 
a redundant information and is of  no use for representing commonsense knowledge. 
In fact, Lifschitz and Woo raised a question about the utility of  a disjunction of lit- 
erals and their negation like p[not p ~-, and discussed ([41], p. 608): 

It remains to be seen whether rules like this may have applications to 
knowledge representation. 

In this respect, we will show that the non-minimality of answer sets is an impor- 
tant property for applying logic programming or MBNF to represent various do- 
mains in which the principle of  minimality is too strong. For  example, we show 
all the following applications can be characterized in terms of GEDPs. 
• Abductive logic programming: Consider the logic program {p ~ a} with the abdu- 

cible atom a. For  this program, (~ is the least model. However, given the observa- 
tion p, the non-minimal model {a,p)  is considered as the intended belief model. 

• Inclusive interpretation o f  disjunctions: When we interpret the disjunction p [ q 
exclusively, both {p} and {q} are two alternative minimal models. But if it is in- 
terpreted inclusively, the non-minimal model {p,q} becomes another intended 
model. 

• Circumscription with f ixed predicates: The circumscription of  p in {q ~ p} with q 
fixed has two models, (~ and {p, q}. Here, the second model is not minimal. 
On the first point, we will show that the rule a [nota +- can be used to represent 

the statement that a is a hypothesis in a program. The fact that abduction can be 
represented by a single logic program is a particularly striking result. Since an abduc- 
tive program is usually represented by a pair of  background knowledge and candi- 
date hypotheses, it is important to know how such meta-level information of 
hypotheses can be expressed at the object level. Such an expression bridges the 
gap between abductive and usual (non-abductive) logic programming, and contrib- 
utes to the computational aspect of abduction. Namely, we can apply any proof  pro- 
cedure for usual logic programs to abductive programs. 
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On the second point, an inclusive interpretation of the disjunction p [ q ~ is spec- 
ified by rules p[notp  ~ and q[notq,--- together with the integrity constraint 

notp, notq. In the case, the answer sets of the program are {p}, {q}, and 
{p, q}, where the third one represents the inclusive model. Classical logic program- 
ming semantics based on minimal models are always minimal hence cannot represent 
such inclusive disjunctions in general. By contrast, the possible model semantics 
[11,53,55] has a non-minimal feature, and can represent both inclusive and exclusive 
disjunctions. We will show that the possible model semantics of positive/normal dis- 
junctive programs are characterized by the answer set semantics for GEDPs. 

On the third point, the fact that q is fixed in circumscription is also represented by 
the rule q [not q ~ .  In this sense, we can see that fixed predicates play the same role 
as abducible predicates in abductive logic programming. In classical logic program- 
ming, every predicate is usually minimized under the closed world reasoning. Fixed 
predicates are also considered in ECWA [24], which is equivalent to circumscription 
under some conditions. We will show that ECWA without varying predicates can be 
simply computed through GEDPs. 

From the viewpoint of non-monotonic reasoning, among many non-monotonic 
formalisms, Moore's autoepistemic logic can express a stable expansion whose objec- 
tive part is larger than that of another expansion. We show that this non-minimal 
feature of autoepistemic logic is applicable to describe the semantics of GEDPs. 
We justify this result by providing a simple translation of GEDPs into autoepistemic 
logic, which is due to the results by Lifschitz and Schwarz [39] and Chen [12]. 

1.3. Semantic nature and computation of GEDPS 

One may consider that the use of positive not in MBNF or not in the head in GE- 
DPs increases the computational complexity and that it is difficult to supply a pro- 
cedural semantics in the presence of non-minimal answer sets. Two proof theories 
for MBNF proposed so far are not sufficient in this respect. Chen [12] proposes a 
proof theory for PL-theories, which relies on the proof theory for the logic of only 
knowing [36], so that a procedure would have to deal with modal logic K45. Beringer 
and Schaub [7] provide a proof procedure for a subset of MBNF, but this subset nei- 
ther includes EDPs nor allows positive not. 

In this regard, we will analyze the properties of GEDPs and the nature of not in 
the head from the viewpoint of program transformation. 

First, we show a program transformation (called shifting) from a GEDP to an 
EDP such that the two programs have exactly the same answer sets. Such a transfor- 
mation is possible if a GEDP satisfies the acyclic condition. 

Secondly, we introduce an alternative semantics of GEDPs, called the supported 
set semantics, which is a natural generalization of the notion of supported models. 
Note that supported sets are not always minimal even for normal logic programs. 
For example, the logic program {p ~ p} has two supported models, 0 and {p}. Un- 
like the answer set semantics, the supported set semantics is shown to be always pre- 
served by the shifting transformation from GEDPs to EDPs. Moreover, the 
supported set semantics can be characterized by the answer set semantics. Hence, 
this gives another application of non-minimal answer sets of GEDPs. These analyses 
help us to better understand the source of non-minimality of answer sets in GEDPs 
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or supported sets in EDPs. As a by-product,  we will have a procedure to compute the 
supported sets or supported models defined by [3,45,4,9]. 

Thirdly, we develop a polynomial-time translation of any G E D P  into an EDP by 
replacing not in the head with new literals and constraints. With this translation, 
there is a one-to-one correspondence between the answer sets of  the original G E D P  
and those of  the translated EDP. This translation also contributes to the computa-  
tional theory for GEDPs.  Namely the computat ional  complexity of  GEDPs  is shown 
to remain in the same complexity class as EDPs, and computat ion of answer sets of  
GEDPs  is realized using bot tom-up model generation techniques for EDPs. 

1.4. Outline o f  the paper 

This paper is a much extended version of the paper [29]. The rest of  this paper is or- 
ganized as follows. Section 2 gives the answer set semantics for GEDPs  and their basic 
properties. Section 3 shows practical applications of  non-minimal answer sets such as 
abduction, inclusive disjunctions and circumscription with fixed predicates, and char- 
acterizes these applications as GEDPs.  Section 4 introduces the shifting transforma- 
tion, which preserves the answer set semantics for acyclic GEDPs.  Section 5 defines 
the supported set semantics for GEDPs,  and compares it with the answer set semantics. 
Section 6 provides complexity results and computat ion of the answer set semantics for 
GEDPs.  Section 7 shows connections to autoepistemic logic and other non-monotonic  
logics. Section 8 discusses some related issues, and Section 9 gives a summary. 

2. General extended disjunctive programs 

This section overviews the answer set semantics of  logic programs with negation 
as failure in the head. We regard a rule with variables as the set of  its ground instanc- 
es. Hence, in the semantics of  logic programming in this paper, we can restrict our 
attention to (possibly infinite) ground programs. 

A general extended disjunctive program (GEDP) is a set of  rules of  the form 

L11 . . .  I L~I notLk+, ] . . .  I not L, ~-- L,+I , . . . ,  Lm, notLm+,, . . . ,  notLn, (1) 

where L i ' s  are literals and n/> m/> l/> k >~ 0. The disjunction to the left of  +-- is the 
head and the conjunction to the right of  +-- is the body of  the rule. In GEDPs,  nega- 
tion as failure occurs positively, that is, not Lj(k + 1 <~j <~ l) may appear  in the head 
of  a rule. In this sense, negation as failure in the head is also called positive not. In- 
tuitively, the rule (1) can be read as follows: I f  all Ll+l , . . .  ,Lm are believed and all 
Lm+l, . . . ,  Ln are disbelieved than either some Li(1 ~< i ~< k) should be believed or some 
Lj(k + 1 <<. j <<. l) should be disbelieved. 

A G E D P  is called an extended disjunctive program (EDP) when it does not contain 
positive not, i.e, each rule is in the form (1) with k = I. An EDP is called (i) an ex- 
tended logic program (ELP) if for each rule 1 ~< 1; and (ii) a normal disjunctive program 
(NDP) if every Li is an atom. An N D P  is called (i) a normal logic program (NLP) if 
for each rule l ~< 1; and (ii) a positive disjunctive program (PDP) if it contains no not, 
i.e., for each rule m = n. 

In the following, the set of  all ground literals in the language is denoted as Lit. We 
say that a set of  ground literals S c_ Lit satisfies a ground rule of  the form (I) iff 
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{L~+j . . . .  ,Lm} c S and {Lm+j,.. .L,} AS = 13 imply either {LI, . . . ,Lk} n S  # 13 or 
{Lk+I,. . . ,LI} Z S. 

As the semantics for GEDPs, we mainly consider the answer set semantics in this 
paper, while we later introduce the supported set semantics as an alternative seman- 
tics in Section 5. 

The answer sets of a G E D P  are defined by the following two steps. First, let P be a 
not-free EDP (i.e., for each rule k = l and m = n), and S c Lit. Then, S is an answer 
set of P iff S is a minimal set satisfying the conditions: 

(i) S satisfies every ground rule from P, that is, for each ground rule 

LI] . . .  [L~, +-- Lk+l . . . . .  Lm 

from P, if {Lk+~,...,Lm} C S then { L I , . . . , L k } N S # O .  In particular, for each 
ground rule ~-- LI , . . . ,Lm from P, {LI , . . . ,Lm} ~ S; 

(ii) If S contains a pair of  complementary literals L and -~L, then S = Lit. 
Secondly, let H be any GEDP,  and S c_ Lit. The reduet 13 s o f  FI by S is a not-free 

EDP obtained as follows: A rule 

L, I . - .  ILk ~- Lt+, , . . .  ,Lm (2) 

is in H s iff there is a ground rule of the form 

L~I. . .  ]L~.]notLt.+~J... ]notLt +-Lz.~, . . . ,Lm,notLm+,, . . . ,  notLn 

from P such that 

{Lk_~,...,Lz} C_S and { L ~ + , , . . . , L , } n S = O  

For programs of the form H s, their answer sets have already been defined. Then, S is 
an answer set of II iff S is an answer set of  H s. 

Note that the above definition of answer sets of a G ED P  is given in a way slightly 
different from that by Lifschitz and Woo [41] who additionally include in the lan- 
guage two special atoms T and F. When the language does not contain these special 
atoms, our definition of  the reduct is equivalent to that given in [41], p. 606, and thus 
both definitions of  answer sets coincide. Obviously, when a program H is an EDP, 
the above definition of answer sets reduces to that given by Gelfond and Lifschitz 
[22]. When a program contains no classical negation, answer sets are also called sta- 
ble models. This notion of stable models for programs possibly containing positive 
not also reduces to that for NDPs [51] and NLPs [21]. 

The next proposition is a generalization of Proposition 4.1(a) in [4]. 

Proposition 2.1. Every answer set of  a GEDP H satisfies eveo, ground rule f fom H. 

Proof. Let S be any answer set of H. Since S is an answer set of l-I s, S satisfies every 
ground rule from H s. Namely, for any ground rule R of the form (2) from H s, if 
{Ll+1,.. . ,  Lm } C_ S then {L l , . . . ,  Lk } C3 S # 13. By the construction of  H s, for the rule 
R, there is a corresponding ground rule of  the form (1) from 13 such that 
{Lm+l . . . .  ,Ln} n S = 13 and {Lk+l,...  ,LI} C_ S. Hence for any ground rule R' of the 
tbrm (1) from H, if {Ll+l, . . . ,Lm} C_ S and {L ,n+I , . . . ,Ln}~S= 13, then either 
{Ll . . . .  ,Lk} ~ S  ¢ 13 or {Lk+l, . . . ,Ll} ~ S. Hence, S satisfies R'. [] 

We say that a GEDP FI entails a literal L if L is included in all answer sets of  H. 
An answer set is consistent if it is not Lit. A G E D P  H is consistent if it has a consis- 
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tent answer set. An answer set S of  a G E D P  I-I is minimal if no other answer set S' of  
I-I satisfies S' c S; otherwise, it is non-minimal. It is well known that every answer set 
of  any EDP is minimal ([22] and Theorem 4 of [41]). However, the minimality of  an- 
swer sets no longer holds for GEDPs.  This is an important  property of  GEDPs  
which was firstly observed by Lifschitz and Woo. For  example, the program consist- 
ing of the rules: 

q~---p, 

p lnotp ~ ,  

has two answer sets: ~ and {p, q}. 

3. Applications of negation as failure in the head 

In this section, we show various applications of  negation as failure in the head in 
GEDPs.  The most important  application is inference to explanation called abduct- 
ion, which is one of the three fundamental modes of reasoning characterized by 
C.S. Peirce. We will also show that positive not is a useful tool to represent other 
non-minimal semantics for disjunctive logic programs, including the possible model 
semantics and circumscription with fixed predicates. Some other applications will also 
be presented. 

3.1. Abductive programs 

Abduction is an important  form of reasoning not only for various AI problems 
but also for logic programming.  Abductive logic programming is an extension of logic 
programming to perform abductive reasoning [32]. Here, we show that this extension 
can be characterized exactly using positive not in GEDPs,  so that both abductive and 
non-abductive logic programming have the same expressive power. 

The semantics of  abduction we consider here is based on the belief set semantics by 
Inoue and Sakama [30], but is extended to handle GEDPs.  The belief set semantics is 
a generalization of the generalized stable model semantics defined by Kakas  and 
Mancarella [31] for NLPs. 

An abductive (general extended disjunctive) program is a pair (P, F), where P is a 
(general extended disjunctive) program and F (C_ Lit) is a set of  ground literals from 
P called abducibles. When P is an N L P  and F is a set of  atoms, we will often call an 
abductive program an abductive NLP. We often identify a set E (C_ F) of  abducibles 
with the program {7 +-- 17 c E}. A set of  literals S (c  Lit) is a belief set of  (P, F) iffS 
is a consistent answer set o f P  U E where E = S n F. 4 A belief set S is F-minimal iffno 
belief set T satisfies that T n F C S N F. 

When S is a belief set and E --- S N F, we often write S as S~. Note that each belief 
set reduces to a consistent answer set of  P when F = ~3. Belief sets are called belief 

4 This definition can also be stated as follows: S is a belief set of (P, F) iff S is a consistent answer  set of  
P U E for some E c_ 17. The set of  all belief sets defined by each definition is equivalent, and hence Theorem 
3.2 still holds for this alternative definition. Here, we prefer to identify the abducibles included in a belief 
set th rough  the equat ion E S n 17. 
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models when P does not contain classical negation. Belief models are also called gen- 
eralized stable models [31] when P is an NLP. 

Let (P, F) be an abductive program, and O a ground literal which represents an 
observation. A set E (C_ F) is a credulous explanation of  0 (with respect to (P, F)) 
iff there is a belief set SE which satisfies O. On the other hand, E (C F) is a skeptical 
explanation of  0 iff every belief set S such that E = S fq F satisfies O. When we just 
say an explanation, it is a credulous explanation. An explanation E of  O is minimal if 
no E' C E is an explanation of  O. 

As discussed in [30], without loss of  generality, we can assume that an observation 
O is a non-abducible ground literal. Furthermore,  the problem to find explanations is 
essentially equivalent to find belief sets since E is a minimal explanation of O with 
respect to (P, F) iff SE is a F-minimal belief set of  (P U { ~  notO}, F). 

Example 3.1. Consider the abductive N L P  (Pl, Fl) where P1 consists of  

P +- r, b, notq, 

q ~ - - a ,  

p +-- 

a n d  F, = {a,b) .  Then, SE0 = {r},SE, = {r,p,b},SE2 = {r,q,a} and SE3 = {r ,q ,a ,b}  
are the belief models of  (PI, F~), in which S~0 is the only Fl-minimal belief model 
of  (P1, Fl). Suppose that p is an observation. Then, E1 = SEI fq F = {b) is the (min- 
imal) explanation of  p. The observation p can be incorporated in the program as 

P2 = Pl U {~--- notp}. 

and the unique belief model of  (P2, Fl) is SE1 = {r,p, b}. Note that E3 = {a, b} is not 
an explanation of p. Hence, abduction is non-monotonic  relative to the addition of 
abducibles. 

The most  direct way to embed abducibles in a single program is as follows. Let 
(P, F) be an adductive program. For  each abducible 7 in F, we supply the rule 

~,]not)' +- (3) 

According to the non-minimality of  answer sets of  GEDPs,  this rule has the effect to 
augment each answer set of  P with either 7 or nothing. Given an abductive program 
(P, F), let aM(F)  be the set of  rules (3) obtained from F. 

Theorem 3.2. A set S is a belief set of  (P, F) iff S is a consistent answer set of  
P t3 abd(F). 

Proof. Let E = S A F. It  holds that abd(F) s = abd(F) E = E = E s. 
Hence, S is a belief set of  (P, F) 
iff S is a consistent answer set of  P U E 
iff S is a consistent answer set of  pS U E s 
iff S is a consistent answer set of  pS U abd(F) s 
iff S is a consistent answer set of  ps U abd(F). [] 

Given a G E D P  H and a set F of  ground literals, we say an answer set S of  H is F- 
minimal if no other answer set S' of  FI satisfies that S' • F c S n F. 
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Corollary 3.3. A set E ( C_ F) is a minimal explanation of  0 with respect to (P, F) f f  
SE (C Lit) is a consistent F-minimal answer set o f  P U {~-- notO} U abd(F). 

Example 3.4. The abductive program (P2, F1) in Example 3.1 is transformed to 

P2 Uabd(Fl)  = P2 U {alnota ~--, blnot b *--}. 

Then, {r,p, b} is the unique (and hence both minimal and F1- minimal) answer set of  
P2 U abd(Fi), which is exactly the (Ft-minimal) belief model of  (Pz, F1). Notice in 
this example that there is no non-minimal answer set of  Pc U abd(F1). In other words, 
embedding abducibles in rules with positive not (3) not only enables us to represent 
non-F- minimal belief sets of  abductive programs, but plays an important  role to ob- 
tain a (minimal) explanation. 

Example 3.5. Here is an example taken from Example 4.9 in [30], showing an effect of  
non-minimal answer sets in abductive reasoning. Consider the abductive program 
consisting of  three rules P3: 

p[q ~ notr, 

r +-- nora, 

~q~--b 

and two abducible literals F3 = {a, b}. The information of abducibles in F3 can be 
encoded as rules abd(F3): 

alnota ~--, 

b lnotb ~-- . 

When the observation is p, both E = {a} and E' = {a, b} are credulous explanations 
of  p, and correspondingly, both S = {a,p} and S ' =  {a,p, b, ~q} are answer sets of  
P3 U abd(F3) containing p. Then, E is the minimal explanation of p. However, 
P3 U E has another answer set {a, q} which does not contain p, while S' is the unique 
answer set of  P3 U E'. Hence, E' is preferable as the skeptical explanation of p, al- 
though its corresponding answer set S' of  the G E D P  is not F3-minimal. 

3.2. Assumptions with preconditions 

In Section 3.1, a set F o f a  abducibles in an abductive program (P, F) was defined as 
a set of  literals. Often however, we would like to introduce in F an abducible rule like 

7 +-- L I ; . . .  ,Lm, notLm+l,... ,  notLn, (4) 

where 7 and Li's are literals. This abducible rule intuitively means that if the rule is 
abduced then it is used for inference together with the background rules from P. This 
kind of extended abductive f ramework was introduced by Inoue [26] as a knowledge 
system in which both P and F are defined as ELPs, and has been shown to be a useful 
tool for representing commonsense knowledge. 

An abducible rule (4) has the effect to introduce the literal 7 as an assumption in a 
particular context in which the body of  the rule is true. In this sense, 7 in (4) can be 
considered as an assumption with preconditions. On the other hand, each abducible 
literal y in an abductive program (P, F) defined in Section 3.1 is viewed as an abdu- 
cible rule without precondition 7 ~--, and hence can be abduced globally. 
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An extended abductive framework can be formally defined as a pair (P, [`), where 
P is a GEDP  and [` is now an ELP consisting of rules of the form (4). The semantics 
of this abductive framework is slightly extended from that given in Section 3.1 as fol- 
lows. For  any ELP E, let head(E) be the heads of rules in E. A set of  literals S (c  Lit) 
is a belief set of (P, F) iff S is a consistent answer set of P U E where E _C [` such that 
head(E) = S n head(F). Clearly, this notion of  belief sets reduces to the definition of  
belief sets in Section 3.1 when [` is a set of  abducible literals without preconditions. 

Example 3.6. Suppose that (P4, ['4) is an abductive program where 

P4= {p+--a, -~p+--b, q~---c}, 

F 4 = { a ~ - - -  , b~---, c~--p}.  

Then (P4, ['4) has the four belief sets: ~, {a,p}, {a,p, c, q}, and {b, ~p}. Notice that 
{b, ~p, c, q} is not a belief set since c can be assumed only when p is true. 

The embedding of assumptions with preconditions in GEDPs is a straightforward 
generalization of that of  abducibles without preconditions. Each rule (4) in [" is re- 
placed with the rule 

71 not t' +--- L I , . . .  ,Lm,not Lm+l,... ,not L,. (5) 

For  example, the abducible rules 1" 4 given in Example 3.6 are embedded in 

a I nora +--, 

b lnot b ~--, 

clnotc +--p. 

Theorem 3.7. Let (P, F) be an abductive framework, and abd(F) the set of  rules (5) 
obtained from the rules (4) in I'. A set S is a belief set of  (P, [') iff S is a consistent 
answer set of  P U abd(F). 

Proof. Similar to the proof  of  Theorem 3.2. [] 

In the next section, we show that abducible rules are also useful to represent in- 
clusive disjunctions in disjunctive programs. 

3.3. Inclusive interpretation of  disjunctions 

Another important application of  positive not is to express an alternative seman- 
tics for disjunctive logic programs other than Gelfond and Lifschitz's answer set se- 
mantics. Here, we show that the possible model semantics for NDPs by Sakama and 
Inoue [55] can be characterized by the answer set semantics for GEDPs. 

The possible model semantics was initially introduced for PDPs to enable one to 
specify both inclusive and exclusive interpretations of disjunctions [53,11] 5. Sakama 
and Inoue [56] have presented the equivalence between the possible model semantics 
for NDPs and the belief model semantics for abductive NLPs. Utilizing this result 

5 Possible model semantics is also called possible world semantics in [11]. While Chan [11] gives a 
different definition from that by [53], these notions are proved equivalent. 
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and Theorem 3.7, the embedding of the possible model semantics in GEDPs can be 
obtained. We show below a direct method to do it based on the embedding of abdu- 
cible rules in GEDPs in Section 3.2. 

For an NDP P, let disj(P) be the disjunctive rules of P, i.e., those rules having 
more than one atom in their heads. A split program of P is a ground NLP obtained 
from P by replacing each ground disjunctive rule from disj(P) of the form 

A1 I . . .  IAk +-- Ak+l, . . .  ,A,~,notAm+l,... ,notAn (k > 1) (6) 

with rules 

Ai*--Ak+~, . . . ,Am,notAm+l , . . . ,no tA,  f o r e v e r y A i E S ,  

where S is some non-empty subset of {A l , . . . ,  Ak }. Then, a possible model of P is de- 
fined as an answer set (or stable model) of a split program of P [55]. Note that every 
stable model of P is a possible model of P, but not vice versa. For example, when 

P5 = {Plq +-, q ~---P, r ~ notp},  

{q, r} is both a stable model and a possible model of Ps, but another possible model 
{p, q} is not a stable model of Ps. Clearly, for NLPs, possible models coincide with 
stable models. 

To obtain every possible model, let us consider the transformation pm which maps 
an NDP to a GEDP. Given an NDP P. pro(P) is obtained by replacing every rule 
from P of the form (6) with the k + 1 rules 

AilnotAi +--Ak+l, . . . ,Am,notAm+t, . . . ,notA,  f o r / =  1 , . . . , k ,  (7) 

+-- A k + l ,  . . • , A m ,  notA~+l, . . . , notAn, notA1, . . . , notAk. (8) 

Recall that the embedding of abducible rules (4) in GEDPs was based on rules (5). 
The embedding of possible models is achieved in a similar manner by rules (7) except 
that the empty selection from the disjuncts of each disjunction is rejected by (8) in the 
transformation pro. 

Lemma 3.8 [56]. Let P be an NDP, and disj(P) the disjunctive rules o f  P. Suppose that 
F is' the N L P  obtained from di~j(P) by replacing each disjunctive rule (6) with k rules 

A i  +--Ak+l, . . . ,Am,notA, ,+l , . . . ,notAn for  i =  1 , . . . , k ,  

and that IC is the set o f  rules o f  the form (8) obtained f rom the rules o f  the form (6) in 
disj(P). Then, a set S o f  atoms is a possible model of  P iff S is a belief model o f  the 
abductive program ( (P\  disj( P) ) 0 IC, F). 

Theorem 3.9. Let P be an NDP. A set S o f  atoms is a possible model o f  P iff S is an 
answer set o f  pm(P). 

Proof. A direct consequence of Theorem 3.7 and Lemma 3.8. [] 

Example 3.10 [11]. Suppose that the NDP P6 consists of three rules 

violent Ipsychopath +--- suspect, 

dangerous *- violent, psychopath, 

suspect +---. 
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Here, the first rule is replaced in pro(P6) with three rules 

violent lnot vilolent +- suspect, 

51 

psychopath ]not psychopath +- suspect, 

+-- suspect, not violent, not psychopath. 

Then, pm(P6) has three answer sets, {suspect, violent}, {supect,psychopath} and 
{suspect, violent, psychopath, dangerous}, which coincide with the possible models 
of P6. Note that the first and second possible models of P6 are also the answer sets 
of P6, while the third possible model is not. If we introduce the rule of closed world 
assumption [22] 

~A +--- notA for any atom A 

into P6, then -~dangerous is entailed in the answer set semantics, which is too strong. 
By contrast, -~dangerous is not entailed in both the possible model semantics for P6 
and the answer set semantics for pro(P6). 

3.4. Fixed predicates 

One of  the interesting differences between circumscription [47,37] and disjunctive 
logic programming is the existence of fixed predicates. As a typical example, we ex- 
pect that something does not fly by default, but if it is a bird then it files. We can 
write this as an axiom like 

bird D flies 

withflies minimized using circumscription. Without knowing initially whether it is a 
bird or not, we can even deduce ~flies if bird is also minimized (as in standard logic 
programming) or is allowed to vary (as in circumscription). In this case, -~bird is then 
concluded. However, this side effect about the bird may not be desired in many cases. 
This problem can be avoided if bird is fixed (i.e., not allowed to vary) in circumscrib- 
ing flies. The circumscription actually deduces 

~bird D ~flies, 

so we conclude that it does not fly unless it is a bird. 
In classical logic programming, every predicate is usually minimized in a PDP by 

GCWA [48], in which the answer sets of the program are exactly the minimal Her- 
brand models. An exception can be seen in ECWA proposed by Gelfond et al. 
[24], which is equivalent to circumscription in the existence of the unique-name 
and domain-closure assumptions. We now formalize ECWA for PDPs without vary- 
ing predicates. 

Let T be a PDP consisting of rules of  the form 

A,I . . . ]Ak+--B. , . . . ,Bm (k,m>~O), 

where Ai's and B/s  are atoms. This rule can be identified with a first-order formula 

B I A - . . A B m  DAI V. . .VA~.  

Let P be the set of minimized predicates. The set of all predicates other than those in 
P are written Q and assumed to be fixed. The following notation is due to Lifschitz 
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[37]. For  any two distinct models M and N of T, we write M ~< N if: (i) [M[ = IN[, (ii) 
MIq I = N~q I for every predicate q in Q, and (iii) M[p I C_ N ~  for every predicatep in 
P. A model M of  T is P-minimal iff N ~< M implies M ~< N for any model N of T. 

The information of fixed predicates can be encoded in GEDPs  in the same way as 
the encoding of  abducibles in abductive programs. Now let 

cir( T,P) = TU {q(x)Inotq(x) ~ I q E O}, 

where x = x l , . . .  ,x,, is a tuple of  variables for n-ary predicate q in Q. 

Theorem 3.11. Let T be a PDP, and P the minimized predicates. Then, M is a P- 
minimal Herbrand model o f T  iff M is an answer set of  cir(T, P). 

Proof. Let M be a P-minimal Herbrand model of  T such that M n Q = ~ .  Here, we 
also use Q to denote the set of  ground atoms with predicates from Q. Then, M is a 
minimal Herbrand model (i.e., (P U Q)-minimal Herbrand model) of  T U ud. Here, 
for each q E ~P, there is a ground rule of  the form 

qlnotq +--- 

from cir(T,P). Thus, TU~P = T '~t UW M =cir (T ,P)  M. Therefore, M is a minimal 
Herbrand model of  cir(T, p)M, hence an answer set of  cir(T, P). 

On the other hand, let M be an answer of  cir(T, P) such that M N Q = h u. Then, M 
is a minimal Herbrand model of  T U ~ ,  hence a P-minimal Herbrand model of  
T. [] 

In the bird example above, the axiom set can be written as 

f l ies +--- bird, 

bird lnot bird ~---, 

which has two answer sets, ~ and {bird,flies} expressing flies - bird. 
It  should be noted that the representation of fixed predicates by positive not is 

in the same form as that of  abducibles in Section 3.1. In this sense, we can see that 
fixed predicates play the same role as abducible predicates in abductive logic 
programming.  

Theorem 3.12. Let T be a PDP, and P the minimized predicates. Suppose that F 
is {q(x) ]q E Q) where x = x l , . . ,  x,, is a tuple of  variables for n-ary fixed predi- 
cate q in Q. Then, M is a P-minimal Herbrand model of  T iff M is a belief model of  
(P, F). 

Proof. Follows from Theorem 3.2 and 3.11. [] 

When some predicates are allowed to vary, Sakama and Inoue [57] show that cir- 
cumscription of  a clausal theory can be embedded in GEDPs,  in which minimized 
predicates are specified using negation as failure in bodies of  rules, while fixed and 
varying predicates are expressed by negation as failure in heads. A generalization 
of Theorem 3.12 is also stated in Theorem 4.2 of  [57]. Furthermore,  prioritized cir- 
cumscription [37] is shown to be expressed using positive not in a logic programming 
framework extended with priorities [58]. 
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3.5. All-or-nothing 

The embeddings of abducibles, possible models and fixed predicates in GEDPs in 
previous subsections are all based on the generation of  the power set of a literal set. 
Namely, given a set F of  literals, the rules 

7il n°t  7i +--- for each 7~ E F, 

can be used to produce 2 r. There are many other variations for representing know- 
ledge with positive not. For instance, for a finite set of  literal F = {71,.--, 7~}, the all- 
or-noting choice can be represented by rules 

71 I not 72 +----~ 

72 [not 73 +'--, 

',',-J t not 7, ~--, 

7n [not 71 +--, 

which generate an answer set containing all 7i's and an answer set containing no 7i. 

Example 3.13. John and Mary are a couple. So, " i f  John is at the party, so is Mary, 
and vice versa". If  we represent this situation by the rules HI: 

Mary-at-Party +- John-at-Party, 

Jonh-at-Party +-- Mary-at-Party, 

then we get the answer set ~ only. Instead, with the rules H2: 

Mary-at-Party ] notJohn-at-Party ~--, 

Jonh-at-Party l not Mary-at-Party +---, 

we have two possibilities: 0 and {John-at-Party, Mary-at-Party}. 

The above example shows the difference between a rule of the form p ~ q and a 
rule of the form p] notq ,---, which will be analyzed more deeply in Section 4. 

4. Reduction to extended disjunctive programs 

A G E D P  has non-minimal answer sets in general. Then, our question is which 
class of GEDPs  has non-minimal answer sets can be distinguished from EDPs. An- 
swering this question highlights the effect of  negation as failure in the head and clar- 
ifies the expressiveness of  GEDPs. In this section, we analyze the syntactic nature of 
GEDPs and investigate the relations between GEDPs and EDPs. 

We first consider the possibility of transforming GEDPs to semantically equiva- 
lent EDPs. Since a G E D P  may have a non-minimal answer set, the following claim 
holds. 

Observation 4.1. There is no transformation tr f rom GEDPs  to E D P s  such that an), 
G E D P  I-I and tr(FI) have exact ly  the same answer sets. 
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Our concern is a subclass of GEDPs  that have such a transformation to EDPs 
with the equivalence preserved. Consider, for example, the program II3 which con- 
sists of  one rule 

p l n o t q  ~ . 

H3 has just one answer set (~. Note that {p} is not an answer set since the reduct of  173 
by {p} is empty. The above rule can be read as "p is believed or q is not believed", 
and hence can be viewed as a conditional formula stating that "p is believed if q is 
believed". In this sense, the rule is similar to 

p+---q. 

In this case, the former rule can actually be replaced with the latter rule by shifting 
positive not  into the body. However, suppose that one rule is added to H3: 

H4 = H3 U { q [ n o t p  ~---} . 

Then, ~ is still an answer set of Ha, but now {p, q} becomes another, non-minimal 
answer set. In fact, I-I 4 has the same structure as H2 in Example 3.13. Hence, once 
a "deadlock" loop is constructed with these conditional formulas, a program may 
have two alternative answer sets, one including every element of  the loop and the 
other including nothing in the loop, In other words, unless there is such a loop, 
not in the head can be shifted into the body without changing the answer sets. To 
formally identify such cases where positive not  is not needed, the notion of acyclic 
GEDPs is introduced in the next section, and show that they reduce to EDPs. 

4.1. Acycl ic  G E D P s  

We first define acyclic GEDPs. In the following, a level mapping  for a G ED P  H is 
any mapping l : Lit -~ N of  ground literals in the language of H to natural numbers 
[2]. For  any L E Lit, we call I(L) the level of L. 

Let H be any GEDP. Suppose that any ground rule from H is in the form 

A I I . . .  I Ak l not B1 I . . .  I n° t  B , ~ CI , . . . , Cm, not Dl , . . . , not D,  , (9) 

where Ai's, B/s,  C~'s, and Dt's (k, 1, m, n ~> 0) are literals. 
(a) H is posit ive acyclic (P-acycl ic )  if there is a level mapping l for H such that 

l(Ai) > I(C~) for every i = 1 , . . . ,  k and s = 1 , . . . ,  m for any ground rule from H; oth- 
erwise it is P-cyclic. 

(b) H is negative acyclic (N-acyc l ic )  if there is a level mapping l for H such that 
l(Ai) > l(Bj)  for every i =  1 , . . . , k  and j = 1 , . . . , l ,  and l(Ai) >~ l(C~) for every 
i = 1 , . . . ,  k and s = 1 , . . . ,  m for any ground rule from H; otherwise it is N-cyclic.  

(c) H is acyelic if it is both P-acyclic and N-acyclic. Namely, H is acyclic if there is 
a level mapping l for H such that I(Ai) > l(Bj)  for every i = 1 , . . . ,  k and j = 1 , . . . ,  l 
and l(Ai) > I(C~) for every i = 1 , . . . ,  k and s = 1 , . . . ,  m for any ground rule from H. 

The notion of  N-acyclic property is introduced in order to check the possibility of 
a well-founded numbering of  two literals, LI and L2, where Lj appears in the head of  
a rule and not Lz appears in the head of the same or a different rule. The notion of  
acyclic programs has been discussed by several researches [2,14,6]. Apt and Bezem [2] 
defined acyclic NLPs, and Dung [14] extended the notion to acyclic NDPs. Their lev- 
el mappings for acyclic programs additionally require that l(A~) > l(Dt) for every ne- 
gation-as-failure formula not Dt( t  = 1 , . . . ,  n) in the body of any rule of  the form (9). 
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We ignore the level of each such literal as it is not necessary in the subsequent dis- 
cussion. Dung [14] also introduced P-acyclic programs, which coincide with our 
(P-)acyclic NDPs. Our notion of acyclic programs is also a generalization of propo- 
sitional acyclic EDPs defined by Ben-Eliyahu and Dechter [6]. 

Observation 4.2. Any EDP is N-acyclic. This is because every literal in Lit can have the 
same level in this case. Hence, an EDP is acyclic iff it is P-acyclic. 

Example 4.3. A GEDP consisting of rules 

p+--q, 

q lnotp +-- 

is P-acyclic but N-cyclic. It has two answer sets, ~ and {p, q}. 

Example 4.4. Let 1-15 be the program consisting of rules 

p(x) p(s(x) ), 

q(O) +-. 

I-Is is not (P-)acyclic since it must have an infinite decreasing chain of levels. Hence, 
H5 is P-cyclic by definition. 

Let l-I be any GEDP. The EDP shift(H) is obtained from I-I by replacing every 
rule of the form (9) with the rule 

Al I . . .  IAk ~-- B I , . . .  ,Bl, C1, . . . ,  C,, ,notD1,. . .  ,notD, (10) 

The mapping shift of GEDPs to EDPs is called the shifting transformation. 
The shifting transformation eliminates every positive not from a GEDP in the sim- 

plest way. In fact, shift does not introduce any new literal into the language. This is 
compared with another translation edp that will be presented in Section 6.1, which 
requires new atoms to simulate positive not (see Remark 6.3). Note that a GEDP 
H is acyclic if shift(H) is (P-)acyclic. Now, we show that the shifting transformation 
is sound with respect to the answer set semantics for all GEDPs and is complete for N- 
acyclic GEDPs. 

Lemma 4.5. Let FI be any GEDP. Every answer set of  shift (FI) is a minimal answer set 
ofrI .  

Proof. Let S be an answer set of shift(I-l). Then, S is an answer set of shift(I-l) s. That 
is, S is a minimal set satisfying the conditions: (i) for any ground rule of the form (10) 
from shift(H) such that {D1,... ,Dn} N S = 0 (i.e., for any rule of the form 

Ax I . . .  [Ak ~-- B , , . . . ,  B,, C1, . . . ,  Cm (1 1) 

in shift(Fl)S), if {B~,... ,B,, C1, . . . ,  Cm} C_ S then {Al, . . .  ,Ak} N S J: 0; (ii) if S con- 
tains a pair of complementary literals then S = Lit. In these two conditions, (i) im- 
plies the fact that: for any ground rule of the form (9) from H such that 
{BI, . . . ,BI} C_ S and {DI , . . . ,D ,}  n S  = 0 (i.e., for any rule of the form 

A, ] . . .  IAk +-- C , , . . . ,Cm (12) 
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in l.is), if {C1, . . . ,  Cm} C_ S then {Al, . . .  ,Ak} n S # (3. That is, S is a minimal set sat- 
isfying every ground rule from H s. Therefore, S is an answer set of K s, and hence an 
answer set of 11. 

To prove the minimality of  S in the answer sets of H, suppose to the contrary that 
there is an answer set T of H such that T C S. Then, there is a ground rule R of the 
form (12) in 11 s \ FI r such that: (i) { G , . . . ,  Cm} c_ S, (ii) L E {A~,... ,At} for some 
ground literal L E S \  T, and (iii) {B~,. . . ,Bt} C_ S but {B1, . . . ,Bt )  g T. Since 
{D1,.. .  ,D~} n S = (3 and T c S imply {D~, . . .D,} n T = (3, there is the correspond- 
ing ground rule R' of the form (11) in shift(I-l) r. By (i), (ii) and (iii), both S and T 
satisfy R'. This implies that both S and T satisfy every rule in shift(K) r, and hence 
satisfy every rule in shift(l-I) s (by shift(I-I) s c_ shift(I-I)r). However, since S is an an- 
swer set of shift(H) s, S is a minimal set satisfying the rules of  shift(H) s. This contra- 
dicts the supposition that T(C S) satisfies the rules of shift(K) s. Therefore, no such T 
exists. [] 

Theorem 4.6. let H be an N-acyclic GEDP, andS C_ Lit. S is an answer set o f  Fl iffS is 
an answer set o f  shift(H). 

Proof. The if-part directly follows from Lemma 4.5. To prove the only-if part, 
suppose to the contrary that S is an answer set of K but is not an answer set of 
shift(K). Then, S is not a answer set of  shift(K) s. For each ground rule R of the form 
(11) in shift(K) s such that {B1,.. .  ,B1} C_ S, there is the corresponding rule R' of the 
form (12) in H s. Since S is an answer set of 11 s, S satisfies R t, and thus also satisfies R. 
Thus, S satisfied every ground rule in shift(H) s. Then, since S is not an answer set of 
shift(H) s, there is a set T of  literals such that T C S and T satisfies every ground rule 
in shift(l-I) s. Now, two cases are considered, and both are shown to derive 
contradiction. 

(a) S is consistent. In this case, there must be a ground literal LI c S \ T and a 
ground rule of  the form (11) in shift(H) s such that: (i) { A 1 , . . . , A k } N S =  
{L1) , {Ct , . . . ,Cm}C_S,  and {B1 , . . .B t }C_S  (by Lemma 5.2 in Section 5), and 
(ii) {C t , . . . ,  Cm} C_ T but {B1,.. .  ,BI} ~ T (i.e., the source of non-minimality lies 
in some positive not by Observation 4.1). Now, let L2 be a literal such that 
L2 E {B1,.. .  ,B1) \ T. Since K is N-acyclic, l~L~) > /(L2). Then, for L2 E S \ T ,  there 
is a ground rule of  the form (11) in shift(H) ~ such that (i) {Al, . . .  ,Ak} n S = {L2}, 
{C~, . . . ,Cm}C_S,  and {B~, . . . ,B~}C_S (by Lemma 5.2 in Section 5), and (ii) 
{C1, . . . ,  Cm,Bl , . . .  ,Bl) ~ T (otherwise L2 must be in T). Let L3 be a literal such that 
L3 E {C1, . . . ,  Cm,B1,.. .  ,BI} \T .  Notice that/(L2) /> /(L3). Repeating this arguments 
generates a sequence of  literal levels 

/(Zl) > /(Z2) />/(Z3) ~/(Z4)  /> . . .  

Then, there must be some k (2 ~< k < oc) such that 

l(Lk_l) > l(Lk) and l(Lk) = l(L~+l) = l(L~+2) . . . .  , 

because otherwise, for any k there is l (> k) such that l(Lk) > l(Lt), so that there is an 
infinite decreasing chain l(Lk) > l(Lt) > . . . ,  which contradicts the well-foundedness 
of the level mapping. Let 

S ' = S  \ {Lk,Lk+l,Lk+2,...}. 
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Now, for each Li E S \  T( i  >, k),Li E {Cl , . . .  ,Cm} and Li ~ {B1,.. .  ,BI} hold for 
some rule R of  the form (11) in shift(I-l) s. On the other hand, for each R, there is 
the corresponding rule R' of the form (12) in 1-I s. Obviously, S ' ( c  S) satisfies every 
R' and other rules in rI s. This contradicts the fact that S is an answer set of  1-I s. 

(b) S = Lit. In this case, consider the positive form FI + of H, which is obtained 
from H by replacing every negative literal -~L with a new atom L t. Since Lit is an an- 
swer set of FI Lit, there is an answer set S' C_ Lit + of  FI Li~÷ such that S' contains at least 
one pair of contradictory literals, L1 and L' 1. Moreover, S t satisfies every rule in 
shift(H+) L~t+. On the other hand, T C S = Lit implies that T contains no such contra- 
dictory pair of  literals. Thus, there is a set T' C S' such that T' satisfies every rule in 
shift(H+) L~'+ and that T' does not contain both of  Li and L' 1 . Let us assume that 
L~ E S' \ T'. Then, starting from L1, we can construct a decreasing chains of levels 
of literals as in the proof  of  the case (a), again contradicting the fact that S' is an an- 
swer set o f H  +L~'+. [] 

Corollary 4.7. Every answer set o f a n  N-acyclic GEDP is minimal. 

Proof. Follows from Lemma 4.4 and Theorem 4.6. [] 

Example 4.8. consider the N-acyclic GEDP.  

plnotr  +-- q, 

q + - - r ,  

p 4 - - -  . 

This program has the unique answer set {p, q, r}, which is also the answer set of the 
program obtained by replacing the first rule with the shifted rule 

p+--q,r .  

Recall that the class of  N-acyclic GEDPs properly includes the class of EDPs (Ob- 
servation 4.2). Now, Theorem 4.6 shows that the shifting transformation preserves 
the answer set semantics for N-acyclic GEDPs. This fact implies that an (N)-acyclic 
G EDP  can always be reduced to an EDP without changing the answer sets. In other 
words, N-acyclic GEDPs collapse to EDPs. Then, the next question is when positive 
not is really effective. Interestingly, not all of  positive not are needed even for N-acyc- 
lic programs. In fact, the shifting transformation in Theorem 4.6 can also be applied 
to the N-acyclic sub-program of  any N-cyclic GEDP. 

Corollary 4.9. Let II be any GEDP, and S c_ Lit. Suppose that FINA is a subset of  FI 
such that I-[NA U I-I t is an N-acyclic GEDP for any N- acyclic set l-I t C_ FI. Then, S is an 
answer set o f  Fl iff S is an answer set o f  (I-I\I-[NA) U shift(IJNA). 

Proof. The proof  of Theorem 4.6 does not necessarily require that every rule in an N- 
acyclic G E D P  be transformed by the shifting. When FI is N-cyclic, II\IINA is N- 
cyclic. Transforming only an N-acyclic part IINA by the shifting does not affect the 
answer sets of  rI. [] 
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Corollary 4.9 indicates that each set of  N-acyclic rules that, if any other N-acyclic 
rules are added to the set, would never become N-cyclic can be reduced to rules with- 
out positive not by the shifting transformation. In other words, positive not is 
meaningful and cannot be precisely represented in any other way only if rules are 
N-cyclic. 

Note that transformations of abducibles in abductive logic programming, disjunc- 
tions under the possible model semantics, and fixed predicates in circumscription 
presented in Section 3 all result in N-cyclic rules in GEDPs. We now see that N-acyc- 
lic GEDPs  (or EDPs) cannot precisely express these semantics as they involve non- 
minimal answer sets. 

The N-acyclic condition is only a sufficient condition for any equivalent transfor- 
mation. An obvious necessary condition is that every answer set of a G ED P  is min- 
imal. However, this is not a sufficient condition. For  example, consider the G E D P  
II6 consisting of  rules 

p[ notp ~---, 

q ~ P ,  

+--- not q. 

96 has the unique (and hence minimal) answer set {p, q}. But 96 is an N-cyclic pro- 
gram, and shift(96) has no answer set. Thus, the converse of Lemma 4.5 does not 
hold in general. Namely, for an N-cyclic G E D P  17, a minimal answer set of  9 is 
not necessarily an answer set of s h i f t ( 9 ) .  

4.2. Integri ty  constraints 

Using Corollary 4.9, we see that a special kind of  rules can always be transformed 
by the shifting without regarding any other rule. A rule having no literals but posi- 
tive not in its head is called an integrity constraint. This is because such a rule is never 
used to infer a literal directly. For  instance. 

notp +--- q 

is an integrity constraint meaning that if q is believed then p cannot be believed. This 
rule has exactly the same effect as the integrity constraint 

+-- p, q, 

which denotes that both p and q cannot be believed at the same time. In general, ev- 
ery integrity constraint can be represented as a rule with an empty head using the 
shifting transformation. 

Corollary 4.10. Let  9 be any GEDP,  and S c Lit. Le t  I C  be any set o f  integrity 
constraints in 9 .  Then, S is an answer set o f  I-I i f f  S is an answer set o] 
( 9 \ I C )  u shi f t ( IC) .  

Proof. Since every rule in IC has no literal Ai in the form (9), it does not construct a 
relation of the form l(Ai) ~ l(Bj) in the definition of N-acyclic GEDPs. Therefore, 
IC is an N-acyclic GEDP satisfying the condition for 9NA in Corollary 4.9 [] 
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It is often claimed that, in logic programs with both negation as failure and clas- 
sical negation, the coherence principle [1] is important: for any atom A and any ca- 
nonical model M, if M ~ -~A then M ~ notA, and if M ~ A then M ~ not ~A. This 
property can be naturally written using positive not as 

not A *-- -~A, (13) 

not ~A *--- A. (14) 

Notice that these schemas for the coherence principle are converse to the rules for the 
closed worm assumption: 

~A +-- notA (or A ~-- no t~A) .  

In [13], rules (13) and (14) are used to compute the extended well- founded semantics 
for ELPs. The approach in [13] considers a paraconsistent semantics to capture the 
meaning of rules with positive not but without disjunctions. On the other hand, in 
the answer set semantics, the addition of these schemas for every atom A simply 
makes every answer set (if exists) consistent. Hence, as in ELPs ([1], Theorem 3.1), 
the coherency and the consistency coincide in GEDPs. 

Example 4.11. The GEDP consisting of the two rules 

p[ notp ~--, 

-~p Inot ~p +--- 

has four answer sets: 0, {p}, {-~p} and Lit. If we introduce 

notp *--- ~p, 

then Lit  is rejected. 

Note the that each rule representing the coherence principle is not used to derive 
any literal. Thus, under the answer set semantics, the rules of the coherence princi- 
ples are integrity constraints. By Corollary 4.10, schemas (13) and (14) can also be 
represented as 

A, ~A for any atomA. 

Hence, the coherence principle can be expressed without positive not under the an- 
swer set semantics. 

5. Supported sets and non-minimal answer sets 

One of the most important criteria that any model theoretic semantics should sat- 
isfy is the"supportedness". Apt et al. [3] defined supported models for NLPs, and Mar- 
ek and Subrahmanian [45] have shown that every stable model is a supported model. 
Recently, the notion of supported models has been extended for disjunctive programs 
by Baral and Gelfond [4] and by Brass and Dix [9]. In this section, we first define the 
corresponding notion for GEDPs, which is then used to analyze cyclic GEDPs. 

Let H be any GEDP. A set of ground literals S c_ Lit is a supported set of H if: (i) S 
satisfies every ground rule from H, and (ii) for any literal L E S there exists a ground 
rule 

L t I . . . I L k l n o t L k + l l . . . l n o t L t ~ - - - L t + l , . . . , L m ,  n o t L ~ + l , . . . , n o t L ,  
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from H such that 
(a) {L,+,,... ,Lm} C_ S, 
(b) {Lm+l,... ,L,} NS = 0, 
(c) {L, , . . . ,Lk} n S  = {L}, and 
(d) {Lk+l,... ,Ll} C S. 
This notion of supported sets reduces to that of [4] for EDPs, and to the notion of 

supported models of [9] for NDPs, and that of [3,45] for NLPs. In fact, conditions 
(a), (b), and (c) are exactly the same as the definition by [4]. The last condition 
(d), together with (c), implies that all the disjuncts other than L in the head of the 
ground rule are not satisfied by S. 

Example 5.1, ~) is the unique supported set of FI3 = {Pt notq *-}. Both 0 and {p, q} 
are supported sets of H7 = { p l n o t q  +-, q lnotp +- q}, but the latter is not an answer 
set of H7. 

In the above example, all answer sets are supported sets. We now formally verify 
this relationship between supported sets and answer sets. 

Lemma 5.2 ([4], Proposition 4.1). Every consistent answer set o f  an E D P  is' a supported 
set. 

Theorem 5.3. Every cons&tent answer set o f  a G E D P  & a supported set. 

Proof. Let 17I be a GEDP, and S its consistent answer set. By Proposition 2.1, S 
satisfies every ground rule from H. By definition, S is a consistent answer set of H s. 
By Lemma 5.2, S is a supported set of 1-I s. Namely, for any L C S, there is a ground 
rule R of the form (2) from H s such that {Lt+l,. . . ,Lm} C_ S and {L1,.. . ,Lk} 
NS = {L}. By the construction of I-I s, for the rule R, there is a corresponding ground 
rule of the form (1) from H such that { L m + l , . . .  ,Ln} fq S = ~ and {Lk+l,... ,L~} C S. 
This completes the proof of the theorem. [] 

Theorem 5.3 is a generalization of Lemma 5.2, and hence that of Theorem 2 in [45]. 
Note that the converse of Theorem 5.3 does not hold in general (see Example 5.1). 
However, we will show in Lemma 5.6 that the converse holds for P-acyclic GEDPs. 

5.1. Supported sets in shifting 

The supported set semantics is preserved through the shifting transformation for 
any GEDP. Namely, any G E D P  collapses to an E D P  under the supported set semantics. 

Theorem 5.4. Let  H be any GEDP, a n d S  c Lit. S & a cons&tent supported set o f H  iff 
S is a consistent supported set o f  shift(H). 

Proof. For a consistent set S of literals, S is a supported set of H 
iff S satisfies every ground rule from H and for any L E S there is a ground rule of 

the form (9) such that {C1,. . . ,C,,} C_ S, {D1,.. . ,Dn} n S  = (3, {&, . . . ,A~} n S  = 
{L}, and {B1 . . . . .  Bl} C S 
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iff S satisfies every ground rule from shift(H) and for any L E S there is a ground 
rule of the form (10) such that {B~,. . . ,Bt} C_ S. {C1,.. . ,Cm} C_ S, {D~,. . . ,  D,} AS 
= 0, and {Al, . . . ,Ak} AS = {L} 

iff S is a supported set of  shift(H). [] 

Next, we consider how the shifting transformation affects the relationship between 
supported sets and answer sets of  GEDPs. We have seen in Section 4.1. that the an- 
swer set semantics is preserved by the shifting for N-acyclic GEDPs. For  P-acyclic 
GEDPs, we will show that answer sets of  programs are precisely supported sets of 
shifted programs. 

Lemma 5.5 ([6], Theorem 2.3). Let P be a (P-)acyclic EDP, and S C Lit. S is a 
consistent answer set o f  P iff S is a consistent supported set of  P. 

Lemma 5.6. Every cons&tent supported set of  a P-acyclic GEDP H & a cons&tent 
answer set of  H. 

Proof. Let S be a consistent supported set of H. Then, (i) S satisfies every ground rule 
from [I and (ii) for any L E S there is a ground rule R of the form (9) such that 
{C i , . . . ,Cm}  C S ,  { D I , . . . , D , } N S = ~ ) ,  { A 1 , . . . , A k } N S =  {L}, and { B I , . . . , B I }  
C_ S. The fact (i) implies that S also satisfies every rule in H s. The fact (ii) implies that 
there is the corresponding rule R r of the form (12) in I-I s for each L E S such that 
{CI , . . . ,Cm} C_ S and {Al, . . . ,Ak} AS = {L}. Thus, S is a supported set of [Is. On 
the other hand, because H is P-acyclic, l-I s is (P-)acyclic as well. By Lemma 5.5, S is 
an answer set of I-I s, and hence the result follows. [] 

Theorem 5.7. Let H be a P-acyclic GEDP, and S C Lit. S is a cons&tent answer set of  
H iff S is a consistent supported set of  shift(H). 

Proof. By Theorem 5.4, S is a consistent supported set of shift(H) iffS is a consistent 
supported set of  H. On the other hand, by Theorem 5.3 and Lemma 5.6, S is a consistent 
answer set of H iffS is a consistent supported set of H. Hence, the theorem holds. [] 

Theorem 5.7 is a generalization of  Lemma 5.5. The consistency of S in this theo- 
rem cannot be omitted. For  example, the GEDP H8 consisting of rules: 

p]q ~--, 

~p +--, 

~q +-- 

is acyclic and has the answer set Lit. However, Lit is not a supported set of 
shift(I-Is) = [Is. 

Example 5.8. For  the G E D P  l-I2 introduced in Example 3.13, shift(H2) is exactly the 
same as the program Hi: 

Mary-at-Party +- John-at-Party, 

John-at-Party +- Mary-at-Party, 
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whose supported sets are 0 and {John-at-Party, Mary-at-Party}, which coincide with 
the answer sets of  1-I2. 

The next corollary summarizes the properties of acyclic GEDPs. Recall that a 
G EDP  is acyclic iff it is both P-acyclic and N-acyclic. 

Corollary 5.9. Let  H be an acyclic GEDP, and S C Lit. The following four  statements 
are equivalent. 

(a) S is a consistent answer set o f  H. 
(b) S is a consistent supported set o f  H. 
(c) S is' a consistent answer set o f  shift(FI). 
(d) S is a consistent supported set o f  shif t(H).  

Proof. Follows from Theorems 4.6, 5.4, and 5.7. [] 

5.2. Characterizing supported sets by answer sets 

As far as the authors know, there does not seem to exist a proof  procedure for com- 
puting the supported model semantics for normal or extended (disjunctive) programs, 
although many researchers point out the importance of supported models. The diffi- 
culty seems to lie in the fact that there are non-minimal supported models of programs. 
In this section, we characterize the supported sets for any G ED P  in terms of its answer 
sets. This implies that it provides a method to compute supported models proposed in 
the literature [3,45,4,9]. To this end, we utilize the inverse shifting defined as follows. 

Let FI be any GEDP. The GEDP invshift(H) is obtained from H by replacing ev- 
ery rule of the form (9) 

A, ] . . .  ]Ak t notB1 I . . .  t notB, ~-- C , , . .  . , Cm, notD1, . . . , notD,  

with the rule 

A l ] . . . ] A ~ ] n O t B l l . . . ] n o t B t ] n o t G ] . . . ] n o t C m + - n o t D i , . . . , n o t D , .  

Observation 5.10. For any G E D P  l-I, invshift(H) is P-acyclic. 

Theorem 5.11. Let  1-I be any GEDP, a n d S  c Lit. S is a consistent supported set o f H  iff 
S is' a consistent answer set o f  invshift(H). 

Proofl S is a consistent answer set of  &vshift(Fl) 
iff S is a consistent supported set ofshift(invshift(1-I)) (by Theorem 5.7 and Obser- 

vation 5.10) 
iff S is a consistent supported set of shi f t (H) (by shi f t ( invshi f t (H))  = sh i f t (K))  
iff S is a consistent supported set of H (by Theorem 5.4). [] 

Two important results follow from Theorem 5.11. First, the supported set seman- 
tics for any G E D P  can be completely characterized in terms of  the answer set seman- 
tics. Secondly, computation of  supported sets of  a G ED P  FI is realized by that of 
answer sets of  the G E D P  invshift(H), which is then reduced to that of answer sets 
of the EDP obtained by the edp translation that will be shown in Section 6.1. Then, 
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to get suppor ted  sets, we can use any p r o o f  procedure  for  comput ing  answer  sets o f  
EDPs  (see Section 6.3). 

6. Complexity and computation 

In this section, we consider  the computa t iona l  complexi ty  o f  G E D P s  and present  
an a lgor i thm to compu te  the answer  sets o f  a finite G E D P .  These results indicate 
tha t  posit ive not can be el iminated f rom p rog rams  so that  we can use any p r o o f  pro-  
cedure for  comput ing  E D P s  or PDPs.  

6.1. Simulation o f  positive not by E D P S  

We first show a po lynomia l - t ime  t ranslat ion f rom a G E D P  into an EDP.  Let  H be 
any G E D P .  The  extended disjunctive p r o g r a m  edp(H) is obta ined f rom FI by replac- 
ing each rule with posit ive not in H o f  the fo rm 

Lt ] . . .  ILk ]notLk+l l . . .  [notLl +--- LI+1,.. .  ,Lm, no tLm- i , . . .  ,notL,, (15) 

(n i> m ~> l > k ~> 0) with the rules wi thout  positive not 

)o, I . . .  ] Ak ])ok+l 1-- .  12, ~ & + l , . . .  ,Zm, notZm+l,.., notL,, (16) 

Li+---2, f o r / =  1 , . . . , k ,  (17) 

2i+--Li, Lk+i , . . . ,Lz  f o r i =  1 , . . . , k ,  (18) 

+--)~i, notLj f o r i = l , . . . ; k  and j = k + l , . . . , l ,  (19) 

+--2j, L 9 f o r j = k + l , . . . , l .  (20) 

Here,  2i is a new a t o m  not  appear ing  elsewhere in H and is uniquely associated with 
each disjunct o f  a g round  rule f rom FI. 6 Every rule wi thout  positive not in I1 remains 
in edp(l-l) as it is. In the following, we denote  by Litn the set o f  all g round  literals in 
the language o f  H. Thus,  Litn includes no new a t o m  2~. 

Theorem 6.1. Let  H be a GEDP, and edp(I1) its translated EDP.  A set S & an answer 
set o f  11 iff a set E is answer set o f  edp(Fl) such that S = E A Litn. 

Proof.  Let  S be an answer  set o f  l-I. First, consider the reduct H s. I f  a rule 

L, I . . .  ILk ~ L,+, . . . .  ,Lm (21) 

is in H s, then for  the cor responding  rule (15) in l-I, it holds that  {L~+l , . . .  ,Ll} C S 
and {Lm+t, . . .  ,L,} n S = 0. In this case, the reduct edp(H) s includes the rule 

")vl t ' ' "  I'~k I/~k+ I I ' ' "  1/~/ +'--LI+I,. "',Lm (22) 

6 If a rule contains n distinct free variables x = xi, . . . ,  xn, then a new atom ).~(x) is associated with each 
L~, where 2~ in this case is an n-ary predicate symbol appearing nowhere in P. 
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and the rules (17), (18) and (20), but does not contain the rule (19). Since S satisfies 
each rule in I-IS), for each rule R of the form (21) such that {Lt+l,. . .  ,Lm} C_ S, there 
exists Li E S for some 1 ~< i ~< k. Let 

Z l =  U{)~ilLiES,  l<~i<<.k}. 
REII s 

Next, suppose that there is a rule (15) in H such that {Lm+t,...,Ln} NS~-0 but 
3Lj(k + 1 ~j<<. l) such that Ly ~ S. In this case, there is no corresponding rule (21) 
in H s, but the rule (22) is present in edp(H) s. edp(H s) also contains the rules (17), 
(18) and (20) and the rules +-- )~i for i = 1 , . . .  ,k (from the rule (19)). Then, for each 
such rule R' (22) of edp(H) s, let 

E 2 =  U {2sILsf[S'K+I<'j<~I}" 
R'Eedp(H) s 

Now let 52 = S U ~;3, where Z3 is a minimal subset of  E1 U 522 such that each 2i or 2j 
is chosen in a way that Y~ satisfies every rule of the form (22), (17), (18) and (20) and 
the reduct of (19) by S. Obviously, it holds that S -- 52 n litn. Because new literals 2~'s 
never appear within not, the program edp(II) s is exactly the same as the program 
edp(I-I) z. Then, ~ satisfies all the rules of edp(I-I) z, and if S = Litn then Litn C_ Y.. 

To see that Z is a minimal set satisfying the rules of edp(l-I) z, notice that S is a 
minimal set satisfying the rules of  I-I s. From the construction of E3, it is easy to 
see that E is a minimal set containing S and satisfying the rules of edp(II) z. We thus 
only need to verify that there is no E' such that: (i) E' c E, (ii) E' satisfies the rules of 
edp(H) z, and (iii) S' c S for S' = Z' n Litn. Suppose to the contrary that such a E' 
exists. Then, the condition (iii) is satisfied only if there exist rules (17) and (18) such 
that Li E S \ S' and 2i E E \ 52' for some 1 ~< i ~< k. For  this 2s, there must be the rule 
(22) such that {LI+I,... ,Lm} c_ S'. By the condition (ii), there is a literal 2j E Y/for  
some k + 1 ~< j <~ l. This 2y, however, is not included in Z2 by (20), contradicting 
the condition (i). Therefore, E is an answer set of edp(1-I) z, and hence an answer 
set of edp(II). 

Conversely, let 52 be an answer set of  edp(H), and S = 52 n Litn. Since E is an an- 
swer set ofedp(H) z, for each rule (22) in edp(H) z, if {L/+l,. . .  ,Lm} C_ S, then 2, E E 
for some 1 ~< i <~ I. There are two cases: (a) If 2~ E Z for some 1 ~< i ~< k, then Li E S by 
(17) and hence {Lk+l,. . . ,  Ll} C_ S by (19). Then, the corresponding rule (21) exists in 
II s and S satisfies it. (b) If 2z ~ E but 2j E 52 for some 1 ~< i ~< k and k + 1 ~< j ~< I, then 
Lj ~ S by (20). Then, there is no corresponding rule (21) in H s. In either case, S sat- 
isfies all rules of H s. 

Suppose that there is a set S' of  literals from Litn such that (i) S' c S and (ii) S' 
satisfies the rules of 1-I s. Then, two conditions (i) and (ii) are satisfied only if there 
is a rule (21) such that {Ll+l,...,Lm} C S' and for some two literals Lgl and 
Lsz(1 _< il, i2<~k, il ¢ i2)L~l E S' but Ls2 E S \S ' .  Without loss of generality, we 
can assume that just one such rule exists in H s. Since S and S' contain L~.+I,... ,Lt 
in the corresponding rule (15) in H, 2il, ,~i2 E 52 by (18). Let E' = E \ {L~2, }~i2}. Then, 
Z' satisfies all the rules (22), (17), (18) and (20) existing in edp(H) z. This contradicts 
the fact that E is an answer set of edp(H) z. Hence, S is an answer set of  H s and there- 
fore an answer set of  H. [] 

We thus see that any G E D P  can be translated to an EDP by eliminating positive 
not. The fact that non-minimal answer sets of GEDPs can be expressed by answer 
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sets of  EDPs that must be minimal is a somewhat surprising and unexpected result. 
The reason why this simulation is possible is that the newly introduced atoms 2i's 
have the effect to distinguish each positive not, and each answer set of  edp(H) be- 
comes minimal by the existence of  these new atoms. 

Example 6.2. Suppose that the gedp I-[9 is given as 

p lnot q ~-, 

q l notp ~- . 

The answer sets of 1-I9 are {{p, q}, 0}. Correspondingly, its translated program 

edp(H9) = {21 ]22 ~ ,  23 ]/~4 +--, 

p ~-- 21, 21 +--p,q, ,-- 21, notq, ~-- 22, q, 

q ~-- 23, 23 ~-- q,p, +-- 23, notp, ~-- 24,p} 

has the answer sets {{21, 23, p, q}, {22, 24}}. 

Remark 6.3. The edp translation maps GEDPs to EDPs so that there is a one-to-one 
correspondence between both answer sets. Although the edp translation can be 
applied to any GEDP,  the resultant EDP cannot have exactly the same answer sets 
as those of the original GEDP (Observation 4.1). This means that we need an extra 
mechanism to recover an original answer set, that is, removing every new atom 2i 
from an answer set of the created EDP. On the other hand, we have provided the 
shifting transformation of GEDPs to EDPs is Section 4.1. Although the shifting 
transformation is not complete for every GEDP,  it preserves the equivalence of 
programs for N-acyclic GEDPs and does not need the additional task to remove 2i's. 

6.2. Complexity results 

We are now ready to give the complexity results for GEDPs. Since the class of  
GEDPs includes the class of  EDPs and we have shown a polynomial-time translation 
from a G E D P  into an EDP, the next result follows immediately from the complexity 
results of  EDPs given by Eiter and Gott lob [115]. 

THeorem 6.4. Let H be a finite propositional GEDP, and L a literal. 
(a) Deciding the existence o f  an answer set o f  lI  is Y~-complete. 
(b) Deciding whether L is true in some answer set o f  II is 5?~-complete. 
(c) Deciding whether L is true in all answer sets of  II is Fl~-complete. 

Theorem 6.4. demonstrates that allowing positive not does not increase the com- 
putational complexity of  the answer set semantics. Eiter and Gott lob also show that 
the complexity results for EDPs apply to EDPs without Classical negation -, as well. 
Therefore. GEDPs  are in the same complexity class as NDPs. Furthermore, Theo- 
rem 6.4 (b) also applies to the minimal model semantics for PDPs. This observation 
leads us to a further translation in Section 6.3. 

Ben-Eliyahu and Dechter [6] have shown the (co-) NP-completeness of  a restricted 
class of  EDPs. According to their notations, a dependency graph of  a ground EDP P 
is a directed graph in which its nodes are literals in P and there is an edge from L to L' 
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iff there is a rule in P such that L appears in the body and L' appears in the head of 
the rule. An EDP is head-cycle free if its dependency graph contains no directed cycle 
that goes through two different literals in the head of the same disjunctive rule. Then, 
three problems in Theorem 6.4 for propositional head-cycle free EDPs are reducible 
to the problem of  satisfiability or provability of propositional formulas in polynomi- 
al-time [6]. Here, we show such a reduction of complexity results is also possible for a 
restricted class of GEDPs, by generalizing their results. 

The dependency graph of  a GEDP is defined in the same way as that of an EDP 
except that an additional edge is considered for positive not. Given G ED P  1-I, its de- 
pendency graph Gn is a directed graph in which its nodes are ground literals from H 
and there is an edge from L to L' iff there is a ground rule R from H such that either: 

(i) L appears in the body and L' appears in the head of  R; or 
(ii) both not L and L' appears in the head of  R. 
Thus, while each not L in bodies is ignored, each not L in heads constructs an edge 

in Gn (recall that we also ignored the level of  every not L in bodies in the definition of  
acyclic GEDPs in Section 4.1). A GEDP H is head-cycle free if Gn contains no di- 
rected cycle that goes through two literals Lil, Li2(1 ~< il, i2<<.k, Lit ~ Li2) in any 
ground rule of the form (15) from H. The class of head-cycle free GEDPs obviously 
includes the class of  head-cycle free EDPs and the class of  ELPs. Also, the class of  
head-cycle free GEDPs includes the class of  GEDPs each of whose rule permits in 
the head at most one L' but any number of not L's: 

L1 [notL2 [ . . .  [notLt +-- Lt+j , . . . ,  Lm, notLm+l,..., notLn. 

The class of  head-cycle free GEDPs further includes the class of acyclic GEDPs: 

Observation 6.5. Every acyclic GEDP is head-cycle-free. Moreover, the dependency 
graph of  an acyclic GEDP has no directed cycle. 

The converse of the above observation does not necessarily hold when the depen- 
dency graph has an infinite decreasing chain. For  example, the program H5 in Exam- 
ple 4.4 (Section 4.1) has no directed cycle, but is not acyclic. Now, we show that the 
head-cycle free property is preserved by the edp translation. 

Lemma 6.6. Let H be a GEDP. H is head-cycle free iff edp(I-I) is head-cycle free. 

Proof. An edge from Lj to Li f o r j  = k + 1 , . . . ,  l and i = 1, . . .  ,k in the same rule (15) 
is in Gn iff a path from Lj to Li through rules (18) and (17) is in Geap(n). Then, each 
directed path from L to U in Gn is contained in Gedp(ri), and vice versa. Hence, any 
two literals Lil ,i2 (l ~ il, i2 ~< k) in the same rule (15) are contained in a cycle in Gn iff 
the literals 2il, 2i2 in the corresponding rule (16) are contained in a cycle in 
Ge@(rl). [] 

The next result follows from Theorem 6.1, Lemma 6.6 and complexity results of  
head-cycle free EDPs by [6]. It says that the computational complexity for the an- 
swer set semantics of  head-cycle free GEDPs lies at the first level of the polynomial 
hierarchy, which is exactly the same level as the of  head-cycle free EDPs or NLPs. 

Theorem 6.7. Let H be a finite propositional head-cycle free GEDP, and L a literal. 
(a) Deciding the existence of  an answer set of  H is NP-complete. 
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(b) Deciding whether L is true in some answer set o f  H is NP-complete. 
(c) Deciding whether L is true in all answer sets of  H is co-NP-complete. 
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Note  that the class of  head-cycle free GEDPs  includes, as a special case, the class 
of  programs P U abd(F) obtained f rom abductive programs (P, F) where both P and 
F are ELPs (see Section 3.2). This fact and results in Section 3 imply that computa-  
tional problems for abductive NLPs  [31], knowledge systems [26], and the possible 
model semantics for NDPs [55] have all the same complexity results as in Theorem 
6.7. These results are also stated in [56] based on translations of  such programs into 
NLPs. 

6.3. Computing answer sets of  arbitrary GEDP 

To compute the answer set semantics for any G E D P  H, we can apply any proof  
procedure for EDPs to the EDP edp(H) obtained in Section 6.1. To this end, a bot- 
tom-up proof  procedure for EDPs has been proposed by Inoue et al. [27] to compute 
answer sets of  EDPs using model generation techniques. Here, we present an essence 
of  the method of  [27]. First, each EDP P is converted into its positive form P+, which 
is obtained f rom P by replacing each negative literal -~L with a new atom -L. Note  
that P+ is an NDP.  We also denote the positive form of a set S of  literals as S +. Next, 
P+ is translated into the set fo (P  +) of  first-order formulas by completely eliminating 
not as follows. For  each rule in P+ of  the form 

LI] . . .  ILk +- Lk+l, . . .  ,Lm, notL, ,+l, . . . ,  notL,, (23) 

where each Li is an atom, f o (P  +) contains the formula 

Lk+l A . . .  AL,, D 111 V . . .  V Hk V KLm+I V . . .  V KL,, (24) 

where Hi - LiA - KLm+I A . . .  A - KL, (i = 1 , . . . ,  k) and fo (P  +) contains the formulas 

-~(L A - KL) for eachL 6 Lit+, (25) 

~(L A - L) for each pairL, - L  E Lithe. (26) 

Here, KL is a new a tom which denotes that L should be true, and - KL is the pos- 
itive form of  -~KL. Now, let I be an Herbrand interpretation offo(P+),  i.e., a set of  
ground atoms in the language offo(P+). The, we say that I satisfies the stability con- 
dition if it holds that 

KL c I impliesL E I for every a tom L c Lit +. (27) 

Lemma 6.8. [27]. Let P be an EDP, andS C Litv. S is a consistent answer set o f  P iff M 
is a minimal Herbrand model o f  fo (P  +) such that S + = M N Lit + and that M satisfies 
the stability condition. 

The next theorem completely characterizes the consistent answer sets of  a G E D P  
in terms of the above first-order translation. 7 

7 Although Theorem 6.9 does not cover the contradictory answer set of II, the methods used in [27] can 
be applied to identify the answer set Litn. 
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Theorem 6.9. Let  I-I be any GEDP, a n d S  c Litn. S is a consistent answer set o f H  i f  M 
is a minimal Herbrand model o f  fo(edp(l-I) +) such that S + = M n Lit + and that M 
satisfies the stability condition. 

ProoL The result follows from Theorem 6.1 and Lemma 6.8. [] 

It is well known that for PDPs minimal Herbrand models coincide with answer 
sets. Then, the formula (24) can be identified with the rules 

1411 . . .  IHklKLm+~ r . . .  IKL,, +--Lk , , . . . ,  L,,,, 

H i + - L i , - K L m + I , . . . , - K L , ,  ( i =  1 , . . . , k ) ,  

Li~--Hi ( i =  1 , . . . , k ) ,  

-KLj+- - -Hi  ( i = l , . . . , k ; j = m + l , . . . , n )  

and schemas (25) and (26) can be written as 

+-- - KL, L for eachL E Lit[~, 

+- -L ,  L for each pa i rL , -L  C Lit +. 

Hence, the set f o ( P  +) can also be viewed as a PDP. We thus now have a polynomial- 
time translation from GEDPs into PDPs. Hence, to obtain answer sets of GEDPs, 
any procedure to compute minimal Herbrand models of  PDPs can be applied as 
well. There are several techniques for this computation such as [5,27,18]. In partic- 
ular, our translation is suitable for applying a bottom-up model generation proce- 
dure to compute answer sets of  function-free and range-restricted GEDPs. Since 
we have characterized abductive programs as well as other commonsense reasoning 
in GEDPs in Section 3, they can also be computed by model generation procedures. 
Inoue et al. [28] have developed such a parallel abductive procedure, and Inoue and 
Sakama [30] have given a fixpoint semantics that accounts for the correctness of  such 
bottom-up procedures using a similar translation. 

Example 6.10. The abductive program (P2, F1) given in Examples 3.1 and 3.4 is now 
translated into fo(P2 U abd(Fl )) that consists of  the propositional formulas 

r A b D (p A - Kq) V Kq, a D q, r, Kp, 

21V22, 2 1 - a ,  21 D Ka, 7(22Aa) ,  

23V24, 2 3 = b ,  23 D Kb, 7(24Ab),  

and schema (25). 8 There are five minimal Herbrand models of fo(Pz U abd(Fl)):  

Ml = {r, Kp, 21, a, Ka, q, 23, b, Kb, Kq}, 

M2 = {r, Kp, 21, a, Ka, q, 24} , 

M3 = {r, Kp, 2a, ).3, b, Kb, p , -  Kq}, 

M4 = {r, Kp, 22, 23, b, Kb, Kq}, 

Ms = {r, Kp, 2z, 24}. 

8 When an EDP P is an NDP, P+ = P holds and fo(P) need not include schema (26). 
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Among these, only M3 satisfies the stability condition, and corresponds to the F1- 
minimal belief model {r, p, b} of (P2, F1). 

7. Relation to non-monotonic formalisms 

Recent research on the semantics of  logic programming and non-monotonic reason- 
ing has demonstrated that both fields have influenced each other. In this section, we 
establish the relationship between GEDPs and existing non-monotonic formalisms. 
In particular, there is a close relationship between GEDPs and autoepistemic logic. 

Recall that the class of GEDPs  is the "logic programming" fragment of  proposi- 
tional MBNF [38]. The embedding of the rule (1) 

Ll ] . . .  IL~-tnotLk+l I . . .  I notL, +- L,+I, . . .  ,Lm, notLm+l,... ,notL, 

in MBNF is given by Lifschitz and Woo [41] as the formula 

BLI+t A . . .  A BLm A notLm+l A . . .  A notL, D 

BL1 V . . .  V BL~ V notLk+l V . . .  V notLl. 

Besides MBNF,  there are many non-monotonic formalisms in which EDPs can be 
embedded. Gelfond et al. [23] use their disjunctive default logic, and Sakama and In- 
oue [54] show translations into default logic [52], autoepistemic logic [49] and cir- 
cumscription [47]. Since we have presented the translation of GEDPs into EDPs, 
these previous results can be directly applied to embed GEDPs in such non-mono- 
tonic formalisms via the edp translation. 

Although these results are all correct, the translation of  GEDPs into EDPs intro- 
duces new literals like 2i's. One often wants to see a stronger result such that the log- 
ical closure of an answer set is exactly the same as an extension of  a non-monotonic 
formalism and that the set of  literals true in the extension is exactly the answer set. In 
such an extension, the introduction of  new literals should be avoided. Then, those 
formalisms that obey the principle of  minimality such as (disjunctive) default logic 
and circumscription are rejected for this purpose. With this regard, the remaining 
candidate is autoepistemic logic. Lifschitz and Schwarz ([39], Corollary 3.1) and 
Chen ([12], Theorem 6) have independently provided the correct embedding of  EDPs 
in autoepistemic logic. Moreover, both results are proved in a way applicable to a 
more general class of  programs including consistent PL- theories of [41]. Here, we 
can take advantage of  their proofs. 9 

Recall that a formula in autoepistemic logic is called objective if it does not con- 
tain the modal operator B; otherwise it is subjective. An autoepistemic theory is a set 
of formulas in autoepistemic logic. An autoepistemic theory is stable if it is closed 
under the logical and introspective consequences. Namely, a stable set T satisfies 
the conditions: (i) T = cons(T), where cons(T) denotes the set of  logical consequenc- 
es (in the sense of  classical first-order logic) of T; (ii) if ~p ~ T then B~0 E T, and (iii) if 
q~ ~ T then -~B~p E T. The meaning of each autoepistemic theory is usually character- 

'~ Marek and Truszczyfiski [46] also show a different translation of EDPs into reflexice autoep&temk' 
logic [60]. Lifschitz and Schwarz [39] further prove that reflexive autoepistemic logic can be used for the 
embedding of consistent PL-theories. 
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ized by the following stable set that is expanded from the theory: Given an auto- 
epistemic theory K, a set T is a stable expansion of K iff it satisfies that 

T = cons(K O {B~P I ~P E T} U {~B~o I ~p • Z}). 

It is well known that for each set F of  objective formulas, there is a unique stable set 
E(F) containing F such that the objective formulas in E(F) are exactly the same as 
those in cons(F). Moreover, if a theory K contains only objective formulas, then 
E(K) is a unique stable expansion of K [49]. 

Given a GEDP l-I, its autoepistemic translation ae(FI) is defined as follows: Each 
rule of  the form (1) in FI is translated into the following formula in ae(II): 

(BLl+l A Lt+,) A . . - A  (BLm ALm) A ~BLm+l A " "  A ~BL. D 

(BL, AL,) V . . - V  (BLk ALk) V ~BLk+l V . . .  V-~BLt. (28) 

Theorem 7.1. Let FI be consistent GEDP, and S a set of  literals. S is an answer set of  FI 
iff E(S)  is a stable expansion of ae(II). 

Proof. The result follows from the Main Theorem in [39]. [] 

The autoepistemic translation ae(1-I) can be simplified for some class of GEDPs. 
When FI is GEDP consisting of rules of  the form 

A1 I notA2[. . .  ]notAt +---Al+l,..., Am, notAm+l,..., notAn, (29) 

where O<~l~m<<,n(Al may be empty) and each Ai is an atom, each conjuction 
(BAi A Ai) for i = 1, l + 1 , . . . ,  m in ae(1-I) can be replaced simply with A~ as 

Al+j A . . .  AAm A ~ B A m + l  A " ' "  A ~BA, D Aj V -~BA2 V . "  V ~BAI. (30) 

Note that this class of  GEDPs is a subset of  the class of head-cycle free GEDPs, 
and includes the class of NLPs 10 and programs P U abd(F) that are translated from 
abductive NLPs (P, F). Let us denote as ae,(Fl) the set of autoepistemic formulas 
obtained from a GEDP FI by replacing each rule of the form (29) with (30). An es- 
sential difference between ae(I-I) and ae,(I-I) for a set FI of rules of the form (29) is 
that, while ae, may map two different programs with the same answer sets into two 
autoepistemic theories with different stable expansions, the stable expansions of 
ae(FI) are uniquely determined by the answer by sets of  I1 [39]. For  example, both 
1-I3 = {plnotq ~ }  and Fll0 = { p + - q }  have the same unique answer set 0, but 
ae,(l-I3) = {Bq D p} has the stable expansion E(0), while ae,(Hl0) = {q D p} has 
the stable expansion E({q D p}). On the other hand, both ae(Fl3)= {Bq D 
(p ABp)} and ae(II)l 0 = {(q ABq) D (p ABp)} have the same unique stable expan- 
sion E(0). Nevertheless, we have the following one-to-one correspondence between 
the answer sets of  l-I and the stable expansions of ae,(l-I). 

~0 An autoepistemic translation of NLPs, which maps each rule without positive not into (30), was firstly 
introduced by Gelfond [19]. 
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Corollary 7.2. Let FI be a consistent GEDP such that H is a set o f  rules o f  the form 
(29), and S a set o f  atoms. S is an answer set ofFl iff S is the set o f  objective atoms true 
in a stable expansion o f  aen(H) 

Proof. Suppose that S is an answer set of H. By Theorem 7.1, there is a stable 
expansion E of ae(H) such that S = E fq At where At is the set of atoms occurring in 
H and that 

E = cons(S U {B,:P I q~ E E}  U (-,B,:p I q~ d E} )  . 

The set {B(p ] C E} includes BA for each A E S. In the presence of these subjective at- 
oms, all the objective atoms S in E also follows from some stable expansion E' of 
ae,(H), and vice versa. Hence, S = E' n At. The converse direction can also be shown 
in the same manner. [] 

The above corollary can also be applied to the embedding of the possible model 
semantics for a NDP P since each rule in the translated GEDP pro(P) is in the form 
(29). 

Corollary 7.3. Let P be a consider N D P  that consists o f  rules o f  the form 

All . . .  IAk ~-- Ak+l,.. . ,Am,not A,,+l,.. .notA~. 

A set S o f  atoms is a possible model o f  P iff S is the set o f  objective atoms true in a 
stable expansion o f  the set o f formulas obtained by translating each above rule in P into 
the formula 

A~+l A . . .  AAm A ~BAm+l A ""  A-~BAn D 

(A1 V-~BA,) A " "  A (Ak V ~BAk) A (BA, V " "  V BAk). 

Proof. The translated formula is equivalent to the conjunction of the aen translation 
of rules (7) and (8) in pro(P). Then, the corollary follows from Theorem 3.9 and 
Corollary 7.2. [] 

Now, let us look again at the embedding of abduction in GEDPs given in Theo- 
rem 3.2. The rule (3) 

7[not 7 ~-- 

is translated into 

by the autoepistemic translation, which is then equivalent to 

B7 ~ 7. (31) 

The set consisting of formula (31) produces two stable expansions, one containing 
and BT, the other containing -~B7 but neither y nor 77. Historically, the first expan- 
sion has been regarded as anomalous since the belief of 7 is based solely on the as- 
sumption that 7 is believed with no other support [33]. However, this situation is 
naturally interpreted in abduction. The fact that the formula (31) is the archetype 
to generate hypotheses strongly justifies the correctness of our use of positive not 
in the corresponding rule (3). 
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Finally, the relationship between the supported set semantics of GEDPs and au- 
toepistemic logic can also be equipped in order to highlight the underlying non- 
monotonicity of the formalism. Marek and Subrahmanian [45] have proposed such 
a connection for NLPs. In our case, it is enough to apply the autoepistemic transla- 
tion aei to the supported set semantics via the inverse shifting of Theorem 5.11. 
Namely, given a GEDP H, its supported sets can be chracterized by the stable expan- 
sions of the inversely shifted GEDP ael(invshift(H)). 

In summary, we have utilized the "non-minimal" nature of autoepistemic logic to 
express abduction and inclusive disjunctions in knowledge representation. The intro- 
spective nature of autoepistemic logic enable us to believe a certain proposition (say 
P) either from the lack of belief in Other proportions (through ~BQ D P for example) 
or from no additional precondition (through BP D P for example). These properties 
can completely describe the meanings of negative and positive occurrences of nega- 
tion as failure in logic programming. 

8. Discussion 

1. Brewka and Konolige [10] give another semantics for GEDPs which is different 
from the answer set semantics in this paper. They allow positive not in a program but 
still obey the principle of minimality. Consequently, their semantics can never repre- 
sent non-minimal canonical models and its relationship to autoepistemic logic must 
be different from ours. In this respect, they suggest the use of moderately grounded 
expansions [33] for the embedding. However, the following example demonstrates 
that moderately ground expansions are of no use to characterize the minimal answer 
sets of GEDPs. Instead, parsimonious stable expansions [15] appropriately character- 
ize the minimal answer sets. 

Recall that a stable expansion of aft autoepistemic theory K is moderately ground- 
ed if its objective part is not larger than the objective part of any other stable set that 
includes K. A stable exparlsion of K is parsimonious if its objective part is not larger 
than the objective part of any other stable expansion of K. Note that each moderate- 
ly grounded expansion is parsimonious but the converse does not necessarily hold. 

Example 8.1. Consider the GEDP rI6 given the Section 4.1: 

p[ notp ~-, 

q ~-p, 

~-- notq. 

l"I 6 has the unique (and hence minimal) answer set {p, q}. The autoepistemic trans- 
lation of 1-I 6 is 

a e ° ( r I 6 )  = {Wp ~ p, p D q, Bq}. 

This autoepistemic theory has no moderately grounded expansion. In fact, E({p, q}) 
is not a minimal stable set that included aen(I-I6) since E({q}) is a stable set contain- 
ing ae,(I'16) and its objective part is smaller than that of E({p, q}). On the other 
hand, E({p, q}) is the unique parsimonious stable expansion. 
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Theorem 8.2. Let  H be a consistent GEDP, and S a set o f  literals. 
answer set o f  I-I iff E(S) is a parsimonious stable expansion o f  ae(II). 
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S is a minimal 

Proof. The result follows from Theorem 7.1 and the definition of  parsimonious stable 
expansions. [] 

Recall that our answer set semantics for GEDPs is characterized by stable expan- 
sions of  the translated autoepistemic theories. From the complexity viewpoint, Eiter 
and Gott lob have shown that deciding whether an objective formula belongs to some 
parsimoniously grounded expansion of  an autoepistemic theory is £f-complete in 
general [15], while the same problem for some stable expansion is 2;f-complete 
[25]. From this observation, it is conjectured that computing with a minimal answer 
set of G E D P  is harder than computing with any answer set unless the polynomial 
hierarchy collapses. 

2. An interesting property of  the rule (3) 7 [not 7 ~ is that it is valid in the sense 
that every answer set satisfies it, that is, 7 is either contained or not contained in it. In 
autoepistemic logic, the corresponding formula (31) is always contained in any stable 
expansion. However, the modal axiom schema of the same form 

T: Bq0 D q~ 

cannot be put into the premise set without changing its stable expansions [49]. Sim- 
ilarly, adding the rule L I notL ~ to a program allows the literal L to be sanctioned 
that otherwise would not be, but this may cause literals that are entailed by the pro- 
gram to decrease since the number of  answer sets increases. For  example, q is en- 
tailed by the program containing one rule 

q +- not p, 

but once P l notp +- is adopted q is no longer entailed. Another example of  this prop- 
erty can be seen in the fact that a declaration o f  f i x e d  predicates prevents over-min- 
imization and undesired side effects in circumscription (Section 3.4). Sometimes such 
an addition of  valid rules may make an incoherent program get an answer set. 

For  example, 

q *-- notp, 

~q ~-- 

has no answer set, but with the rule p lno tp  ,--- it obtains the answer set {~q ,p} .  The 
rule L I notL +-- in GEDPs  and the schema T in autoepistemic logic can thus be ap- 
plied to various domains other than abduction such as contradiction resolution and 
reflection in the sense of  Konolige's analysis of meta reasoning [34]. 

3. Gelfond gives another cautious semantics for the closed world assumption in 
order to treat Example 3.10 properly by introducing the concept of strong introspec- 
tion [20]. However, unlike Theorem 3.9 for our possible model semantics, this con- 
cept cannot be embedded in MBNF [38]. 

On the other hand, Eiter et al. propose a new non-monotonic formalism called 
curbing [17] which interprets disjunctions inclusively. Since their good models are 
nor necessarily minimal models, it is interesting to see whether MBNF can express 
curbing nor not. In the context of PDPs, it turns out that there is a close relationship 
between good models and possible models. 
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4. Lifschitz and Turner [40] show that a special form of positive not can be re- 
placed with classical negation. As we have seen in Section 3.1, abducible literals L 
and --L can be encoded as rules 

L]no tL  +---, 

-~L l not-~L +--- . 

In their setting (on the domain of reasoning about action), under the existence of the 
completeness rule for L: 

~-- notL, not-~L, 

the above two abducible rules can be represented by the rule 

L[-~L ~-- 

While this kind of replacement is sometimes possible, positive not is generally quite 
different from classical negation in heads. For example, as noted in Section 4, 
H3 = {p lno tq  ~ }  has the unique answer 0, but { p l ~ q  *--} has two answer sets 
{p} and (~q}. 

5. Marek et al. [43] characterize the supported models of NLPs by means of their 
framework of constraint programming.  Roughly speaking, a rule with the constraint 
of the form 

A * - - B l , . . . , B m :  q~t A " "  A ~b, 

is read as "A i f  B1,... Bm under the condi t ion that ~b I A . . .  A q~n holds" .  Thus, the 
body of this rule contains two kinds of conditions: those to be evaluated minimally 
(Bi's) as usual and those to be expected its supportedness (qSfs). In other words, con- 
straint programming offers the spectrum of the answer set/supported set semantics 
for NLPs. This rule corresponds to a rule with positive not of the form 

A Inot4), I . . .  Inotc~, ~ B , , . . .  ,Bm. 

Hence, their framework is also characterized using positive not. 
6. It is worth nothing that there is a GEDP whose dependency graph contains no 

directed cycle but it has non-minimal answer sets. For example, the program Hi1: 

p(x) lnotp(s(x))  ~--, 

q(O) e-- 

has answer sets {q(0)} and {q(O),p(O),p(s(O)) ,p(s2(O)) , . . .} .  Since 1-Ill is not N-acyc- 
lic, Theorem 4.6 cannot be applied to this program. In fact, 

s h i f t ( H u )  = {p(x) ~-- p(s(x)) ,  q(O) e--}. 

which is the same as program YI5 in Example 4.4 (Section 4.1), has the unique answer 
set {q(0)}. However, since II~l is P-acyclic, the infinite answer set of Ill~ is also a sup- 
ported set of YI5 by Theorem 5.7. This example indicates that the theory of positive 
not or supported sets may have interesting applications to perpetual processes in the 
line of [42], Ch. 6. 

9. Conclusion 

This paper has provided a number of new results in the class of general extended 
disjunctive programs (GEDPs), i.e., disjunctive programs which permit negation as 
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failure and classical negation both positively and negatively. The class of GEDPs is a 
natural extension of previously proposed logic programs. In particular, we have 
shown in this paper: 
• embedding of abductive programs, the possible model semantics for NDPs, fixed 

predicates in circumscription in the answer set semantics for GEDPs, 
• a syntactic condition under which a GEDP collapses to an EDP using the shifting 

transformation, 
• characterization of the supported set semantics for GEDPs in terms of the answer 

set semantics for GEDPs, 
• the computational complexity of GEDPs based on a polynomial-time translation 

of GEDPs into EDPs, 
• an algorithm to compute answer sets of GEDPs based on a translation of GEDPs 

into PDPs, and 
• the relationship between GEDPs and autoepistemic logic. 

In conclusion, negation as failure in the head opens new possibilities of logic pro- 
gramming for representing commonsense knowledge. The most interesting property 
of GEDPs is that they may have non-minimal answer sets. It is due to the N-cyclic 
property that abductive programs, inclusive disjunctions and fixed predicates can be 
encoded as GEDPs with positive not .  Incidentally, supported sets have a similar non- 
minimal property, and we have actually established the relationship between positive 
not  and supported sets. Moreover, from the computational viewpoint, it has been 
shown that positive not  does not introduce an extra complexity source. Therefore, 
computation of answer sets of GEDPs is realized using any proof procedure for com- 
puting answer sets of EDPs. With these results, we conclude that the concept of ne- 
gation as failure in the head is a useful tool for representing knowledge in various 
domains in which the principle of minimality is too strong. 
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