
ELSEVIER The Journal of Logic Programming 35 (1998) 39-78

THE K~IRNALOF
PROGRAMMING

Negation as failure in the head

Katsumi Inoue a,*, Chiaki Sakama b,1
21 Department of Electrical and Electronics Engineering, Kobe University, Rokkodai, Nada-ku,

Kobe 657-8501, Japan
h Department of Computer and Communication Sciences, Wakayama University, Sakaedani, Wakayama

640-8441, Japan

Received 1 August 1996; received in revised form 1 March 1997; accepted 9 April 1997

Abstract

The class of logic programs with negation as failure in the head is a subset of the logic of
MBNF introduced by Lifschitz and is an extension of the class of extended disjunctive pro-
grams. An interesting feature of such programs is that the minimality of answer sets does
not hold. This paper considers the class of general extended disjunctive programs (GEDPs)
as logic programs with negation as failure in the head. First, we discuss that the class of GE-
DPs is useful for representing knowledge in various domains in which the principle of minim-
ality is too strong. In particular, the class of abductive programs is properly included in the
class of GEDPs. Other applications include the representation of inclusive disjunctions and
circumscription with fixed predicates. Secondly, the semantic nature of GEDPs is analyzed
by the syntax of programs. In acyclic programs, negation as failure in the head can be shifted
to the body without changing the answer sets of the program. On the other hand, supported
sets of any program are always preserved by the same transformation. Thirdly, the computa-
tional complexity of the class of GEDPs is shown to remain in the same complexity class as
normal disjunctive programs. Through the simulation of negation as failure in the head, com-
putation of answer sets and supported sets is realized using any proof procedure for extended
or positive disjunctive programs. Finally, a simple translation of GEDPs into autoepistemic
logic is presented. © 1998 Elsevier Science Inc. All rights reserved.

1. I n t r o d u c t i o n

Logic p r o g r a m m i n g has been regarded as an a p p r o p r i a t e tool for knowledge rep-
resen ta t ion in art if icial intell igence. F r o m this v iewpoint , theories o f logic p r o g r a m -
ming with negation as failure (or default negation), classical negation (or explicit

"Corresponding author. Tel.: +81 78 803 1079; fax: +81 78 881 3193; e-mail: inoue@eedept.kobe-
u.ac.jp.

i E-mail: sakama@sys.wakayama-u.ac.jp.

S0743-1066/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved.
PII: S 0 7 4 3 - 1 0 6 6 (9 7) 1 0 0 0 1 - 2

40 K. lnoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

negation) and disjunctive information have been developed (a comprehensive survey is
found in [4]). This paper is concerned with such a theory of an extended class of logic
programs as a knowledge representation language. Our extension of logic programs
is called general extended disjunctive programs (GEDPs). Such programs allow nega-
tion as failure not only in the body of a rule as negative premises but in the head as
negative conclusions. That is, a rule in a GEDP is in the form

L, I ' " ILk lnotLk~ I . . . InotL, ~ L,+I,... ,Lm,notLm+,,... ,notL,,

where each Li is a positive or negative literal, not is the negation-as-failure operator,
and " r ' represents a disjunction. The class of GEDPs has the following nice proper-
ties:
• The syntax of programs is general enough to strictly include the class of extended

disjunctive programs (EDPs). The class of GEDPs is a quite natural extension of
EDPs in the sense that negation as failure appears symmetrically in a rule.

• The semantics of programs is also a natural generalization of the answer set se-
mantics for EDPs by Gelfond and Lifschitz [22], thus coincides with the stable
model semantics [21] for normal logic programs.

• The class of GEDPs is more expressive than the class of EDPs in the sense that a
program can have a non-minimal answer set.

Furthermore, we will show that the introduction of negation as failure in the head to
logic programming is useful and important in the following sense:
• A lot of new applications to knowledge representation can be properly described

using GEDPs.
* The class of GEDPs offer a theoretical tool for investigating a theory of existing

framework of logic programming. Specifically, it enables us to better understand
the supported model semantics [3,45] and to have a proof procedure for it.

• There is a procedural semantics for GEDPs that is an extension of existing proof
procedures for EDPs.

• There are close relationships between the class of GEDPs and existing non-mono-
tonic formalisms, which are also natural extensions of previously known results
[19,39,12].

1.1. Historical background

Historically, the class of GEDPs 2 was introduced by Lifschitz and Woo [41] as a
subset of the logic of minimal belief and negation as failure (MBNF). MBNF was pro-
posed by Lifschitz [38] as a general non-monotonic logic that includes the class of
logic programs permitting both classical negation and negation as failure. In fact,
MBNF is one of the most expressive logics and can serve as common framework that
unifies several non-monotonic formalisms. As Lifschitz noted, however, MBNF is
purely semantical and too intractable to be used directly for representing knowledge.
Then, Lifschitz and Woo investigated a large subset of propositional MBNF called
PL-theories - theories with "protected literals". In brief, protected literals are for-
mulas of the forms BL and not L, where L is a literal and B and not are two non-
monotonic modal operators, respectively, meaning minimal belief and negation as

2 The n a m e G E D P was in t roduced in [29].

K. lnoue, C. Sakama / J. Logic Programming 35 (1998) 39 78 41

failure. Then, a PL-theory is defined as a set of PL- formulas which are formed by
protected literals using ~ B, not and A.

The semantics of PL-theories is similar to the answer set semantics for EDPs, and
can be described in terms of sets of objective literals. Moreover, each PL-theory is
shown to be replaced with an equivalent set of formulas of the form

BLI V • • • V BLk v notLk+i V . . • V notL~

V ~BLt_i V . . . V ~BLm V ~notLm+l V "" V -~notL,,

which is interpreted as the rule

L I I . . . [Lk I not Lk+l I " . I no t LI +-- L I + I , . . . , Lm, not L m + l , Hot L n

in the logic programming context. Hence, the class of GEDPs is such a "logic pro-
gramming" fragment of MBNF.

Lifschitz and Woo consider the possibility of positive occurrences o f negation as

failure (positive not, in short) in GEDPs. 3 Syntactically, this extension is quite nat-
ural and attractive, and each rule with negation as failure in the head can be regarded
as a bisequent [8], that is, a pair of positive and negative beliefs appears in both the
antecedent and the succedent of a sequent.

The semantics of GEDPs is also clearly defined in terms of the notion of answer
sets [41]. A unique feature of GEDPs, which distinguishes them from other tradition-
al logic programs, is that the minimality of answer sets for EDPs [22] does not hold
in general. For example, the program consisting of the rule

p[not p ~--

has two answer sets: one containing p and the other containing neither p nor -~p. In
this paper, we will analyze this peculiar property of GEDPs in detail from the two
important viewpoints:

(i) applications of non-minimal answer sets in knowledge representation;
(ii) semantical and computational properties of non-minimal answer sets.

1.2. Non-minimality in knowledge representation

Most of the semantics of logic programs proposed so far satisfy the principle o/

minimality in some sense. For example, the least model semantics for definite Horn
programs, the minimal model semantics for positive disjunctive programs, the per-
fect model semantics for stratified (disjunctive) programs, and the stable model se-
mantics for normal (disjunctive) programs satisfy the principle in the sense that
every canonical model of a logic program is its minimal model. The answer set se-
mantics for EDPs also satisfies the principle since no answer set of a program is
smaller than any other answer set. Hence, it has been argued that the principle of
minimality is one of the most important criteria that each semantics should obey
if it is used as "commonsense" semantics [59].

3 There had been some at tempts to allow negation as failure in the head before GEDPs appeared in the
literature. For example, Gelfond showed such a rule in Example 2 of [20] and Kowalski and Kim
considered the possibility in [35], p. 237. However, they did not discuss much about the effect of such rules,
and their semantics are different from that o f GEDPs.

42 K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

The situation is similar in research on non-monotonic formalisms. Circumscrip-
tion [47] is directly based on minimal models, and (disjunctive) default logic
[52,23] has the property that an extension of a (disjunctive) default theory is not a
subset of any other extension. While an exception can be seen in autoepistemic logic
[49], the definition of stable expansions has been modified so that each obtainable ex-
pansion "rationally" satisfies the principle of minimality. For example, {Bp ~ p} has
two stable expansions, one containing p and the other not in their objective parts,
but only the latter is the moderately (or strongly) grounded expansion [33].

On the other hand, recent advances on theories of logic programming and non-
monotonic reasoning have revealed the declarative meaning of negation as failure
as a non-monotonic modal operator. MBNF is a non-monotonic bimodal logic that
directly allows the negation-as-failure operator not along with the B operator for
minimal belief in a theory. Once not is allowed positively in a PL-theory or a GEDP,
the principle of minimality does not hold any more. This observation gives a justifi-
cation of the introduction of not in the head in logic programs. Namely, the class of
GEDPs strictly includes the class of EDPs both in the syntactical and semantical
senses.

Then, a question arises about the use of negation as failure positively in MBNF or
logic programming. Namely, one may feel a resistance to the existence of non-min-
imal answer sets. From the traditional viewpoint, a non-minimal answer set contains
a redundant information and is of no use for representing commonsense knowledge.
In fact, Lifschitz and Woo raised a question about the utility of a disjunction of lit-
erals and their negation like p[not p ~-, and discussed ([41], p. 608):

It remains to be seen whether rules like this may have applications to
knowledge representation.

In this respect, we will show that the non-minimality of answer sets is an impor-
tant property for applying logic programming or MBNF to represent various do-
mains in which the principle of minimality is too strong. For example, we show
all the following applications can be characterized in terms of GEDPs.
• Abductive logic programming: Consider the logic program {p ~ a} with the abdu-

cible atom a. For this program, (~ is the least model. However, given the observa-
tion p, the non-minimal model {a,p) is considered as the intended belief model.

• Inclusive interpretation o f disjunctions: When we interpret the disjunction p [q
exclusively, both {p} and {q} are two alternative minimal models. But if it is in-
terpreted inclusively, the non-minimal model {p,q} becomes another intended
model.

• Circumscription with f ixed predicates: The circumscription of p in {q ~ p} with q
fixed has two models, (~ and {p, q}. Here, the second model is not minimal.
On the first point, we will show that the rule a [nota +- can be used to represent

the statement that a is a hypothesis in a program. The fact that abduction can be
represented by a single logic program is a particularly striking result. Since an abduc-
tive program is usually represented by a pair of background knowledge and candi-
date hypotheses, it is important to know how such meta-level information of
hypotheses can be expressed at the object level. Such an expression bridges the
gap between abductive and usual (non-abductive) logic programming, and contrib-
utes to the computational aspect of abduction. Namely, we can apply any proof pro-
cedure for usual logic programs to abductive programs.

K. Inoue, C Sakama / J. Logic Programming 35 (1998) 39-78 43

On the second point, an inclusive interpretation of the disjunction p [q ~ is spec-
ified by rules p[notp ~ and q[notq,--- together with the integrity constraint

notp, notq. In the case, the answer sets of the program are {p}, {q}, and
{p, q}, where the third one represents the inclusive model. Classical logic program-
ming semantics based on minimal models are always minimal hence cannot represent
such inclusive disjunctions in general. By contrast, the possible model semantics
[11,53,55] has a non-minimal feature, and can represent both inclusive and exclusive
disjunctions. We will show that the possible model semantics of positive/normal dis-
junctive programs are characterized by the answer set semantics for GEDPs.

On the third point, the fact that q is fixed in circumscription is also represented by
the rule q [not q ~ . In this sense, we can see that fixed predicates play the same role
as abducible predicates in abductive logic programming. In classical logic program-
ming, every predicate is usually minimized under the closed world reasoning. Fixed
predicates are also considered in ECWA [24], which is equivalent to circumscription
under some conditions. We will show that ECWA without varying predicates can be
simply computed through GEDPs.

From the viewpoint of non-monotonic reasoning, among many non-monotonic
formalisms, Moore's autoepistemic logic can express a stable expansion whose objec-
tive part is larger than that of another expansion. We show that this non-minimal
feature of autoepistemic logic is applicable to describe the semantics of GEDPs.
We justify this result by providing a simple translation of GEDPs into autoepistemic
logic, which is due to the results by Lifschitz and Schwarz [39] and Chen [12].

1.3. Semantic nature and computation of GEDPS

One may consider that the use of positive not in MBNF or not in the head in GE-
DPs increases the computational complexity and that it is difficult to supply a pro-
cedural semantics in the presence of non-minimal answer sets. Two proof theories
for MBNF proposed so far are not sufficient in this respect. Chen [12] proposes a
proof theory for PL-theories, which relies on the proof theory for the logic of only
knowing [36], so that a procedure would have to deal with modal logic K45. Beringer
and Schaub [7] provide a proof procedure for a subset of MBNF, but this subset nei-
ther includes EDPs nor allows positive not.

In this regard, we will analyze the properties of GEDPs and the nature of not in
the head from the viewpoint of program transformation.

First, we show a program transformation (called shifting) from a GEDP to an
EDP such that the two programs have exactly the same answer sets. Such a transfor-
mation is possible if a GEDP satisfies the acyclic condition.

Secondly, we introduce an alternative semantics of GEDPs, called the supported
set semantics, which is a natural generalization of the notion of supported models.
Note that supported sets are not always minimal even for normal logic programs.
For example, the logic program {p ~ p} has two supported models, 0 and {p}. Un-
like the answer set semantics, the supported set semantics is shown to be always pre-
served by the shifting transformation from GEDPs to EDPs. Moreover, the
supported set semantics can be characterized by the answer set semantics. Hence,
this gives another application of non-minimal answer sets of GEDPs. These analyses
help us to better understand the source of non-minimality of answer sets in GEDPs

44 K Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

or supported sets in EDPs. As a by-product, we will have a procedure to compute the
supported sets or supported models defined by [3,45,4,9].

Thirdly, we develop a polynomial-time translation of any G E D P into an EDP by
replacing not in the head with new literals and constraints. With this translation,
there is a one-to-one correspondence between the answer sets of the original G E D P
and those of the translated EDP. This translation also contributes to the computa-
tional theory for GEDPs. Namely the computat ional complexity of GEDPs is shown
to remain in the same complexity class as EDPs, and computat ion of answer sets of
GEDPs is realized using bot tom-up model generation techniques for EDPs.

1.4. Outline o f the paper

This paper is a much extended version of the paper [29]. The rest of this paper is or-
ganized as follows. Section 2 gives the answer set semantics for GEDPs and their basic
properties. Section 3 shows practical applications of non-minimal answer sets such as
abduction, inclusive disjunctions and circumscription with fixed predicates, and char-
acterizes these applications as GEDPs. Section 4 introduces the shifting transforma-
tion, which preserves the answer set semantics for acyclic GEDPs. Section 5 defines
the supported set semantics for GEDPs, and compares it with the answer set semantics.
Section 6 provides complexity results and computat ion of the answer set semantics for
GEDPs. Section 7 shows connections to autoepistemic logic and other non-monotonic
logics. Section 8 discusses some related issues, and Section 9 gives a summary.

2. General extended disjunctive programs

This section overviews the answer set semantics of logic programs with negation
as failure in the head. We regard a rule with variables as the set of its ground instanc-
es. Hence, in the semantics of logic programming in this paper, we can restrict our
attention to (possibly infinite) ground programs.

A general extended disjunctive program (GEDP) is a set of rules of the form

L11 . . . I L~I notLk+,] . . . I not L, ~-- L,+I , . . . , Lm, notLm+,, . . . , notLn, (1)

where L i ' s are literals and n/> m/> l/> k >~ 0. The disjunction to the left of +-- is the
head and the conjunction to the right of +-- is the body of the rule. In GEDPs, nega-
tion as failure occurs positively, that is, not Lj(k + 1 <~j <~ l) may appear in the head
of a rule. In this sense, negation as failure in the head is also called positive not. In-
tuitively, the rule (1) can be read as follows: I f all Ll+l , . . . ,Lm are believed and all
Lm+l, . . . , Ln are disbelieved than either some Li(1 ~< i ~< k) should be believed or some
Lj(k + 1 <<. j <<. l) should be disbelieved.

A G E D P is called an extended disjunctive program (EDP) when it does not contain
positive not, i.e, each rule is in the form (1) with k = I. An EDP is called (i) an ex-
tended logic program (ELP) if for each rule 1 ~< 1; and (ii) a normal disjunctive program
(NDP) if every Li is an atom. An N D P is called (i) a normal logic program (NLP) if
for each rule l ~< 1; and (ii) a positive disjunctive program (PDP) if it contains no not,
i.e., for each rule m = n.

In the following, the set of all ground literals in the language is denoted as Lit. We
say that a set of ground literals S c_ Lit satisfies a ground rule of the form (I) iff

K. lnoue, C Sakama / J. Logic Programming 35 (1998) 39 78 45

{L~+j ,Lm} c S and {Lm+j,.. .L,} AS = 13 imply either {LI, . . . ,Lk} n S # 13 or
{Lk+I,. . . ,LI} Z S.

As the semantics for GEDPs, we mainly consider the answer set semantics in this
paper, while we later introduce the supported set semantics as an alternative seman-
tics in Section 5.

The answer sets of a G E D P are defined by the following two steps. First, let P be a
not-free EDP (i.e., for each rule k = l and m = n), and S c Lit. Then, S is an answer
set of P iff S is a minimal set satisfying the conditions:

(i) S satisfies every ground rule from P, that is, for each ground rule

LI] . . . [L~, +-- Lk+l Lm

from P, if {Lk+~,...,Lm} C S then { L I , . . . , L k } N S # O . In particular, for each
ground rule ~-- LI , . . . ,Lm from P, {LI , . . . ,Lm} ~ S;

(ii) If S contains a pair of complementary literals L and -~L, then S = Lit.
Secondly, let H be any GEDP, and S c_ Lit. The reduet 13 s o f FI by S is a not-free

EDP obtained as follows: A rule

L, I . - . ILk ~- Lt+, , . . . ,Lm (2)

is in H s iff there is a ground rule of the form

L~I. . .]L~.]notLt.+~J...]notLt +-Lz.~, . . . ,Lm,notLm+,, . . . , notLn

from P such that

{Lk_~,...,Lz} C_S and { L ~ + , , . . . , L , } n S = O

For programs of the form H s, their answer sets have already been defined. Then, S is
an answer set of II iff S is an answer set of H s.

Note that the above definition of answer sets of a G ED P is given in a way slightly
different from that by Lifschitz and Woo [41] who additionally include in the lan-
guage two special atoms T and F. When the language does not contain these special
atoms, our definition of the reduct is equivalent to that given in [41], p. 606, and thus
both definitions of answer sets coincide. Obviously, when a program H is an EDP,
the above definition of answer sets reduces to that given by Gelfond and Lifschitz
[22]. When a program contains no classical negation, answer sets are also called sta-
ble models. This notion of stable models for programs possibly containing positive
not also reduces to that for NDPs [51] and NLPs [21].

The next proposition is a generalization of Proposition 4.1(a) in [4].

Proposition 2.1. Every answer set of a GEDP H satisfies eveo, ground rule f fom H.

Proof. Let S be any answer set of H. Since S is an answer set of l-I s, S satisfies every
ground rule from H s. Namely, for any ground rule R of the form (2) from H s, if
{Ll+1,.. . , Lm } C_ S then {L l , . . . , Lk } C3 S # 13. By the construction of H s, for the rule
R, there is a corresponding ground rule of the form (1) from 13 such that
{Lm+l ,Ln} n S = 13 and {Lk+l,... ,LI} C_ S. Hence for any ground rule R' of the
tbrm (1) from H, if {Ll+l, . . . ,Lm} C_ S and {L ,n+I , . . . ,Ln}~S= 13, then either
{Ll ,Lk} ~ S ¢ 13 or {Lk+l, . . . ,Ll} ~ S. Hence, S satisfies R'. []

We say that a GEDP FI entails a literal L if L is included in all answer sets of H.
An answer set is consistent if it is not Lit. A G E D P H is consistent if it has a consis-

46 K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

tent answer set. An answer set S of a G E D P I-I is minimal if no other answer set S' of
I-I satisfies S' c S; otherwise, it is non-minimal. It is well known that every answer set
of any EDP is minimal ([22] and Theorem 4 of [41]). However, the minimality of an-
swer sets no longer holds for GEDPs. This is an important property of GEDPs
which was firstly observed by Lifschitz and Woo. For example, the program consist-
ing of the rules:

q~---p,

p lnotp ~ ,

has two answer sets: ~ and {p, q}.

3. Applications of negation as failure in the head

In this section, we show various applications of negation as failure in the head in
GEDPs. The most important application is inference to explanation called abduct-
ion, which is one of the three fundamental modes of reasoning characterized by
C.S. Peirce. We will also show that positive not is a useful tool to represent other
non-minimal semantics for disjunctive logic programs, including the possible model
semantics and circumscription with fixed predicates. Some other applications will also
be presented.

3.1. Abductive programs

Abduction is an important form of reasoning not only for various AI problems
but also for logic programming. Abductive logic programming is an extension of logic
programming to perform abductive reasoning [32]. Here, we show that this extension
can be characterized exactly using positive not in GEDPs, so that both abductive and
non-abductive logic programming have the same expressive power.

The semantics of abduction we consider here is based on the belief set semantics by
Inoue and Sakama [30], but is extended to handle GEDPs. The belief set semantics is
a generalization of the generalized stable model semantics defined by Kakas and
Mancarella [31] for NLPs.

An abductive (general extended disjunctive) program is a pair (P, F), where P is a
(general extended disjunctive) program and F (C_ Lit) is a set of ground literals from
P called abducibles. When P is an N L P and F is a set of atoms, we will often call an
abductive program an abductive NLP. We often identify a set E (C_ F) of abducibles
with the program {7 +-- 17 c E}. A set of literals S (c Lit) is a belief set of (P, F) iffS
is a consistent answer set o f P U E where E = S n F. 4 A belief set S is F-minimal iffno
belief set T satisfies that T n F C S N F.

When S is a belief set and E --- S N F, we often write S as S~. Note that each belief
set reduces to a consistent answer set of P when F = ~3. Belief sets are called belief

4 This definition can also be stated as follows: S is a belief set of (P, F) iff S is a consistent answer set of
P U E for some E c_ 17. The set of all belief sets defined by each definition is equivalent, and hence Theorem
3.2 still holds for this alternative definition. Here, we prefer to identify the abducibles included in a belief
set th rough the equat ion E S n 17.

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 47

models when P does not contain classical negation. Belief models are also called gen-
eralized stable models [31] when P is an NLP.

Let (P, F) be an abductive program, and O a ground literal which represents an
observation. A set E (C_ F) is a credulous explanation of 0 (with respect to (P, F))
iff there is a belief set SE which satisfies O. On the other hand, E (C F) is a skeptical
explanation of 0 iff every belief set S such that E = S fq F satisfies O. When we just
say an explanation, it is a credulous explanation. An explanation E of O is minimal if
no E' C E is an explanation of O.

As discussed in [30], without loss of generality, we can assume that an observation
O is a non-abducible ground literal. Furthermore, the problem to find explanations is
essentially equivalent to find belief sets since E is a minimal explanation of O with
respect to (P, F) iff SE is a F-minimal belief set of (P U { ~ notO}, F).

Example 3.1. Consider the abductive N L P (Pl, Fl) where P1 consists of

P +- r, b, notq,

q ~ - - a ,

p +--

a n d F, = {a,b) . Then, SE0 = {r},SE, = {r,p,b},SE2 = {r,q,a} and SE3 = {r ,q ,a ,b}
are the belief models of (PI, F~), in which S~0 is the only Fl-minimal belief model
of (P1, Fl). Suppose that p is an observation. Then, E1 = SEI fq F = {b) is the (min-
imal) explanation of p. The observation p can be incorporated in the program as

P2 = Pl U {~--- notp}.

and the unique belief model of (P2, Fl) is SE1 = {r,p, b}. Note that E3 = {a, b} is not
an explanation of p. Hence, abduction is non-monotonic relative to the addition of
abducibles.

The most direct way to embed abducibles in a single program is as follows. Let
(P, F) be an adductive program. For each abducible 7 in F, we supply the rule

~,]not)' +- (3)

According to the non-minimality of answer sets of GEDPs, this rule has the effect to
augment each answer set of P with either 7 or nothing. Given an abductive program
(P, F), let aM(F) be the set of rules (3) obtained from F.

Theorem 3.2. A set S is a belief set of (P, F) iff S is a consistent answer set of
P t3 abd(F).

Proof. Let E = S A F. It holds that abd(F) s = abd(F) E = E = E s.
Hence, S is a belief set of (P, F)
iff S is a consistent answer set of P U E
iff S is a consistent answer set of pS U E s
iff S is a consistent answer set of pS U abd(F) s
iff S is a consistent answer set of ps U abd(F). []

Given a G E D P H and a set F of ground literals, we say an answer set S of H is F-
minimal if no other answer set S' of FI satisfies that S' • F c S n F.

48 K. lnoue, C Sakama / J. Logic Programming 35 (1998) 3~78

Corollary 3.3. A set E (C_ F) is a minimal explanation of 0 with respect to (P, F) f f
SE (C Lit) is a consistent F-minimal answer set o f P U {~-- notO} U abd(F).

Example 3.4. The abductive program (P2, F1) in Example 3.1 is transformed to

P2 Uabd(Fl) = P2 U {alnota ~--, blnot b *--}.

Then, {r,p, b} is the unique (and hence both minimal and F1- minimal) answer set of
P2 U abd(Fi), which is exactly the (Ft-minimal) belief model of (Pz, F1). Notice in
this example that there is no non-minimal answer set of Pc U abd(F1). In other words,
embedding abducibles in rules with positive not (3) not only enables us to represent
non-F- minimal belief sets of abductive programs, but plays an important role to ob-
tain a (minimal) explanation.

Example 3.5. Here is an example taken from Example 4.9 in [30], showing an effect of
non-minimal answer sets in abductive reasoning. Consider the abductive program
consisting of three rules P3:

p[q ~ notr,

r +-- nora,

~q~--b

and two abducible literals F3 = {a, b}. The information of abducibles in F3 can be
encoded as rules abd(F3):

alnota ~--,

b lnotb ~-- .

When the observation is p, both E = {a} and E' = {a, b} are credulous explanations
of p, and correspondingly, both S = {a,p} and S ' = {a,p, b, ~q} are answer sets of
P3 U abd(F3) containing p. Then, E is the minimal explanation of p. However,
P3 U E has another answer set {a, q} which does not contain p, while S' is the unique
answer set of P3 U E'. Hence, E' is preferable as the skeptical explanation of p, al-
though its corresponding answer set S' of the G E D P is not F3-minimal.

3.2. Assumptions with preconditions

In Section 3.1, a set F o f a abducibles in an abductive program (P, F) was defined as
a set of literals. Often however, we would like to introduce in F an abducible rule like

7 +-- L I ; . . . ,Lm, notLm+l,... , notLn, (4)

where 7 and Li's are literals. This abducible rule intuitively means that if the rule is
abduced then it is used for inference together with the background rules from P. This
kind of extended abductive f ramework was introduced by Inoue [26] as a knowledge
system in which both P and F are defined as ELPs, and has been shown to be a useful
tool for representing commonsense knowledge.

An abducible rule (4) has the effect to introduce the literal 7 as an assumption in a
particular context in which the body of the rule is true. In this sense, 7 in (4) can be
considered as an assumption with preconditions. On the other hand, each abducible
literal y in an abductive program (P, F) defined in Section 3.1 is viewed as an abdu-
cible rule without precondition 7 ~--, and hence can be abduced globally.

K. Inoue, C Sakama I J. Logic Programming 35 (1998) 39 78 49

An extended abductive framework can be formally defined as a pair (P, [`), where
P is a GEDP and [` is now an ELP consisting of rules of the form (4). The semantics
of this abductive framework is slightly extended from that given in Section 3.1 as fol-
lows. For any ELP E, let head(E) be the heads of rules in E. A set of literals S (c Lit)
is a belief set of (P, F) iff S is a consistent answer set of P U E where E _C [` such that
head(E) = S n head(F). Clearly, this notion of belief sets reduces to the definition of
belief sets in Section 3.1 when [` is a set of abducible literals without preconditions.

Example 3.6. Suppose that (P4, ['4) is an abductive program where

P4= {p+--a, -~p+--b, q~---c},

F 4 = { a ~ - - - , b~---, c~--p}.

Then (P4, ['4) has the four belief sets: ~, {a,p}, {a,p, c, q}, and {b, ~p}. Notice that
{b, ~p, c, q} is not a belief set since c can be assumed only when p is true.

The embedding of assumptions with preconditions in GEDPs is a straightforward
generalization of that of abducibles without preconditions. Each rule (4) in [" is re-
placed with the rule

71 not t' +--- L I , . . . ,Lm,not Lm+l,... ,not L,. (5)

For example, the abducible rules 1" 4 given in Example 3.6 are embedded in

a I nora +--,

b lnot b ~--,

clnotc +--p.

Theorem 3.7. Let (P, F) be an abductive framework, and abd(F) the set of rules (5)
obtained from the rules (4) in I'. A set S is a belief set of (P, [') iff S is a consistent
answer set of P U abd(F).

Proof. Similar to the proof of Theorem 3.2. []

In the next section, we show that abducible rules are also useful to represent in-
clusive disjunctions in disjunctive programs.

3.3. Inclusive interpretation of disjunctions

Another important application of positive not is to express an alternative seman-
tics for disjunctive logic programs other than Gelfond and Lifschitz's answer set se-
mantics. Here, we show that the possible model semantics for NDPs by Sakama and
Inoue [55] can be characterized by the answer set semantics for GEDPs.

The possible model semantics was initially introduced for PDPs to enable one to
specify both inclusive and exclusive interpretations of disjunctions [53,11] 5. Sakama
and Inoue [56] have presented the equivalence between the possible model semantics
for NDPs and the belief model semantics for abductive NLPs. Utilizing this result

5 Possible model semantics is also called possible world semantics in [11]. While Chan [11] gives a
different definition from that by [53], these notions are proved equivalent.

50 K. Inoue. C. Sakama / J. Logic Programming 35 (1998) 39 78

and Theorem 3.7, the embedding of the possible model semantics in GEDPs can be
obtained. We show below a direct method to do it based on the embedding of abdu-
cible rules in GEDPs in Section 3.2.

For an NDP P, let disj(P) be the disjunctive rules of P, i.e., those rules having
more than one atom in their heads. A split program of P is a ground NLP obtained
from P by replacing each ground disjunctive rule from disj(P) of the form

A1 I . . . IAk +-- Ak+l, . . . ,A,~,notAm+l,... ,notAn (k > 1) (6)

with rules

Ai*--Ak+~, . . . ,Am,notAm+l , . . . ,no tA, f o r e v e r y A i E S ,

where S is some non-empty subset of {A l , . . . , Ak }. Then, a possible model of P is de-
fined as an answer set (or stable model) of a split program of P [55]. Note that every
stable model of P is a possible model of P, but not vice versa. For example, when

P5 = {Plq +-, q ~---P, r ~ notp},

{q, r} is both a stable model and a possible model of Ps, but another possible model
{p, q} is not a stable model of Ps. Clearly, for NLPs, possible models coincide with
stable models.

To obtain every possible model, let us consider the transformation pm which maps
an NDP to a GEDP. Given an NDP P. pro(P) is obtained by replacing every rule
from P of the form (6) with the k + 1 rules

AilnotAi +--Ak+l, . . . ,Am,notAm+t, . . . ,notA, f o r / = 1 , . . . , k , (7)

+-- A k + l , . . • , A m , notA~+l, . . . , notAn, notA1, . . . , notAk. (8)

Recall that the embedding of abducible rules (4) in GEDPs was based on rules (5).
The embedding of possible models is achieved in a similar manner by rules (7) except
that the empty selection from the disjuncts of each disjunction is rejected by (8) in the
transformation pro.

Lemma 3.8 [56]. Let P be an NDP, and disj(P) the disjunctive rules o f P. Suppose that
F is' the N L P obtained from di~j(P) by replacing each disjunctive rule (6) with k rules

A i +--Ak+l, . . . ,Am,notA, ,+l , . . . ,notAn for i = 1 , . . . , k ,

and that IC is the set o f rules o f the form (8) obtained f rom the rules o f the form (6) in
disj(P). Then, a set S o f atoms is a possible model of P iff S is a belief model o f the
abductive program ((P\ disj(P)) 0 IC, F).

Theorem 3.9. Let P be an NDP. A set S o f atoms is a possible model o f P iff S is an
answer set o f pm(P).

Proof. A direct consequence of Theorem 3.7 and Lemma 3.8. []

Example 3.10 [11]. Suppose that the NDP P6 consists of three rules

violent Ipsychopath +--- suspect,

dangerous *- violent, psychopath,

suspect +---.

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39--78

Here, the first rule is replaced in pro(P6) with three rules

violent lnot vilolent +- suspect,

51

psychopath]not psychopath +- suspect,

+-- suspect, not violent, not psychopath.

Then, pm(P6) has three answer sets, {suspect, violent}, {supect,psychopath} and
{suspect, violent, psychopath, dangerous}, which coincide with the possible models
of P6. Note that the first and second possible models of P6 are also the answer sets
of P6, while the third possible model is not. If we introduce the rule of closed world
assumption [22]

~A +--- notA for any atom A

into P6, then -~dangerous is entailed in the answer set semantics, which is too strong.
By contrast, -~dangerous is not entailed in both the possible model semantics for P6
and the answer set semantics for pro(P6).

3.4. Fixed predicates

One of the interesting differences between circumscription [47,37] and disjunctive
logic programming is the existence of fixed predicates. As a typical example, we ex-
pect that something does not fly by default, but if it is a bird then it files. We can
write this as an axiom like

bird D flies

withflies minimized using circumscription. Without knowing initially whether it is a
bird or not, we can even deduce ~flies if bird is also minimized (as in standard logic
programming) or is allowed to vary (as in circumscription). In this case, -~bird is then
concluded. However, this side effect about the bird may not be desired in many cases.
This problem can be avoided if bird is fixed (i.e., not allowed to vary) in circumscrib-
ing flies. The circumscription actually deduces

~bird D ~flies,

so we conclude that it does not fly unless it is a bird.
In classical logic programming, every predicate is usually minimized in a PDP by

GCWA [48], in which the answer sets of the program are exactly the minimal Her-
brand models. An exception can be seen in ECWA proposed by Gelfond et al.
[24], which is equivalent to circumscription in the existence of the unique-name
and domain-closure assumptions. We now formalize ECWA for PDPs without vary-
ing predicates.

Let T be a PDP consisting of rules of the form

A,I . . .]Ak+--B. , . . . ,Bm (k,m>~O),

where Ai's and B/s are atoms. This rule can be identified with a first-order formula

B I A - . . A B m DAI V. . .VA~.

Let P be the set of minimized predicates. The set of all predicates other than those in
P are written Q and assumed to be fixed. The following notation is due to Lifschitz

52 K. Inoue, C Sakama / ./i. Logic Programm&g 35 (1998) 39 78

[37]. For any two distinct models M and N of T, we write M ~< N if: (i) [M[= IN[, (ii)
MIq I = N~q I for every predicate q in Q, and (iii) M[p I C_ N ~ for every predicatep in
P. A model M of T is P-minimal iff N ~< M implies M ~< N for any model N of T.

The information of fixed predicates can be encoded in GEDPs in the same way as
the encoding of abducibles in abductive programs. Now let

cir(T,P) = TU {q(x)Inotq(x) ~ I q E O},

where x = x l , . . . ,x,, is a tuple of variables for n-ary predicate q in Q.

Theorem 3.11. Let T be a PDP, and P the minimized predicates. Then, M is a P-
minimal Herbrand model o f T iff M is an answer set of cir(T, P).

Proof. Let M be a P-minimal Herbrand model of T such that M n Q = ~ . Here, we
also use Q to denote the set of ground atoms with predicates from Q. Then, M is a
minimal Herbrand model (i.e., (P U Q)-minimal Herbrand model) of T U ud. Here,
for each q E ~P, there is a ground rule of the form

qlnotq +---

from cir(T,P). Thus, TU~P = T '~t UW M =cir (T ,P) M. Therefore, M is a minimal
Herbrand model of cir(T, p)M, hence an answer set of cir(T, P).

On the other hand, let M be an answer of cir(T, P) such that M N Q = h u. Then, M
is a minimal Herbrand model of T U ~ , hence a P-minimal Herbrand model of
T. []

In the bird example above, the axiom set can be written as

f l ies +--- bird,

bird lnot bird ~---,

which has two answer sets, ~ and {bird,flies} expressing flies - bird.
It should be noted that the representation of fixed predicates by positive not is

in the same form as that of abducibles in Section 3.1. In this sense, we can see that
fixed predicates play the same role as abducible predicates in abductive logic
programming.

Theorem 3.12. Let T be a PDP, and P the minimized predicates. Suppose that F
is {q(x)]q E Q) where x = x l , . . , x,, is a tuple of variables for n-ary fixed predi-
cate q in Q. Then, M is a P-minimal Herbrand model of T iff M is a belief model of
(P, F).

Proof. Follows from Theorem 3.2 and 3.11. []

When some predicates are allowed to vary, Sakama and Inoue [57] show that cir-
cumscription of a clausal theory can be embedded in GEDPs, in which minimized
predicates are specified using negation as failure in bodies of rules, while fixed and
varying predicates are expressed by negation as failure in heads. A generalization
of Theorem 3.12 is also stated in Theorem 4.2 of [57]. Furthermore, prioritized cir-
cumscription [37] is shown to be expressed using positive not in a logic programming
framework extended with priorities [58].

Ix2 Inoue, c. Sakama / J. Logic Programm&g 35 (1998) 3~78 53

3.5. All-or-nothing

The embeddings of abducibles, possible models and fixed predicates in GEDPs in
previous subsections are all based on the generation of the power set of a literal set.
Namely, given a set F of literals, the rules

7il n°t 7i +--- for each 7~ E F,

can be used to produce 2 r. There are many other variations for representing know-
ledge with positive not. For instance, for a finite set of literal F = {71,.--, 7~}, the all-
or-noting choice can be represented by rules

71 I not 72 +----~

72 [not 73 +'--,

',',-J t not 7, ~--,

7n [not 71 +--,

which generate an answer set containing all 7i's and an answer set containing no 7i.

Example 3.13. John and Mary are a couple. So, " i f John is at the party, so is Mary,
and vice versa". If we represent this situation by the rules HI:

Mary-at-Party +- John-at-Party,

Jonh-at-Party +-- Mary-at-Party,

then we get the answer set ~ only. Instead, with the rules H2:

Mary-at-Party] notJohn-at-Party ~--,

Jonh-at-Party l not Mary-at-Party +---,

we have two possibilities: 0 and {John-at-Party, Mary-at-Party}.

The above example shows the difference between a rule of the form p ~ q and a
rule of the form p] notq ,---, which will be analyzed more deeply in Section 4.

4. Reduction to extended disjunctive programs

A G E D P has non-minimal answer sets in general. Then, our question is which
class of GEDPs has non-minimal answer sets can be distinguished from EDPs. An-
swering this question highlights the effect of negation as failure in the head and clar-
ifies the expressiveness of GEDPs. In this section, we analyze the syntactic nature of
GEDPs and investigate the relations between GEDPs and EDPs.

We first consider the possibility of transforming GEDPs to semantically equiva-
lent EDPs. Since a G E D P may have a non-minimal answer set, the following claim
holds.

Observation 4.1. There is no transformation tr f rom GEDPs to E D P s such that an),
G E D P I-I and tr(FI) have exact ly the same answer sets.

54 K. Inoue, C Sakama / J. Logic Programming 35 (1998) 39-78

Our concern is a subclass of GEDPs that have such a transformation to EDPs
with the equivalence preserved. Consider, for example, the program II3 which con-
sists of one rule

p l n o t q ~ .

H3 has just one answer set (~. Note that {p} is not an answer set since the reduct of 173
by {p} is empty. The above rule can be read as "p is believed or q is not believed",
and hence can be viewed as a conditional formula stating that "p is believed if q is
believed". In this sense, the rule is similar to

p+---q.

In this case, the former rule can actually be replaced with the latter rule by shifting
positive not into the body. However, suppose that one rule is added to H3:

H4 = H3 U { q [n o t p ~---} .

Then, ~ is still an answer set of Ha, but now {p, q} becomes another, non-minimal
answer set. In fact, I-I 4 has the same structure as H2 in Example 3.13. Hence, once
a "deadlock" loop is constructed with these conditional formulas, a program may
have two alternative answer sets, one including every element of the loop and the
other including nothing in the loop, In other words, unless there is such a loop,
not in the head can be shifted into the body without changing the answer sets. To
formally identify such cases where positive not is not needed, the notion of acyclic
GEDPs is introduced in the next section, and show that they reduce to EDPs.

4.1. Acycl ic G E D P s

We first define acyclic GEDPs. In the following, a level mapping for a G ED P H is
any mapping l : Lit -~ N of ground literals in the language of H to natural numbers
[2]. For any L E Lit, we call I(L) the level of L.

Let H be any GEDP. Suppose that any ground rule from H is in the form

A I I . . . I Ak l not B1 I . . . I n° t B , ~ CI , . . . , Cm, not Dl , . . . , not D, , (9)

where Ai's, B/s, C~'s, and Dt's (k, 1, m, n ~> 0) are literals.
(a) H is posit ive acyclic (P-acycl ic) if there is a level mapping l for H such that

l(Ai) > I(C~) for every i = 1 , . . . , k and s = 1 , . . . , m for any ground rule from H; oth-
erwise it is P-cyclic.

(b) H is negative acyclic (N-acyc l ic) if there is a level mapping l for H such that
l(Ai) > l(Bj) for every i = 1 , . . . , k and j = 1 , . . . , l , and l(Ai) >~ l(C~) for every
i = 1 , . . . , k and s = 1 , . . . , m for any ground rule from H; otherwise it is N-cyclic.

(c) H is acyelic if it is both P-acyclic and N-acyclic. Namely, H is acyclic if there is
a level mapping l for H such that I(Ai) > l(Bj) for every i = 1 , . . . , k and j = 1 , . . . , l
and l(Ai) > I(C~) for every i = 1 , . . . , k and s = 1 , . . . , m for any ground rule from H.

The notion of N-acyclic property is introduced in order to check the possibility of
a well-founded numbering of two literals, LI and L2, where Lj appears in the head of
a rule and not Lz appears in the head of the same or a different rule. The notion of
acyclic programs has been discussed by several researches [2,14,6]. Apt and Bezem [2]
defined acyclic NLPs, and Dung [14] extended the notion to acyclic NDPs. Their lev-
el mappings for acyclic programs additionally require that l(A~) > l(Dt) for every ne-
gation-as-failure formula not Dt(t = 1 , . . . , n) in the body of any rule of the form (9).

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 55

We ignore the level of each such literal as it is not necessary in the subsequent dis-
cussion. Dung [14] also introduced P-acyclic programs, which coincide with our
(P-)acyclic NDPs. Our notion of acyclic programs is also a generalization of propo-
sitional acyclic EDPs defined by Ben-Eliyahu and Dechter [6].

Observation 4.2. Any EDP is N-acyclic. This is because every literal in Lit can have the
same level in this case. Hence, an EDP is acyclic iff it is P-acyclic.

Example 4.3. A GEDP consisting of rules

p+--q,

q lnotp +--

is P-acyclic but N-cyclic. It has two answer sets, ~ and {p, q}.

Example 4.4. Let 1-15 be the program consisting of rules

p(x) p(s(x)),

q(O) +-.

I-Is is not (P-)acyclic since it must have an infinite decreasing chain of levels. Hence,
H5 is P-cyclic by definition.

Let l-I be any GEDP. The EDP shift(H) is obtained from I-I by replacing every
rule of the form (9) with the rule

Al I . . . IAk ~-- B I , . . . ,Bl, C1, . . . , C,, ,notD1,. . . ,notD, (10)

The mapping shift of GEDPs to EDPs is called the shifting transformation.
The shifting transformation eliminates every positive not from a GEDP in the sim-

plest way. In fact, shift does not introduce any new literal into the language. This is
compared with another translation edp that will be presented in Section 6.1, which
requires new atoms to simulate positive not (see Remark 6.3). Note that a GEDP
H is acyclic if shift(H) is (P-)acyclic. Now, we show that the shifting transformation
is sound with respect to the answer set semantics for all GEDPs and is complete for N-
acyclic GEDPs.

Lemma 4.5. Let FI be any GEDP. Every answer set of shift (FI) is a minimal answer set
ofrI .

Proof. Let S be an answer set of shift(I-l). Then, S is an answer set of shift(I-l) s. That
is, S is a minimal set satisfying the conditions: (i) for any ground rule of the form (10)
from shift(H) such that {D1,... ,Dn} N S = 0 (i.e., for any rule of the form

Ax I . . . [Ak ~-- B , , . . . , B,, C1, . . . , Cm (1 1)

in shift(Fl)S), if {B~,... ,B,, C1, . . . , Cm} C_ S then {Al, . . . ,Ak} N S J: 0; (ii) if S con-
tains a pair of complementary literals then S = Lit. In these two conditions, (i) im-
plies the fact that: for any ground rule of the form (9) from H such that
{BI, . . . ,BI} C_ S and {DI , . . . ,D ,} n S = 0 (i.e., for any rule of the form

A,] . . . IAk +-- C , , . . . ,Cm (12)

56 K. lnoue, C. Sakama / J. Logic Programming 35 (1998) 39 78

in l.is), if {C1, . . . , Cm} C_ S then {Al, . . . ,Ak} n S # (3. That is, S is a minimal set sat-
isfying every ground rule from H s. Therefore, S is an answer set of K s, and hence an
answer set of 11.

To prove the minimality of S in the answer sets of H, suppose to the contrary that
there is an answer set T of H such that T C S. Then, there is a ground rule R of the
form (12) in 11 s \ FI r such that: (i) { G , . . . , Cm} c_ S, (ii) L E {A~,... ,At} for some
ground literal L E S \ T, and (iii) {B~,. . . ,Bt} C_ S but {B1, . . . ,Bt) g T. Since
{D1,.. . ,D~} n S = (3 and T c S imply {D~, . . .D,} n T = (3, there is the correspond-
ing ground rule R' of the form (11) in shift(I-l) r. By (i), (ii) and (iii), both S and T
satisfy R'. This implies that both S and T satisfy every rule in shift(K) r, and hence
satisfy every rule in shift(l-I) s (by shift(I-I) s c_ shift(I-I)r). However, since S is an an-
swer set of shift(H) s, S is a minimal set satisfying the rules of shift(H) s. This contra-
dicts the supposition that T(C S) satisfies the rules of shift(K) s. Therefore, no such T
exists. []

Theorem 4.6. let H be an N-acyclic GEDP, andS C_ Lit. S is an answer set o f Fl iffS is
an answer set o f shift(H).

Proof. The if-part directly follows from Lemma 4.5. To prove the only-if part,
suppose to the contrary that S is an answer set of K but is not an answer set of
shift(K). Then, S is not a answer set of shift(K) s. For each ground rule R of the form
(11) in shift(K) s such that {B1,.. . ,B1} C_ S, there is the corresponding rule R' of the
form (12) in H s. Since S is an answer set of 11 s, S satisfies R t, and thus also satisfies R.
Thus, S satisfied every ground rule in shift(H) s. Then, since S is not an answer set of
shift(H) s, there is a set T of literals such that T C S and T satisfies every ground rule
in shift(l-I) s. Now, two cases are considered, and both are shown to derive
contradiction.

(a) S is consistent. In this case, there must be a ground literal LI c S \ T and a
ground rule of the form (11) in shift(H) s such that: (i) { A 1 , . . . , A k } N S =
{L1) , {Ct , . . . ,Cm}C_S, and {B1 , . . .B t }C_S (by Lemma 5.2 in Section 5), and
(ii) {C t , . . . , Cm} C_ T but {B1,.. . ,BI} ~ T (i.e., the source of non-minimality lies
in some positive not by Observation 4.1). Now, let L2 be a literal such that
L2 E {B1,.. . ,B1) \ T. Since K is N-acyclic, l~L~) > /(L2). Then, for L2 E S \ T , there
is a ground rule of the form (11) in shift(H) ~ such that (i) {Al, . . . ,Ak} n S = {L2},
{C~, . . . ,Cm}C_S, and {B~, . . . ,B~}C_S (by Lemma 5.2 in Section 5), and (ii)
{C1, . . . , Cm,Bl , . . . ,Bl) ~ T (otherwise L2 must be in T). Let L3 be a literal such that
L3 E {C1, . . . , Cm,B1,.. . ,BI} \T . Notice that/(L2) /> /(L3). Repeating this arguments
generates a sequence of literal levels

/(Zl) > /(Z2) />/(Z3) ~/(Z4) /> . . .

Then, there must be some k (2 ~< k < oc) such that

l(Lk_l) > l(Lk) and l(Lk) = l(L~+l) = l(L~+2) ,

because otherwise, for any k there is l (> k) such that l(Lk) > l(Lt), so that there is an
infinite decreasing chain l(Lk) > l(Lt) > . . . , which contradicts the well-foundedness
of the level mapping. Let

S ' = S \ {Lk,Lk+l,Lk+2,...}.

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 57

Now, for each Li E S \ T(i >, k),Li E {Cl , . . . ,Cm} and Li ~ {B1,.. . ,BI} hold for
some rule R of the form (11) in shift(I-l) s. On the other hand, for each R, there is
the corresponding rule R' of the form (12) in 1-I s. Obviously, S ' (c S) satisfies every
R' and other rules in rI s. This contradicts the fact that S is an answer set of 1-I s.

(b) S = Lit. In this case, consider the positive form FI + of H, which is obtained
from H by replacing every negative literal -~L with a new atom L t. Since Lit is an an-
swer set of FI Lit, there is an answer set S' C_ Lit + of FI Li~÷ such that S' contains at least
one pair of contradictory literals, L1 and L' 1. Moreover, S t satisfies every rule in
shift(H+) L~t+. On the other hand, T C S = Lit implies that T contains no such contra-
dictory pair of literals. Thus, there is a set T' C S' such that T' satisfies every rule in
shift(H+) L~'+ and that T' does not contain both of Li and L' 1 . Let us assume that
L~ E S' \ T'. Then, starting from L1, we can construct a decreasing chains of levels
of literals as in the proof of the case (a), again contradicting the fact that S' is an an-
swer set o f H +L~'+. []

Corollary 4.7. Every answer set o f a n N-acyclic GEDP is minimal.

Proof. Follows from Lemma 4.4 and Theorem 4.6. []

Example 4.8. consider the N-acyclic GEDP.

plnotr +-- q,

q + - - r ,

p 4 - - - .

This program has the unique answer set {p, q, r}, which is also the answer set of the
program obtained by replacing the first rule with the shifted rule

p+--q,r .

Recall that the class of N-acyclic GEDPs properly includes the class of EDPs (Ob-
servation 4.2). Now, Theorem 4.6 shows that the shifting transformation preserves
the answer set semantics for N-acyclic GEDPs. This fact implies that an (N)-acyclic
G EDP can always be reduced to an EDP without changing the answer sets. In other
words, N-acyclic GEDPs collapse to EDPs. Then, the next question is when positive
not is really effective. Interestingly, not all of positive not are needed even for N-acyc-
lic programs. In fact, the shifting transformation in Theorem 4.6 can also be applied
to the N-acyclic sub-program of any N-cyclic GEDP.

Corollary 4.9. Let II be any GEDP, and S c_ Lit. Suppose that FINA is a subset of FI
such that I-[NA U I-I t is an N-acyclic GEDP for any N- acyclic set l-I t C_ FI. Then, S is an
answer set o f Fl iff S is an answer set o f (I-I\I-[NA) U shift(IJNA).

Proof. The proof of Theorem 4.6 does not necessarily require that every rule in an N-
acyclic G E D P be transformed by the shifting. When FI is N-cyclic, II\IINA is N-
cyclic. Transforming only an N-acyclic part IINA by the shifting does not affect the
answer sets of rI. []

58 K. Inoue, C. Sakama I J. Logic Programming 35 (1998) 39-78

Corollary 4.9 indicates that each set of N-acyclic rules that, if any other N-acyclic
rules are added to the set, would never become N-cyclic can be reduced to rules with-
out positive not by the shifting transformation. In other words, positive not is
meaningful and cannot be precisely represented in any other way only if rules are
N-cyclic.

Note that transformations of abducibles in abductive logic programming, disjunc-
tions under the possible model semantics, and fixed predicates in circumscription
presented in Section 3 all result in N-cyclic rules in GEDPs. We now see that N-acyc-
lic GEDPs (or EDPs) cannot precisely express these semantics as they involve non-
minimal answer sets.

The N-acyclic condition is only a sufficient condition for any equivalent transfor-
mation. An obvious necessary condition is that every answer set of a G ED P is min-
imal. However, this is not a sufficient condition. For example, consider the G E D P
II6 consisting of rules

p[notp ~---,

q ~ P ,

+--- not q.

96 has the unique (and hence minimal) answer set {p, q}. But 96 is an N-cyclic pro-
gram, and shift(96) has no answer set. Thus, the converse of Lemma 4.5 does not
hold in general. Namely, for an N-cyclic G E D P 17, a minimal answer set of 9 is
not necessarily an answer set of s h i f t (9) .

4.2. Integri ty constraints

Using Corollary 4.9, we see that a special kind of rules can always be transformed
by the shifting without regarding any other rule. A rule having no literals but posi-
tive not in its head is called an integrity constraint. This is because such a rule is never
used to infer a literal directly. For instance.

notp +--- q

is an integrity constraint meaning that if q is believed then p cannot be believed. This
rule has exactly the same effect as the integrity constraint

+-- p, q,

which denotes that both p and q cannot be believed at the same time. In general, ev-
ery integrity constraint can be represented as a rule with an empty head using the
shifting transformation.

Corollary 4.10. Let 9 be any GEDP, and S c Lit. Le t I C be any set o f integrity
constraints in 9 . Then, S is an answer set o f I-I i f f S is an answer set o]
(9 \ I C) u shi f t (IC) .

Proof. Since every rule in IC has no literal Ai in the form (9), it does not construct a
relation of the form l(Ai) ~ l(Bj) in the definition of N-acyclic GEDPs. Therefore,
IC is an N-acyclic GEDP satisfying the condition for 9NA in Corollary 4.9 []

K. lnoue, C Sakama / J. Logic Programming 35 (1998) 3~78 59

It is often claimed that, in logic programs with both negation as failure and clas-
sical negation, the coherence principle [1] is important: for any atom A and any ca-
nonical model M, if M ~ -~A then M ~ notA, and if M ~ A then M ~ not ~A. This
property can be naturally written using positive not as

not A *-- -~A, (13)

not ~A *--- A. (14)

Notice that these schemas for the coherence principle are converse to the rules for the
closed worm assumption:

~A +-- notA (or A ~-- no t~A) .

In [13], rules (13) and (14) are used to compute the extended well- founded semantics
for ELPs. The approach in [13] considers a paraconsistent semantics to capture the
meaning of rules with positive not but without disjunctions. On the other hand, in
the answer set semantics, the addition of these schemas for every atom A simply
makes every answer set (if exists) consistent. Hence, as in ELPs ([1], Theorem 3.1),
the coherency and the consistency coincide in GEDPs.

Example 4.11. The GEDP consisting of the two rules

p[notp ~--,

-~p Inot ~p +---

has four answer sets: 0, {p}, {-~p} and Lit. If we introduce

notp *--- ~p,

then Lit is rejected.

Note the that each rule representing the coherence principle is not used to derive
any literal. Thus, under the answer set semantics, the rules of the coherence princi-
ples are integrity constraints. By Corollary 4.10, schemas (13) and (14) can also be
represented as

A, ~A for any atomA.

Hence, the coherence principle can be expressed without positive not under the an-
swer set semantics.

5. Supported sets and non-minimal answer sets

One of the most important criteria that any model theoretic semantics should sat-
isfy is the"supportedness". Apt et al. [3] defined supported models for NLPs, and Mar-
ek and Subrahmanian [45] have shown that every stable model is a supported model.
Recently, the notion of supported models has been extended for disjunctive programs
by Baral and Gelfond [4] and by Brass and Dix [9]. In this section, we first define the
corresponding notion for GEDPs, which is then used to analyze cyclic GEDPs.

Let H be any GEDP. A set of ground literals S c_ Lit is a supported set of H if: (i) S
satisfies every ground rule from H, and (ii) for any literal L E S there exists a ground
rule

L t I . . . I L k l n o t L k + l l . . . l n o t L t ~ - - - L t + l , . . . , L m , n o t L ~ + l , . . . , n o t L ,

60 K. Inoue. C Sakama / J. Logic Programming 35 (1998) 3~78

from H such that
(a) {L,+,,... ,Lm} C_ S,
(b) {Lm+l,... ,L,} NS = 0,
(c) {L, , . . . ,Lk} n S = {L}, and
(d) {Lk+l,... ,Ll} C S.
This notion of supported sets reduces to that of [4] for EDPs, and to the notion of

supported models of [9] for NDPs, and that of [3,45] for NLPs. In fact, conditions
(a), (b), and (c) are exactly the same as the definition by [4]. The last condition
(d), together with (c), implies that all the disjuncts other than L in the head of the
ground rule are not satisfied by S.

Example 5.1, ~) is the unique supported set of FI3 = {Pt notq *-}. Both 0 and {p, q}
are supported sets of H7 = { p l n o t q +-, q lnotp +- q}, but the latter is not an answer
set of H7.

In the above example, all answer sets are supported sets. We now formally verify
this relationship between supported sets and answer sets.

Lemma 5.2 ([4], Proposition 4.1). Every consistent answer set o f an E D P is' a supported
set.

Theorem 5.3. Every cons&tent answer set o f a G E D P & a supported set.

Proof. Let 17I be a GEDP, and S its consistent answer set. By Proposition 2.1, S
satisfies every ground rule from H. By definition, S is a consistent answer set of H s.
By Lemma 5.2, S is a supported set of 1-I s. Namely, for any L C S, there is a ground
rule R of the form (2) from H s such that {Lt+l,. . . ,Lm} C_ S and {L1,.. . ,Lk}
NS = {L}. By the construction of I-I s, for the rule R, there is a corresponding ground
rule of the form (1) from H such that { L m + l , . . . ,Ln} fq S = ~ and {Lk+l,... ,L~} C S.
This completes the proof of the theorem. []

Theorem 5.3 is a generalization of Lemma 5.2, and hence that of Theorem 2 in [45].
Note that the converse of Theorem 5.3 does not hold in general (see Example 5.1).
However, we will show in Lemma 5.6 that the converse holds for P-acyclic GEDPs.

5.1. Supported sets in shifting

The supported set semantics is preserved through the shifting transformation for
any GEDP. Namely, any G E D P collapses to an E D P under the supported set semantics.

Theorem 5.4. Let H be any GEDP, a n d S c Lit. S & a cons&tent supported set o f H iff
S is a consistent supported set o f shift(H).

Proof. For a consistent set S of literals, S is a supported set of H
iff S satisfies every ground rule from H and for any L E S there is a ground rule of

the form (9) such that {C1,. . . ,C,,} C_ S, {D1,.. . ,Dn} n S = (3, {&, . . . ,A~} n S =
{L}, and {B1 Bl} C S

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 61

iff S satisfies every ground rule from shift(H) and for any L E S there is a ground
rule of the form (10) such that {B~,. . . ,Bt} C_ S. {C1,.. . ,Cm} C_ S, {D~,. . . , D,} AS
= 0, and {Al, . . . ,Ak} AS = {L}

iff S is a supported set of shift(H). []

Next, we consider how the shifting transformation affects the relationship between
supported sets and answer sets of GEDPs. We have seen in Section 4.1. that the an-
swer set semantics is preserved by the shifting for N-acyclic GEDPs. For P-acyclic
GEDPs, we will show that answer sets of programs are precisely supported sets of
shifted programs.

Lemma 5.5 ([6], Theorem 2.3). Let P be a (P-)acyclic EDP, and S C Lit. S is a
consistent answer set o f P iff S is a consistent supported set of P.

Lemma 5.6. Every cons&tent supported set of a P-acyclic GEDP H & a cons&tent
answer set of H.

Proof. Let S be a consistent supported set of H. Then, (i) S satisfies every ground rule
from [I and (ii) for any L E S there is a ground rule R of the form (9) such that
{C i , . . . ,Cm} C S , { D I , . . . , D , } N S = ~) , { A 1 , . . . , A k } N S = {L}, and { B I , . . . , B I }
C_ S. The fact (i) implies that S also satisfies every rule in H s. The fact (ii) implies that
there is the corresponding rule R r of the form (12) in I-I s for each L E S such that
{CI , . . . ,Cm} C_ S and {Al, . . . ,Ak} AS = {L}. Thus, S is a supported set of [Is. On
the other hand, because H is P-acyclic, l-I s is (P-)acyclic as well. By Lemma 5.5, S is
an answer set of I-I s, and hence the result follows. []

Theorem 5.7. Let H be a P-acyclic GEDP, and S C Lit. S is a cons&tent answer set of
H iff S is a consistent supported set of shift(H).

Proof. By Theorem 5.4, S is a consistent supported set of shift(H) iffS is a consistent
supported set of H. On the other hand, by Theorem 5.3 and Lemma 5.6, S is a consistent
answer set of H iffS is a consistent supported set of H. Hence, the theorem holds. []

Theorem 5.7 is a generalization of Lemma 5.5. The consistency of S in this theo-
rem cannot be omitted. For example, the GEDP H8 consisting of rules:

p]q ~--,

~p +--,

~q +--

is acyclic and has the answer set Lit. However, Lit is not a supported set of
shift(I-Is) = [Is.

Example 5.8. For the G E D P l-I2 introduced in Example 3.13, shift(H2) is exactly the
same as the program Hi:

Mary-at-Party +- John-at-Party,

John-at-Party +- Mary-at-Party,

62 K. lnoue, C Sakama / J. Logic' Programming 35 (1998) 39-78

whose supported sets are 0 and {John-at-Party, Mary-at-Party}, which coincide with
the answer sets of 1-I2.

The next corollary summarizes the properties of acyclic GEDPs. Recall that a
G EDP is acyclic iff it is both P-acyclic and N-acyclic.

Corollary 5.9. Let H be an acyclic GEDP, and S C Lit. The following four statements
are equivalent.

(a) S is a consistent answer set o f H.
(b) S is a consistent supported set o f H.
(c) S is' a consistent answer set o f shift(FI).
(d) S is a consistent supported set o f shif t(H).

Proof. Follows from Theorems 4.6, 5.4, and 5.7. []

5.2. Characterizing supported sets by answer sets

As far as the authors know, there does not seem to exist a proof procedure for com-
puting the supported model semantics for normal or extended (disjunctive) programs,
although many researchers point out the importance of supported models. The diffi-
culty seems to lie in the fact that there are non-minimal supported models of programs.
In this section, we characterize the supported sets for any G ED P in terms of its answer
sets. This implies that it provides a method to compute supported models proposed in
the literature [3,45,4,9]. To this end, we utilize the inverse shifting defined as follows.

Let FI be any GEDP. The GEDP invshift(H) is obtained from H by replacing ev-
ery rule of the form (9)

A,] . . .]Ak t notB1 I . . . t notB, ~-- C , , . . . , Cm, notD1, . . . , notD,

with the rule

A l] . . .] A ~] n O t B l l . . .] n o t B t] n o t G] . . .] n o t C m + - n o t D i , . . . , n o t D , .

Observation 5.10. For any G E D P l-I, invshift(H) is P-acyclic.

Theorem 5.11. Let 1-I be any GEDP, a n d S c Lit. S is a consistent supported set o f H iff
S is' a consistent answer set o f invshift(H).

Proofl S is a consistent answer set of &vshift(Fl)
iff S is a consistent supported set ofshift(invshift(1-I)) (by Theorem 5.7 and Obser-

vation 5.10)
iff S is a consistent supported set of shi f t (H) (by shi f t (invshi f t (H)) = sh i f t (K))
iff S is a consistent supported set of H (by Theorem 5.4). []

Two important results follow from Theorem 5.11. First, the supported set seman-
tics for any G E D P can be completely characterized in terms of the answer set seman-
tics. Secondly, computation of supported sets of a G ED P FI is realized by that of
answer sets of the G E D P invshift(H), which is then reduced to that of answer sets
of the EDP obtained by the edp translation that will be shown in Section 6.1. Then,

K lnoue, C Sakama I J. Logic Programming 35 (1998) 39-78 63

to get suppor ted sets, we can use any p r o o f procedure for comput ing answer sets o f
EDPs (see Section 6.3).

6. Complexity and computation

In this section, we consider the computa t iona l complexi ty o f G E D P s and present
an a lgor i thm to compu te the answer sets o f a finite G E D P . These results indicate
tha t posit ive not can be el iminated f rom p rog rams so that we can use any p r o o f pro-
cedure for comput ing E D P s or PDPs.

6.1. Simulation o f positive not by E D P S

We first show a po lynomia l - t ime t ranslat ion f rom a G E D P into an EDP. Let H be
any G E D P . The extended disjunctive p r o g r a m edp(H) is obta ined f rom FI by replac-
ing each rule with posit ive not in H o f the fo rm

Lt] . . . ILk]notLk+l l . . . [notLl +--- LI+1,.. . ,Lm, no tLm- i , . . . ,notL,, (15)

(n i> m ~> l > k ~> 0) with the rules wi thout positive not

)o, I . . .] Ak])ok+l 1-- . 12, ~ & + l , . . . ,Zm, notZm+l,.., notL,, (16)

Li+---2, f o r / = 1 , . . . , k , (17)

2i+--Li, Lk+i , . . . ,Lz f o r i = 1 , . . . , k , (18)

+--)~i, notLj f o r i = l , . . . ; k and j = k + l , . . . , l , (19)

+--2j, L 9 f o r j = k + l , . . . , l . (20)

Here, 2i is a new a t o m not appear ing elsewhere in H and is uniquely associated with
each disjunct o f a g round rule f rom FI. 6 Every rule wi thout positive not in I1 remains
in edp(l-l) as it is. In the following, we denote by Litn the set o f all g round literals in
the language o f H. Thus, Litn includes no new a t o m 2~.

Theorem 6.1. Let H be a GEDP, and edp(I1) its translated EDP. A set S & an answer
set o f 11 iff a set E is answer set o f edp(Fl) such that S = E A Litn.

Proof. Let S be an answer set o f l-I. First, consider the reduct H s. I f a rule

L, I . . . ILk ~ L,+, ,Lm (21)

is in H s, then for the cor responding rule (15) in l-I, it holds that {L~+l , . . . ,Ll} C S
and {Lm+t, . . . ,L,} n S = 0. In this case, the reduct edp(H) s includes the rule

")vl t ' ' " I'~k I/~k+ I I ' ' " 1/~/ +'--LI+I,. "',Lm (22)

6 If a rule contains n distinct free variables x = xi, . . . , xn, then a new atom).~(x) is associated with each
L~, where 2~ in this case is an n-ary predicate symbol appearing nowhere in P.

64 K. Inoue, C Sakama / J. Logic Programming 35 (1998) 39-78

and the rules (17), (18) and (20), but does not contain the rule (19). Since S satisfies
each rule in I-IS), for each rule R of the form (21) such that {Lt+l,. . . ,Lm} C_ S, there
exists Li E S for some 1 ~< i ~< k. Let

Z l = U{)~ilLiES, l<~i<<.k}.
REII s

Next, suppose that there is a rule (15) in H such that {Lm+t,...,Ln} NS~-0 but
3Lj(k + 1 ~j<<. l) such that Ly ~ S. In this case, there is no corresponding rule (21)
in H s, but the rule (22) is present in edp(H) s. edp(H s) also contains the rules (17),
(18) and (20) and the rules +--)~i for i = 1 , . . . ,k (from the rule (19)). Then, for each
such rule R' (22) of edp(H) s, let

E 2 = U {2sILsf[S'K+I<'j<~I}"
R'Eedp(H) s

Now let 52 = S U ~;3, where Z3 is a minimal subset of E1 U 522 such that each 2i or 2j
is chosen in a way that Y~ satisfies every rule of the form (22), (17), (18) and (20) and
the reduct of (19) by S. Obviously, it holds that S -- 52 n litn. Because new literals 2~'s
never appear within not, the program edp(II) s is exactly the same as the program
edp(I-I) z. Then, ~ satisfies all the rules of edp(I-I) z, and if S = Litn then Litn C_ Y..

To see that Z is a minimal set satisfying the rules of edp(l-I) z, notice that S is a
minimal set satisfying the rules of I-I s. From the construction of E3, it is easy to
see that E is a minimal set containing S and satisfying the rules of edp(II) z. We thus
only need to verify that there is no E' such that: (i) E' c E, (ii) E' satisfies the rules of
edp(H) z, and (iii) S' c S for S' = Z' n Litn. Suppose to the contrary that such a E'
exists. Then, the condition (iii) is satisfied only if there exist rules (17) and (18) such
that Li E S \ S' and 2i E E \ 52' for some 1 ~< i ~< k. For this 2s, there must be the rule
(22) such that {LI+I,... ,Lm} c_ S'. By the condition (ii), there is a literal 2j E Y/for
some k + 1 ~< j <~ l. This 2y, however, is not included in Z2 by (20), contradicting
the condition (i). Therefore, E is an answer set of edp(1-I) z, and hence an answer
set of edp(II).

Conversely, let 52 be an answer set of edp(H), and S = 52 n Litn. Since E is an an-
swer set ofedp(H) z, for each rule (22) in edp(H) z, if {L/+l,. . . ,Lm} C_ S, then 2, E E
for some 1 ~< i <~ I. There are two cases: (a) If 2~ E Z for some 1 ~< i ~< k, then Li E S by
(17) and hence {Lk+l,. . . , Ll} C_ S by (19). Then, the corresponding rule (21) exists in
II s and S satisfies it. (b) If 2z ~ E but 2j E 52 for some 1 ~< i ~< k and k + 1 ~< j ~< I, then
Lj ~ S by (20). Then, there is no corresponding rule (21) in H s. In either case, S sat-
isfies all rules of H s.

Suppose that there is a set S' of literals from Litn such that (i) S' c S and (ii) S'
satisfies the rules of 1-I s. Then, two conditions (i) and (ii) are satisfied only if there
is a rule (21) such that {Ll+l,...,Lm} C S' and for some two literals Lgl and
Lsz(1 _< il, i2<~k, il ¢ i2)L~l E S' but Ls2 E S \S ' . Without loss of generality, we
can assume that just one such rule exists in H s. Since S and S' contain L~.+I,... ,Lt
in the corresponding rule (15) in H, 2il, ,~i2 E 52 by (18). Let E' = E \ {L~2, }~i2}. Then,
Z' satisfies all the rules (22), (17), (18) and (20) existing in edp(H) z. This contradicts
the fact that E is an answer set of edp(H) z. Hence, S is an answer set of H s and there-
fore an answer set of H. []

We thus see that any G E D P can be translated to an EDP by eliminating positive
not. The fact that non-minimal answer sets of GEDPs can be expressed by answer

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 65

sets of EDPs that must be minimal is a somewhat surprising and unexpected result.
The reason why this simulation is possible is that the newly introduced atoms 2i's
have the effect to distinguish each positive not, and each answer set of edp(H) be-
comes minimal by the existence of these new atoms.

Example 6.2. Suppose that the gedp I-[9 is given as

p lnot q ~-,

q l notp ~- .

The answer sets of 1-I9 are {{p, q}, 0}. Correspondingly, its translated program

edp(H9) = {21]22 ~ , 23]/~4 +--,

p ~-- 21, 21 +--p,q, ,-- 21, notq, ~-- 22, q,

q ~-- 23, 23 ~-- q,p, +-- 23, notp, ~-- 24,p}

has the answer sets {{21, 23, p, q}, {22, 24}}.

Remark 6.3. The edp translation maps GEDPs to EDPs so that there is a one-to-one
correspondence between both answer sets. Although the edp translation can be
applied to any GEDP, the resultant EDP cannot have exactly the same answer sets
as those of the original GEDP (Observation 4.1). This means that we need an extra
mechanism to recover an original answer set, that is, removing every new atom 2i
from an answer set of the created EDP. On the other hand, we have provided the
shifting transformation of GEDPs to EDPs is Section 4.1. Although the shifting
transformation is not complete for every GEDP, it preserves the equivalence of
programs for N-acyclic GEDPs and does not need the additional task to remove 2i's.

6.2. Complexity results

We are now ready to give the complexity results for GEDPs. Since the class of
GEDPs includes the class of EDPs and we have shown a polynomial-time translation
from a G E D P into an EDP, the next result follows immediately from the complexity
results of EDPs given by Eiter and Gott lob [115].

THeorem 6.4. Let H be a finite propositional GEDP, and L a literal.
(a) Deciding the existence o f an answer set o f lI is Y~-complete.
(b) Deciding whether L is true in some answer set o f II is 5?~-complete.
(c) Deciding whether L is true in all answer sets of II is Fl~-complete.

Theorem 6.4. demonstrates that allowing positive not does not increase the com-
putational complexity of the answer set semantics. Eiter and Gott lob also show that
the complexity results for EDPs apply to EDPs without Classical negation -, as well.
Therefore. GEDPs are in the same complexity class as NDPs. Furthermore, Theo-
rem 6.4 (b) also applies to the minimal model semantics for PDPs. This observation
leads us to a further translation in Section 6.3.

Ben-Eliyahu and Dechter [6] have shown the (co-) NP-completeness of a restricted
class of EDPs. According to their notations, a dependency graph of a ground EDP P
is a directed graph in which its nodes are literals in P and there is an edge from L to L'

66 K. Inoue. C Sakama / J. Logic Programming 35 (1998) 39 78

iff there is a rule in P such that L appears in the body and L' appears in the head of
the rule. An EDP is head-cycle free if its dependency graph contains no directed cycle
that goes through two different literals in the head of the same disjunctive rule. Then,
three problems in Theorem 6.4 for propositional head-cycle free EDPs are reducible
to the problem of satisfiability or provability of propositional formulas in polynomi-
al-time [6]. Here, we show such a reduction of complexity results is also possible for a
restricted class of GEDPs, by generalizing their results.

The dependency graph of a GEDP is defined in the same way as that of an EDP
except that an additional edge is considered for positive not. Given G ED P 1-I, its de-
pendency graph Gn is a directed graph in which its nodes are ground literals from H
and there is an edge from L to L' iff there is a ground rule R from H such that either:

(i) L appears in the body and L' appears in the head of R; or
(ii) both not L and L' appears in the head of R.
Thus, while each not L in bodies is ignored, each not L in heads constructs an edge

in Gn (recall that we also ignored the level of every not L in bodies in the definition of
acyclic GEDPs in Section 4.1). A GEDP H is head-cycle free if Gn contains no di-
rected cycle that goes through two literals Lil, Li2(1 ~< il, i2<<.k, Lit ~ Li2) in any
ground rule of the form (15) from H. The class of head-cycle free GEDPs obviously
includes the class of head-cycle free EDPs and the class of ELPs. Also, the class of
head-cycle free GEDPs includes the class of GEDPs each of whose rule permits in
the head at most one L' but any number of not L's:

L1 [notL2 [. . . [notLt +-- Lt+j , . . . , Lm, notLm+l,..., notLn.

The class of head-cycle free GEDPs further includes the class of acyclic GEDPs:

Observation 6.5. Every acyclic GEDP is head-cycle-free. Moreover, the dependency
graph of an acyclic GEDP has no directed cycle.

The converse of the above observation does not necessarily hold when the depen-
dency graph has an infinite decreasing chain. For example, the program H5 in Exam-
ple 4.4 (Section 4.1) has no directed cycle, but is not acyclic. Now, we show that the
head-cycle free property is preserved by the edp translation.

Lemma 6.6. Let H be a GEDP. H is head-cycle free iff edp(I-I) is head-cycle free.

Proof. An edge from Lj to Li f o r j = k + 1 , . . . , l and i = 1, . . . ,k in the same rule (15)
is in Gn iff a path from Lj to Li through rules (18) and (17) is in Geap(n). Then, each
directed path from L to U in Gn is contained in Gedp(ri), and vice versa. Hence, any
two literals Lil ,i2 (l ~ il, i2 ~< k) in the same rule (15) are contained in a cycle in Gn iff
the literals 2il, 2i2 in the corresponding rule (16) are contained in a cycle in
Ge@(rl). []

The next result follows from Theorem 6.1, Lemma 6.6 and complexity results of
head-cycle free EDPs by [6]. It says that the computational complexity for the an-
swer set semantics of head-cycle free GEDPs lies at the first level of the polynomial
hierarchy, which is exactly the same level as the of head-cycle free EDPs or NLPs.

Theorem 6.7. Let H be a finite propositional head-cycle free GEDP, and L a literal.
(a) Deciding the existence of an answer set of H is NP-complete.

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

(b) Deciding whether L is true in some answer set o f H is NP-complete.
(c) Deciding whether L is true in all answer sets of H is co-NP-complete.

67

Note that the class of head-cycle free GEDPs includes, as a special case, the class
of programs P U abd(F) obtained f rom abductive programs (P, F) where both P and
F are ELPs (see Section 3.2). This fact and results in Section 3 imply that computa-
tional problems for abductive NLPs [31], knowledge systems [26], and the possible
model semantics for NDPs [55] have all the same complexity results as in Theorem
6.7. These results are also stated in [56] based on translations of such programs into
NLPs.

6.3. Computing answer sets of arbitrary GEDP

To compute the answer set semantics for any G E D P H, we can apply any proof
procedure for EDPs to the EDP edp(H) obtained in Section 6.1. To this end, a bot-
tom-up proof procedure for EDPs has been proposed by Inoue et al. [27] to compute
answer sets of EDPs using model generation techniques. Here, we present an essence
of the method of [27]. First, each EDP P is converted into its positive form P+, which
is obtained f rom P by replacing each negative literal -~L with a new atom -L. Note
that P+ is an NDP. We also denote the positive form of a set S of literals as S +. Next,
P+ is translated into the set fo (P +) of first-order formulas by completely eliminating
not as follows. For each rule in P+ of the form

LI] . . . ILk +- Lk+l, . . . ,Lm, notL, ,+l, . . . , notL,, (23)

where each Li is an atom, f o (P +) contains the formula

Lk+l A . . . AL,, D 111 V . . . V Hk V KLm+I V . . . V KL,, (24)

where Hi - LiA - KLm+I A . . . A - KL, (i = 1 , . . . , k) and fo (P +) contains the formulas

-~(L A - KL) for eachL 6 Lit+, (25)

~(L A - L) for each pairL, - L E Lithe. (26)

Here, KL is a new a tom which denotes that L should be true, and - KL is the pos-
itive form of -~KL. Now, let I be an Herbrand interpretation offo(P+), i.e., a set of
ground atoms in the language offo(P+). The, we say that I satisfies the stability con-
dition if it holds that

KL c I impliesL E I for every a tom L c Lit +. (27)

Lemma 6.8. [27]. Let P be an EDP, andS C Litv. S is a consistent answer set o f P iff M
is a minimal Herbrand model o f fo (P +) such that S + = M N Lit + and that M satisfies
the stability condition.

The next theorem completely characterizes the consistent answer sets of a G E D P
in terms of the above first-order translation. 7

7 Although Theorem 6.9 does not cover the contradictory answer set of II, the methods used in [27] can
be applied to identify the answer set Litn.

68 K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

Theorem 6.9. Let I-I be any GEDP, a n d S c Litn. S is a consistent answer set o f H i f M
is a minimal Herbrand model o f fo(edp(l-I) +) such that S + = M n Lit + and that M
satisfies the stability condition.

ProoL The result follows from Theorem 6.1 and Lemma 6.8. []

It is well known that for PDPs minimal Herbrand models coincide with answer
sets. Then, the formula (24) can be identified with the rules

1411 . . . IHklKLm+~ r . . . IKL,, +--Lk , , . . . , L,,,,

H i + - L i , - K L m + I , . . . , - K L , , (i = 1 , . . . , k) ,

Li~--Hi (i = 1 , . . . , k) ,

-KLj+- - -Hi (i = l , . . . , k ; j = m + l , . . . , n)

and schemas (25) and (26) can be written as

+-- - KL, L for eachL E Lit[~,

+- -L , L for each pa i rL , -L C Lit +.

Hence, the set f o (P +) can also be viewed as a PDP. We thus now have a polynomial-
time translation from GEDPs into PDPs. Hence, to obtain answer sets of GEDPs,
any procedure to compute minimal Herbrand models of PDPs can be applied as
well. There are several techniques for this computation such as [5,27,18]. In partic-
ular, our translation is suitable for applying a bottom-up model generation proce-
dure to compute answer sets of function-free and range-restricted GEDPs. Since
we have characterized abductive programs as well as other commonsense reasoning
in GEDPs in Section 3, they can also be computed by model generation procedures.
Inoue et al. [28] have developed such a parallel abductive procedure, and Inoue and
Sakama [30] have given a fixpoint semantics that accounts for the correctness of such
bottom-up procedures using a similar translation.

Example 6.10. The abductive program (P2, F1) given in Examples 3.1 and 3.4 is now
translated into fo(P2 U abd(Fl)) that consists of the propositional formulas

r A b D (p A - Kq) V Kq, a D q, r, Kp,

21V22, 2 1 - a , 21 D Ka, 7(22Aa) ,

23V24, 2 3 = b , 23 D Kb, 7(24Ab),

and schema (25). 8 There are five minimal Herbrand models of fo(Pz U abd(Fl)):

Ml = {r, Kp, 21, a, Ka, q, 23, b, Kb, Kq},

M2 = {r, Kp, 21, a, Ka, q, 24} ,

M3 = {r, Kp, 2a,).3, b, Kb, p , - Kq},

M4 = {r, Kp, 22, 23, b, Kb, Kq},

Ms = {r, Kp, 2z, 24}.

8 When an EDP P is an NDP, P+ = P holds and fo(P) need not include schema (26).

K. Inoue, C. Sakama I J. Logic Programming 35 (1998) 39-.78 69

Among these, only M3 satisfies the stability condition, and corresponds to the F1-
minimal belief model {r, p, b} of (P2, F1).

7. Relation to non-monotonic formalisms

Recent research on the semantics of logic programming and non-monotonic reason-
ing has demonstrated that both fields have influenced each other. In this section, we
establish the relationship between GEDPs and existing non-monotonic formalisms.
In particular, there is a close relationship between GEDPs and autoepistemic logic.

Recall that the class of GEDPs is the "logic programming" fragment of proposi-
tional MBNF [38]. The embedding of the rule (1)

Ll] . . . IL~-tnotLk+l I . . . I notL, +- L,+I, . . . ,Lm, notLm+l,... ,notL,

in MBNF is given by Lifschitz and Woo [41] as the formula

BLI+t A . . . A BLm A notLm+l A . . . A notL, D

BL1 V . . . V BL~ V notLk+l V . . . V notLl.

Besides MBNF, there are many non-monotonic formalisms in which EDPs can be
embedded. Gelfond et al. [23] use their disjunctive default logic, and Sakama and In-
oue [54] show translations into default logic [52], autoepistemic logic [49] and cir-
cumscription [47]. Since we have presented the translation of GEDPs into EDPs,
these previous results can be directly applied to embed GEDPs in such non-mono-
tonic formalisms via the edp translation.

Although these results are all correct, the translation of GEDPs into EDPs intro-
duces new literals like 2i's. One often wants to see a stronger result such that the log-
ical closure of an answer set is exactly the same as an extension of a non-monotonic
formalism and that the set of literals true in the extension is exactly the answer set. In
such an extension, the introduction of new literals should be avoided. Then, those
formalisms that obey the principle of minimality such as (disjunctive) default logic
and circumscription are rejected for this purpose. With this regard, the remaining
candidate is autoepistemic logic. Lifschitz and Schwarz ([39], Corollary 3.1) and
Chen ([12], Theorem 6) have independently provided the correct embedding of EDPs
in autoepistemic logic. Moreover, both results are proved in a way applicable to a
more general class of programs including consistent PL- theories of [41]. Here, we
can take advantage of their proofs. 9

Recall that a formula in autoepistemic logic is called objective if it does not con-
tain the modal operator B; otherwise it is subjective. An autoepistemic theory is a set
of formulas in autoepistemic logic. An autoepistemic theory is stable if it is closed
under the logical and introspective consequences. Namely, a stable set T satisfies
the conditions: (i) T = cons(T), where cons(T) denotes the set of logical consequenc-
es (in the sense of classical first-order logic) of T; (ii) if ~p ~ T then B~0 E T, and (iii) if
q~ ~ T then -~B~p E T. The meaning of each autoepistemic theory is usually character-

'~ Marek and Truszczyfiski [46] also show a different translation of EDPs into reflexice autoep&temk'
logic [60]. Lifschitz and Schwarz [39] further prove that reflexive autoepistemic logic can be used for the
embedding of consistent PL-theories.

70 K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

ized by the following stable set that is expanded from the theory: Given an auto-
epistemic theory K, a set T is a stable expansion of K iff it satisfies that

T = cons(K O {B~P I ~P E T} U {~B~o I ~p • Z}).

It is well known that for each set F of objective formulas, there is a unique stable set
E(F) containing F such that the objective formulas in E(F) are exactly the same as
those in cons(F). Moreover, if a theory K contains only objective formulas, then
E(K) is a unique stable expansion of K [49].

Given a GEDP l-I, its autoepistemic translation ae(FI) is defined as follows: Each
rule of the form (1) in FI is translated into the following formula in ae(II):

(BLl+l A Lt+,) A . . - A (BLm ALm) A ~BLm+l A " " A ~BL. D

(BL, AL,) V . . - V (BLk ALk) V ~BLk+l V . . . V-~BLt. (28)

Theorem 7.1. Let FI be consistent GEDP, and S a set of literals. S is an answer set of FI
iff E(S) is a stable expansion of ae(II).

Proof. The result follows from the Main Theorem in [39]. []

The autoepistemic translation ae(1-I) can be simplified for some class of GEDPs.
When FI is GEDP consisting of rules of the form

A1 I notA2[. . .]notAt +---Al+l,..., Am, notAm+l,..., notAn, (29)

where O<~l~m<<,n(Al may be empty) and each Ai is an atom, each conjuction
(BAi A Ai) for i = 1, l + 1 , . . . , m in ae(1-I) can be replaced simply with A~ as

Al+j A . . . AAm A ~ B A m + l A " ' " A ~BA, D Aj V -~BA2 V . " V ~BAI. (30)

Note that this class of GEDPs is a subset of the class of head-cycle free GEDPs,
and includes the class of NLPs 10 and programs P U abd(F) that are translated from
abductive NLPs (P, F). Let us denote as ae,(Fl) the set of autoepistemic formulas
obtained from a GEDP FI by replacing each rule of the form (29) with (30). An es-
sential difference between ae(I-I) and ae,(I-I) for a set FI of rules of the form (29) is
that, while ae, may map two different programs with the same answer sets into two
autoepistemic theories with different stable expansions, the stable expansions of
ae(FI) are uniquely determined by the answer by sets of I1 [39]. For example, both
1-I3 = {plnotq ~ } and Fll0 = { p + - q } have the same unique answer set 0, but
ae,(l-I3) = {Bq D p} has the stable expansion E(0), while ae,(Hl0) = {q D p} has
the stable expansion E({q D p}). On the other hand, both ae(Fl3)= {Bq D
(p ABp)} and ae(II)l 0 = {(q ABq) D (p ABp)} have the same unique stable expan-
sion E(0). Nevertheless, we have the following one-to-one correspondence between
the answer sets of l-I and the stable expansions of ae,(l-I).

~0 An autoepistemic translation of NLPs, which maps each rule without positive not into (30), was firstly
introduced by Gelfond [19].

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 71

Corollary 7.2. Let FI be a consistent GEDP such that H is a set o f rules o f the form
(29), and S a set o f atoms. S is an answer set ofFl iff S is the set o f objective atoms true
in a stable expansion o f aen(H)

Proof. Suppose that S is an answer set of H. By Theorem 7.1, there is a stable
expansion E of ae(H) such that S = E fq At where At is the set of atoms occurring in
H and that

E = cons(S U {B,:P I q~ E E} U (-,B,:p I q~ d E}) .

The set {B(p] C E} includes BA for each A E S. In the presence of these subjective at-
oms, all the objective atoms S in E also follows from some stable expansion E' of
ae,(H), and vice versa. Hence, S = E' n At. The converse direction can also be shown
in the same manner. []

The above corollary can also be applied to the embedding of the possible model
semantics for a NDP P since each rule in the translated GEDP pro(P) is in the form
(29).

Corollary 7.3. Let P be a consider N D P that consists o f rules o f the form

All . . . IAk ~-- Ak+l,.. . ,Am,not A,,+l,.. .notA~.

A set S o f atoms is a possible model o f P iff S is the set o f objective atoms true in a
stable expansion o f the set o f formulas obtained by translating each above rule in P into
the formula

A~+l A . . . AAm A ~BAm+l A "" A-~BAn D

(A1 V-~BA,) A " " A (Ak V ~BAk) A (BA, V " " V BAk).

Proof. The translated formula is equivalent to the conjunction of the aen translation
of rules (7) and (8) in pro(P). Then, the corollary follows from Theorem 3.9 and
Corollary 7.2. []

Now, let us look again at the embedding of abduction in GEDPs given in Theo-
rem 3.2. The rule (3)

7[not 7 ~--

is translated into

by the autoepistemic translation, which is then equivalent to

B7 ~ 7. (31)

The set consisting of formula (31) produces two stable expansions, one containing
and BT, the other containing -~B7 but neither y nor 77. Historically, the first expan-
sion has been regarded as anomalous since the belief of 7 is based solely on the as-
sumption that 7 is believed with no other support [33]. However, this situation is
naturally interpreted in abduction. The fact that the formula (31) is the archetype
to generate hypotheses strongly justifies the correctness of our use of positive not
in the corresponding rule (3).

72 K, Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

Finally, the relationship between the supported set semantics of GEDPs and au-
toepistemic logic can also be equipped in order to highlight the underlying non-
monotonicity of the formalism. Marek and Subrahmanian [45] have proposed such
a connection for NLPs. In our case, it is enough to apply the autoepistemic transla-
tion aei to the supported set semantics via the inverse shifting of Theorem 5.11.
Namely, given a GEDP H, its supported sets can be chracterized by the stable expan-
sions of the inversely shifted GEDP ael(invshift(H)).

In summary, we have utilized the "non-minimal" nature of autoepistemic logic to
express abduction and inclusive disjunctions in knowledge representation. The intro-
spective nature of autoepistemic logic enable us to believe a certain proposition (say
P) either from the lack of belief in Other proportions (through ~BQ D P for example)
or from no additional precondition (through BP D P for example). These properties
can completely describe the meanings of negative and positive occurrences of nega-
tion as failure in logic programming.

8. Discussion

1. Brewka and Konolige [10] give another semantics for GEDPs which is different
from the answer set semantics in this paper. They allow positive not in a program but
still obey the principle of minimality. Consequently, their semantics can never repre-
sent non-minimal canonical models and its relationship to autoepistemic logic must
be different from ours. In this respect, they suggest the use of moderately grounded
expansions [33] for the embedding. However, the following example demonstrates
that moderately ground expansions are of no use to characterize the minimal answer
sets of GEDPs. Instead, parsimonious stable expansions [15] appropriately character-
ize the minimal answer sets.

Recall that a stable expansion of aft autoepistemic theory K is moderately ground-
ed if its objective part is not larger than the objective part of any other stable set that
includes K. A stable exparlsion of K is parsimonious if its objective part is not larger
than the objective part of any other stable expansion of K. Note that each moderate-
ly grounded expansion is parsimonious but the converse does not necessarily hold.

Example 8.1. Consider the GEDP rI6 given the Section 4.1:

p[notp ~-,

q ~-p,

~-- notq.

l"I 6 has the unique (and hence minimal) answer set {p, q}. The autoepistemic trans-
lation of 1-I 6 is

a e ° (r I 6) = {Wp ~ p, p D q, Bq}.

This autoepistemic theory has no moderately grounded expansion. In fact, E({p, q})
is not a minimal stable set that included aen(I-I6) since E({q}) is a stable set contain-
ing ae,(I'16) and its objective part is smaller than that of E({p, q}). On the other
hand, E({p, q}) is the unique parsimonious stable expansion.

K. Inoue, C. Sakama I .L Logic Programming 35 (1998) 39- 78

Theorem 8.2. Let H be a consistent GEDP, and S a set o f literals.
answer set o f I-I iff E(S) is a parsimonious stable expansion o f ae(II).

73

S is a minimal

Proof. The result follows from Theorem 7.1 and the definition of parsimonious stable
expansions. []

Recall that our answer set semantics for GEDPs is characterized by stable expan-
sions of the translated autoepistemic theories. From the complexity viewpoint, Eiter
and Gott lob have shown that deciding whether an objective formula belongs to some
parsimoniously grounded expansion of an autoepistemic theory is £f-complete in
general [15], while the same problem for some stable expansion is 2;f-complete
[25]. From this observation, it is conjectured that computing with a minimal answer
set of G E D P is harder than computing with any answer set unless the polynomial
hierarchy collapses.

2. An interesting property of the rule (3) 7 [not 7 ~ is that it is valid in the sense
that every answer set satisfies it, that is, 7 is either contained or not contained in it. In
autoepistemic logic, the corresponding formula (31) is always contained in any stable
expansion. However, the modal axiom schema of the same form

T: Bq0 D q~

cannot be put into the premise set without changing its stable expansions [49]. Sim-
ilarly, adding the rule L I notL ~ to a program allows the literal L to be sanctioned
that otherwise would not be, but this may cause literals that are entailed by the pro-
gram to decrease since the number of answer sets increases. For example, q is en-
tailed by the program containing one rule

q +- not p,

but once P l notp +- is adopted q is no longer entailed. Another example of this prop-
erty can be seen in the fact that a declaration o f f i x e d predicates prevents over-min-
imization and undesired side effects in circumscription (Section 3.4). Sometimes such
an addition of valid rules may make an incoherent program get an answer set.

For example,

q *-- notp,

~q ~--

has no answer set, but with the rule p lno tp ,--- it obtains the answer set {~q ,p} . The
rule L I notL +-- in GEDPs and the schema T in autoepistemic logic can thus be ap-
plied to various domains other than abduction such as contradiction resolution and
reflection in the sense of Konolige's analysis of meta reasoning [34].

3. Gelfond gives another cautious semantics for the closed world assumption in
order to treat Example 3.10 properly by introducing the concept of strong introspec-
tion [20]. However, unlike Theorem 3.9 for our possible model semantics, this con-
cept cannot be embedded in MBNF [38].

On the other hand, Eiter et al. propose a new non-monotonic formalism called
curbing [17] which interprets disjunctions inclusively. Since their good models are
nor necessarily minimal models, it is interesting to see whether MBNF can express
curbing nor not. In the context of PDPs, it turns out that there is a close relationship
between good models and possible models.

74 K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78

4. Lifschitz and Turner [40] show that a special form of positive not can be re-
placed with classical negation. As we have seen in Section 3.1, abducible literals L
and --L can be encoded as rules

L]no tL +---,

-~L l not-~L +--- .

In their setting (on the domain of reasoning about action), under the existence of the
completeness rule for L:

~-- notL, not-~L,

the above two abducible rules can be represented by the rule

L[-~L ~--

While this kind of replacement is sometimes possible, positive not is generally quite
different from classical negation in heads. For example, as noted in Section 4,
H3 = {p lno tq ~ } has the unique answer 0, but { p l ~ q *--} has two answer sets
{p} and (~q}.

5. Marek et al. [43] characterize the supported models of NLPs by means of their
framework of constraint programming. Roughly speaking, a rule with the constraint
of the form

A * - - B l , . . . , B m : q~t A " " A ~b,

is read as "A i f B1,... Bm under the condi t ion that ~b I A . . . A q~n holds" . Thus, the
body of this rule contains two kinds of conditions: those to be evaluated minimally
(Bi's) as usual and those to be expected its supportedness (qSfs). In other words, con-
straint programming offers the spectrum of the answer set/supported set semantics
for NLPs. This rule corresponds to a rule with positive not of the form

A Inot4), I . . . Inotc~, ~ B , , . . . ,Bm.

Hence, their framework is also characterized using positive not.
6. It is worth nothing that there is a GEDP whose dependency graph contains no

directed cycle but it has non-minimal answer sets. For example, the program Hi1:

p(x) lnotp(s(x)) ~--,

q(O) e--

has answer sets {q(0)} and {q(O),p(O),p(s(O)) ,p(s2(O)) , . . .} . Since 1-Ill is not N-acyc-
lic, Theorem 4.6 cannot be applied to this program. In fact,

s h i f t (H u) = {p(x) ~-- p(s(x)) , q(O) e--}.

which is the same as program YI5 in Example 4.4 (Section 4.1), has the unique answer
set {q(0)}. However, since II~l is P-acyclic, the infinite answer set of Ill~ is also a sup-
ported set of YI5 by Theorem 5.7. This example indicates that the theory of positive
not or supported sets may have interesting applications to perpetual processes in the
line of [42], Ch. 6.

9. Conclusion

This paper has provided a number of new results in the class of general extended
disjunctive programs (GEDPs), i.e., disjunctive programs which permit negation as

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 75

failure and classical negation both positively and negatively. The class of GEDPs is a
natural extension of previously proposed logic programs. In particular, we have
shown in this paper:
• embedding of abductive programs, the possible model semantics for NDPs, fixed

predicates in circumscription in the answer set semantics for GEDPs,
• a syntactic condition under which a GEDP collapses to an EDP using the shifting

transformation,
• characterization of the supported set semantics for GEDPs in terms of the answer

set semantics for GEDPs,
• the computational complexity of GEDPs based on a polynomial-time translation

of GEDPs into EDPs,
• an algorithm to compute answer sets of GEDPs based on a translation of GEDPs

into PDPs, and
• the relationship between GEDPs and autoepistemic logic.

In conclusion, negation as failure in the head opens new possibilities of logic pro-
gramming for representing commonsense knowledge. The most interesting property
of GEDPs is that they may have non-minimal answer sets. It is due to the N-cyclic
property that abductive programs, inclusive disjunctions and fixed predicates can be
encoded as GEDPs with positive not . Incidentally, supported sets have a similar non-
minimal property, and we have actually established the relationship between positive
not and supported sets. Moreover, from the computational viewpoint, it has been
shown that positive not does not introduce an extra complexity source. Therefore,
computation of answer sets of GEDPs is realized using any proof procedure for com-
puting answer sets of EDPs. With these results, we conclude that the concept of ne-
gation as failure in the head is a useful tool for representing knowledge in various
domains in which the principle of minimality is too strong.

Acknowledgements

Discussions with Alexander Bochman, Thomas Eiter, George Gottlob, Michael
Gelfond, and Vladimir Lifschitz were helpful to make many ideas in this paper clear.
We also thank the anonymous referees for their comments.

References

[1] J.J. Alferes, L.M. Pereira, On logic program semantics and two kinds of negation, in: K. Apt (Ed.).
Logic Programming: Proceedings of the Joint International Conference and Symposium, MIT Press,
Cambridge, MA, 1992, pp. 574-588.

[2] K.R. Apt, M. Bezem, Acyclic programs, New Generation Computing 9 (3/4) (1991) 355-363.
[3] K.R. Apt, H.A. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.),

Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, 1988,
pp. 89-148.

[4] C. Baral, M. Gelfond, Logic programming and knowledge representation, Journal of Logic
Programming 19/20 (1994) 73-148.

[5] C. Bell, A. Nerode, R.T. Ng, V.S. Subrahmanian, Implementing deductive databases by linear
programming, in: Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, ACM, New York, 1992, pp. 283-292.

76 K. Inoue, C Sakama / J. Logic Programming 35 (1998) 39-78

[6] R. Ben-Eliyahu, R. Dechter, Propositional semantics for disjunctive logic programs, in: K. Apt (Ed.),
Logic Programming: Proceedings of the Joint International Conference and Symposium, MIT Press,
Cambridge, CA, 1992, pp. 813-827.

[7] A. Beringer, T. Schaub, Minimal belief and negation as failure: A feasible approach, in: Proceedings
of AAA1-93, AAA1/MIT press, Cambridge, MA, 1993, pp. 400-405.

[8] A. Bochman, On bimodal nonmonotonic logics and their unimodal and nonmodal equivalents, in:
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, Los Altos, CA, 1995, pp. 1518 1524.

[9] S. Brass, J. Dix, Characterizations of the stable semantics by partial evaluation, in: [44], pp. 85 98.
[10] B. Brewka, K. Konolige, An abductive framework for general logic programs and other

nonmonotonic systems, in: Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, Los Altos, CA, 1993, pp. 9 15.

[11] E.P.F. Chan, A possible world semantics for disjunctive databases, IEEE Transactions on Data and
Knowledge Engineering 5 (2) (1993) 282 292.

[12] J. Chen, Minimal Knowledge + Negation as Failure = Only Knowing (Sometimes), in: [50], pp. 132-
150.

[13] C.V. Damfisio, L.M. Pereira, Default negated conclusions: Why not?, in: R. Dyckhoff, H. Herre, P.
Schroeder-Heister (Eds.), Extensions of Logic Programming: Proceedings of the Fifth International
Workshop, Lecture Notes in Artificial Intelligence 1050, Springer, Berlin, 1996, pp. 103 117.

[14] P.M. Dung, Acyclic disjunctive logic programs with abductive procedure as proof procedure, in:
Proceedings of the International Conference on Fifth Generation Computer Systems 1992, Ohmsha,
1992, pp. 555 561.

[15] T. Eiter, G. Gottlob, Reasoning with parsimonious and moderately grounded expansions,
Fundamenta Informaticae 17 (1992) 31 53.

[16] T. Eiter, G. Gottlob, Complexity results for disjunctive logic programming and application to
nonmonotonic logics, in: D. Miller (Ed.), Logic Programming: Proceedings of the 1993 International
Symposium, MIT Press, Cambridge, MA, 1993, pp. 266 278.

[17] T. Eiter, G. Gottlob, Y. Gurevich, Curb your theory!-A circumscriptive approach for inclusive
interpretation of disjunctive information, in: Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, Morgan Kaufmann, Los Altos CA, 1993, pp. 634~639.

[18] J.A. Fernfindez, J. Minker, Disjunctive deductive database, in: Proceedings of the International
Conference on Logic Programming and Automated Reasoning, Lecture Notes in Artificial
Intelligence 624, Springer, Berlin, 1992, pp. 332-356.

[19] M. Gelfond, On stratified autoepistemic theories, in: Proceedings of AAAI 87, Morgan Kaufmann,
Los Altos, 1987, pp. 297-211.

[20] M. Gelfond, Strong introspection, in: Proceedings of AAA1 91, AAA1/MIT Press, Cambridge, MA,
1991, pp. 386 391.

[21] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R.A. Kowalski,
K.A. Bowen (Eds.), Logic Programming: Proceedings of the Fifth International Conference and
Symposium, MIT Press, Cambridge, MA, 1988, pp. 1070-1080.

[22] M. Gelfond, V. Lifschitz, Classical Negation in Logic Programs and Disjunctive Databases, New
Generation Computing 9 (3,4) (1991) 365-385.

[23] M. Gelfond, V. Lifschitz, H. Przymusinska, M. Truszczyfiski, Disjunctive defaults, in: J. Allen, R.
Fikes, E. Sandewall (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of
the Second International Conference, Morgan Kaufmann, Los Altos, CA, 1991, pp. 230 237.

[24] M. Gelfond, H. Przymusinska, T. Przymusinska, On the relationship between circumscription and
negation as failure, Artificial Intelligence 38 (1989) 75-94.

[25] G. Gottlob, Complexity results for nonmonotonic logics, Journal of Logic and Computation 2 (3)
(1992) 397-425.

[26] K. Inoue, Hypothetical reasoning in logic programs, Journal of Logic Programming 18 (3) (1994)
191 227.

[27] K. Inoue, M. Koshimura, R. Hasegawa, Embedding negation as failure into a model generation
theorem prover, in: D. Kapur (Ed.), Automated Deduction: Proceedings of the Eleventh International
Conference, Lecture Notes in Artificial Intelligence 607, Springer, Berlin, 1992, pp. 400-415.

[28] K. Inoue, Y. Ohta, R. Hasegawa, M. Nakashima, Bottom-up abduction by model generation, in:
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, Los Altos CA, 1993, pp. 102-108.

K. Inoue, C. Sakama / J. Logic Programming 35 (1998) 39-78 77

[29] K. Inoue, C. Sakama, On positive occurrences of negation as failure, in: J. Doyle, E. Sandewall, P.
Torasso (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth
International Conference, Morgan Kaufmann, Los ALtos, CA, 1994, pp. 293-304.

[30] K. Inoue, C. Sakama, A fixpoint characterization of abductive logic programs, Journal of Logic
Programming 27 (2) (1996) 107 136.

[31] A.C. Kakas, P. Mancarella, Generalized stable models: A semantics for abduction, in: Proceedings of
the Ninth European Conference on Artificial Intelligence, Pitman, London, 1990, pp. 385-391.

[32] A.C. Kakas, R.A. Kowalski, F. Toni, Abductive logic programming, Journal of Logic and
Computation 2 (6) (1992) 719-770.

[33] K. Konolige, On the relation between default and autoepistemic logic, Artificial Intelligence 35 (1988)
343-382.

[34] K. Konolige, An autoepistemic analysis of metalevel reasoning in logic programming, in: Proceedings
of the Third International Workshop on Meta-Programming in Logic, Lecture Notes in Computer
Science 649, Springer, Berlin, 1992, pp. 2648.

[35] R. Kowalski, J.S. Kim, A metalogic programming approach to multi-agent knowledge and belief, in:
V. Lifschitz (Ed.), Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, Academic Press, New York, 1991, pp. 231 246.

[36] H.J. Levesque, All I know: A study of autoepistemic logic, Artificial Intelligence 42 (1990) 263 309.
[37] V. Lifschitz, Computing circumscription, in: Proceedings of the Ninth International Joint Conference

on Artificial Intelligence, Morgan Kaufmann, Los Altos CA, 1985, pp. 121-127.
[38] V. Lifschitz, Minimal belief and negation as failure, Artificial Intelligence 70 (1994) 53 72.
[39] V. Lifschitz, G. Schwarz, Extended logic programs as autoepistemic theories, in: [50], pp. 101 114.
[40] V. Lifschitz, H. Turner, From disjunctive programs to abduction, in: J. Dix. L.M. Pereira, T.C.

Przymusinski (Eds.), Non-Monotonic Extensions of Logic Programming: Selected Papers from
the ICLP '94 Workshop, Lecture Notes in Artificial Intelligence 927. Springer, Berlin, 1995.
pp. 2342.

[41] V. Lifschitz, T.Y.C. Woo, Answer sets in general nonmonotonic reasoning (Preliminary Report), in:
B. Nebel, C. Rich, W. Swartout (Eds.), Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference, Morgan Kaufmann, 1992, Los Altos, CA, pp.
603 614.

[42] J.W. Lloyd, Foundations of Logic Programming, 2nd ed., Springer, Berlin, 1987.
[43] V.W. Marek, A. Nerode, B. Remmel, On logical constraints in logic programming, in: [44], pp. 43 56.
[44] V.W. Marek, A. Nerode, M. Truszczyfiski, (Eds.), Logic Programming and Nonmonotonic

Reasoning: Proceedings of the Third International Conference, Lecture Notes in Artificial Intelligence
928, Springer, Berlin, 1995.

[45] W. Marek, V.S. Subrahmanian, The relationship between stable, supported, default and auto-
epistemic semantics for general logic programs, Theoretical Computer Science 103 (1992) 365 386.

[46] V,W. Marek, M. Truszczyfiski, Reflexive autoepistemic logic and logic programming, in: [50], pp.
115 131.

[47] J. McCarthy, Circumscription A form of nonmonotonic reasoning, Artificial Intelligence 13 (1980~
27-39.

[48] J. Minker, On indefinite data bases and the closed world assumption, in: Proceedings of the Sixth
International Conference on Automated Deduction, Lecture Notes in Computer Science 138,
Springer, Berlin, 1982, pp. 292-308.

[49] R.C. Moore, Semantical considerations on nonmonotonic logic, Artificial Intelligence 25 (1985) 75-
94.

[50] L.M. Pereira, A. Nerode (Eds.), Logic Programming and Non-monotonic Reasoning: Proceedings of
the Second International Workshop, MIT Press, Cambridge, MA, 1993.

[51] T.C. Przymusinski, Stable semantics for disjunctive programs, New Generation Computing 9 (3/4)
11991) 401~,24.

[52] R, Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81-132.
[53] C. Sakama, Possible model semantics for disjunctive databases, in: Proceedings of the First

International Conference on Deductive and Object-Oriented Databases, Ohmsha, 1989, pp. 337 351.
[54] C. Sakama, K. lnoue, Relating disjunctive logic programs to default theories, in: [50], pp. 266282.
[55] C. Sakama, K. Inoue, An alternative approach to the semantics of disjunctive logic programs and

deductive databases, Journal of Automated Reasoning 13 (1) (1994) 145-172.

78 K. Inoue, C Sakama / J. Logic Programming 35 (1998) 39-78

[56] C. Sakama, K. Inoue, On the equivalence between disjunctive and abductive logic programs, in: P.V.
Hentenryck (Ed.), Logic Programming, Proceedings of the Eleventh International Conference, MIT
Press, Cambridge, MA, 1994, pp. 489-503.

[57] C. Sakama, K. Inoue, Embedding circumscriptive theories in general disjunctive programs, in: [44],
pp. 344-357.

[58] C. Sakama, K. Inoue, Representing priorities in logic programs, in: M. Maher (Ed.), Logic
Programming: Proceedings of the 1996 Joint International Conference and Symposium, MIT Press,
Cambridge, MA, 1996, pp. 82-96.

[59] J.S. Schlipf, Formalizing a logic for logic programming, Annals of Mathematics and Artificial
Intelligence 5 (1992) 279-302.

[60] G.F. Schwarz, Autoepistemic logic of knowledge, in: A. Nerode, W. Marek, V.S. Subrahmanian
(Eds.), Proceedings First International Workshop on Logic Programming and Non-monotonic
Reasoning, MIT Press, Cambridge, MA, 1991, pp. 260-274.

