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PARTIAL DEDUCTION IN DISJUNCTIVE 
LOGIC PROGRAMMING 

CHIAKI SAKAMA AND H I R O H I S A  SEKI 

I> This paper presents a partial deduction method in disjunctive logic 
programming. Partial deduction in normal logic programs is based on un- 
folding between normal clauses, hence it is not applicable to disjunctive 
logic programs in general. Then we introduce a new partial deduction 
technique, called disjunctive partial deduction, which preserves the mini- 
mal model semantics of positive disjunctive programs and the stable model 
semantics of normal disjunctive programs. From the procedural side, 
disjunctive partial deduction is combined with a bottom-up proof proce- 
dure of disjunctive logic programs, and top-down partial deduction is 
introduced for query optimization. Disjunctive partial deduction is also 
applied to optimizing abductive logic programs and compiling proposi- 
tional disjunctive programs. © Elsevier Science Inc., 1997 <1 

1. INTRODUCTION 

Partial deduction or partial evaluation is known as one of the optimization tech- 
niques in logic programming. Given a logic program, partial deduction derives a 
more specific program through performing deduction on a part of the program, 
while preserving the meaning of the original program. Such a specialized program 
is usually more efficient than the original program when executed. 

Partial deduction in logic programming was first introduced by Komorowski [10] 
and has been investigated by several researchers in various aspects. (For an 
introduction and bibliographies, see [11] and [27], for example.) From the semantic 
viewpoints, Lloyd and Shepherdson [12] formalized partial evaluation for normal 
logic programs and provided conditions to assure the correctness with respect to 
Clark's program completion semantics. In the context of the unfold/fold transfor- 
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mation of logic programs, Tamaki and Sato [28] showed that partial deduction 
preserves the least Herbrand model semantics of definite logic programs. The 
result was extended to the perfect model semantics for stratified logic programs 
[14, 25], and the stable model semantics and the well-founded semantics for normal 
logic programs [24, 26]. 

Recent studies of logic programming extended its framework to include indefi- 
nite information in a program. Disjunctive logic programming [13] is such an 
extension of logic programming, and due to its expressiveness, it has been given 
increasing attention over the past few years. However, the expressiveness of 
disjunctive logic programming implies the difficulty of realizing efficient proce- 
dures. In fact, it is known that the computation of disjunctive logic programs is 
generally harder than that of normal logic programs [4]. In order to make 
disjunctive logic programming practical, it is necessary to develop optimization 
techniques such as partial deduction for disjunctive logic programs. Partial deduc- 
tion in normal logic programs is based on unfolding between normal clauses, so 
that some extension is needed to apply the technique to disjunctive logic programs. 

In this paper, we develop partial deduction techniques for disjunctive logic 
programming. We first extend the unfolding operation in normal logic programs to 
the one which supplies unfolding between disjunctive clauses. Then we introduce a 
new partial deduction method, called disjunctive partial deduction, for disjunctive 
logic programs. We prove that disjunctive partial deduction preserves the minimal 
model semantics of positive disjunctive programs, and the stable model semantics 
of normal disjunctive programs. On the procedural side, disjunctive partial deduc- 
tion is combined with a bottom-up proof procedure for disjunctive logic programs, 
and top-down partial deduction is introduced for query optimization. Disjunctive 
partial deduction is also applied to optimizing abductive logic programs and 
compiling propositional disjunctive programs. 

The rest of this paper is organized as follows. In Section 2, we provide basic 
terminologies which shall be used in this paper. In Section 3, we introduce 
disjunctive partial deduction for positive disjunctive programs, and show that it 
preserves the minimal model semantics. Section 4 extends the result to normal 
disjunctive programs and shows that the stable model semantics is preserved by 
disjunctive partial deduction. A connection between normal and disjunctive partial 
deduction is also addressed. In Section 5, disjunctive partial deduction is combined 
with a proof procedure of disjunctive logic programs, and top-down partial deduc- 
tion is introduced. Section 6 presents applications of disjunctive partial deduction 
for abductive logic programs and propositional disjunctive programs. Section 7 
discusses related issues and Section 8 summarizes the paper. 

2. PRELIMINARIES 

We first introduce the framework of disjunctive logic programming which is 
standard in the literature. 

A normal disjunctive program is a set of clauses of the form 

A ~ V . . . V A t ~ - - B 1 A . . . A B m A  n O t B m + l A ' " A  notB n (l>_O,n>m>_O), 

where Ai's and Bj's are atoms and not is the negation-as-failure operator. The 
left-hand side of the clause is the head, while the right-hand side is the body. The 
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clause  is ca l led  disjunctive (resp.  normal) if l > 1 (resp.  l = 1). The  clause is ca l led  
an integrity constraint if the  head  is e m p t y  ( l  = 0). A no rma l  dis junct ive p r o g r a m  
with no  occu r rences  o f  not is ca l led  a positive disjunctive program, while  a p r o g r a m  
conta in ing  no dis junct ive c lause  is ca l led  a normal logic program. A ground 
c l a u s e / p r o g r a m  is a c l a u s e / p r o g r a m  conta in ing  no  var iables .  In  this pape r ,  when 
we wri te  A v E ~ F, E deno t e s  a (possibly  empty)  d is junct ion  in the  head ,  and  F 
deno t e s  a (possibly empty)  con junc t ion  in the  body.  1 

A substitution is a m a p p i n g  f rom var iab les  to t e rms  or = { x l / t  I . . . . .  xn/tn}, where  
each  xi is a var iable ,  each  t i is a t e rm dis t inct  f rom x i, and  the  var iab les  x I . . . .  , xn 
are  dist inct .  T h e  subs t i tu t ion  o- is ca l led  a ground substitution if all ti 's a re  ground.  
A subs t i tu t ion  tr is a unifier of  two a toms  A and  B if A t r  = B~r. A unif ier  tr of  
two a toms  A and B is a most general unifier (mgu) if for  any unif ier  0 of  A and B, 
0 = Ao- holds  for  some  subs t i tu t ion  A. 

An interpretation of  a p r o g r a m  is a subset  of  the  H e r b r a n d  base  of  the  p rog ram.  
F o r  a posi t ive  dis junct ive p r o g r a m  P,  an i n t e rp re t a t i on  I is ca l led  a minimal model 
of  P if I is a min ima l  set satisfying the p rog ram.  A posi t ive  disjunct ive p r o g r a m  is 
consistent if it has a min ima l  model ;  o therwise ,  a p r o g r a m  is inconsistent. The  
minimal model semantics [16] of  a posi t ive  dis junct ive p r o g r a m  P is def ined  as the  
set o f  all min ima l  m o d e l s  o f  P ( d e n o t e d  by ~ Z p ) .  

Given  a n o r m a l  dis junct ive p r o g r a m  P and  an i n t e rp re t a t i on  I ,  a g round  
posi t ive dis junct ive p r o g r a m  P~ is def ined  as follows. A c lause  A 1 v -.- v A  l ,--- 
B 1A . . .  A B  m is in p l  iff A 1 v -.. vAt<- -B  1A . . .  A B  m AnotBm+ 1A "" A n o t B  n 
is a g round  ins tance  o f  a c lause  in P and  {Bin+ 1 . . . . .  B,} • I = 0 .  Then ,  I is cal led 
a stable model of  P if I co inc ides  with a min ima l  m o d e l  of  pl.  A norma l  
dis junct ive p r o g r a m  can have none ,  one,  o r  mul t ip le  s table  mode l s  in genera l .  A 
p r o g r a m  having no  s table  m o d e l  is ca l led  incoherent. The  stable model semantics [6, 
17] of  a n o r m a l  dis junct ive p r o g r a m  P is def ined  as the  set of  all s table  mode l s  of  
P ( d e n o t e d  by ~ e ) .  T h e  s table  m o d e l  semant ics  co inc ides  with G e l f o n d  and 
Lifschi tz ' s  s table  m o d e l  semant ics  [5] in n o r m a l  logic p rograms .  

3. P A R T I A L  D E D U C T I O N  IN P O S I T I V E  D I S J U N C T I V E  P R O G R A M S  

3.1. Normal  Partial Deduction 

Par t ia l  d e d u c t i o n  cons ide red  in this p a p e r  is def ined  as unfolding be tween  clauses 
in a p rog ram.  2 F o r  a n o r m a l  logic p r o g r a m  P ,  par t ia l  deduc t ion  is formal ly  
p r e s e n t e d  as follows. 

Given  a n o r m a l  c lause  C f rom P ,  

C : H ~ A A F ,  

suppose  that  C 1 . . . . .  C k a re  all of  the  c lauses  in P such that  

C i : A i ~ - F  i (1 < i _ k ) ,  

whe re  A M =Ai~r i holds  with an mgu  ~ for  each  i. 

i When we write a clause as A v ~, ,-- F, it does not necessarily mean that A should be the left-most 
atom in the head of the clause. That is, any two clauses are identified modulo the permutation of 
disjuncts/conjuncts in their heads/bodies. 

2 Partial deduction (also called partial evaluation) is defined in terms of SLDNF procedure in [12], 
but here we prefer to define it independently of particular procedures. 
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Then the normal partial deduction of P (with respect to C on A) is defined as 
the program ~{cN;A}(P) (called a residualprogram) such that 

= ( P \ { C I )  o {C', . . . . .  C;,}, 

where each C~ is defined as 

C :  ( H  ,-- r A 

When any particular clause C and an atom A are not important in the context, 
we simply write ~N(p) instead of "/r{N;A)(P). 

Example 3.1. Let P be the program consisting of clauses 

C,: p(x) ~-q(x), 

C2: q(y) ~ r(y), 

C3". q( a) 

Then the normal partial deduction of P with respect to C 1 on q(x) becomes 
'rr{Nj; q(x)}(P) = {C2, C3, C~, C~}, where 

C'2: p(y) o r ( y ) ,  

C'3: p(a) ~- 

In the context of the unfold/fold  transformation of logic programs, Tamaki and 
Sato [28] showed that normal partial deduction preserves the least Herbrand model 
semantics of definite logic programs. The result was later extended to the stable 
model semantics and the well-founded semantics of normal logic programs [24, 26]. 
In disjunctive logic programming, however, a program possibly contains disjunctive 
clauses and normal partial deduction presented above is not applicable in general. 

Example 3.2. Let P be the program consisting of clauses 

C1: p(a) Vp(b)  V q ( c ) * - ,  

C2: p(x) ~-q(x), 

C3: r(y) *-p(y). 

Considering partial deduction with respect to C 3 on p(y), C 3 is unfolded by C 2. In 
addition, the disjunctive clause C 1 contains disjuncts unifiable with p(y);  then C 3 
must be unfolded by C1. 

So our first task is to extend normal partial deduction to the one which supplies 
unfolding for disjunctive clauses. 

3.2. Disjunctive Partial Deduction 
Partial deduction in positive disjunctive programs is defined as follows. 

Definition 3.1. Let P be a positive disjunctive program and C a clause in P of the 
form 

C: ~ * - A  A F. (1) 
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Suppose that C1 . . . . .  C k are all of  the clauses in P such that 

c , :  A, v ~ , , -  r, (1 < / _ k ) ,  (2) 

where A~cr/=Air/ holds with an mgu o-~ for each i. 
Then a disjunctive partial deduction of P (with respect to C on A) is defined as a 

residualprogram ~.D A}(p ) such that 

( P U (C', . . . . .  C~,}, 
,-/T D ~c; A~(P) = 

~ ( P \ ( C } )  U {C', . . . . .  C,~}, 

where 

c ; :  ( ~  v E, , -  r ,x r ,)  o-,. (3) 

if there is a clause C~ in P such 
that ~ i  contains an atom unifiable 
with A; 
otherwise, 

A simplified notation ¢rD(p) is also used hereafter. In the above transformation, 
the clause C~ is produced by resolution in the residual program. In addition, the 
original clause C is kept in the residual program if Ci contains multiple disjuncts 
unifiable with A. This is because in this case C would be used for unfolding 
between A and other  unifiable atoms in E~. Otherwise, if each C~ has at most one 
disjunct unifiable with A, C is removed in the residual program. 

Note that in contrast to normal partial deduction, a residual program depends 
on the choice of the disjunct A i in C i if C i contains multiple disjuncts unifiable 
with A. In the absence of disjunctive clauses, disjunctive partial deduction coin- 
cides with normal partial deduction in the previous section. 

Example 3.3. Let P be the program of Example 3.2. Then a disjunctive partial 
O t t deduction ~'~c3; p(y)}(P) becomes {C~, C 2, C 3, C 1, C2}, where 

C'~: r (a)  v p ( b )  V q ( c )  ¢--- (by C 3 and C 1 with the mgu {y /a}) ,  

C'z: r ( x )  ~ q ( x )  (by C 3 and C 2 with the mgu {y /x} ) .  

On the other hand, wD q~x)}(p)becomes {CI,C3,C'(}, where {C2; 

C';: p ( a )  v p ( b )  V p ( c )  ~- (by C2 and C1 with the mgu {x /c} ) .  

Now we show that disjunctive partial deduction preserves the minimal model 
semantics of positive disjunctive programs. We first present a preliminary lemma. 

Lemma 3.1. Let P be a positive disjunctive program and M its minimal model. Then 
an atom A is in M iff there is a ground clause A v "~ ~- F from P such that 
M \  {A} ~ F and m \  {A} ~ E. 

PROOF. ( ~ )  Suppose that for some atom A in M, there is no ground clause 
A v E *-- F from P such that M \ { A }  ~ F and M \ { A }  ~ E. Then, for each ground 
clause C of the form A V Y ~ F, M \  {A} I¢ F or M \  {A} ~ E; hence is holds that 
M \ { A }  ~ F implies M \ { A }  ~ ~. In this case, M \ { A }  satisfies each clause C and 
becomes a model of P, which contradicts the assumption that M is a minimal 
model. Hence the result follows. 

( ~ )  Assume that A is not in M. Then M \ { A }  =M,  and for a ground clause 
A v E ~ F in P, M ~  F and M ~  E imply A ~ M ,  contradiction. [] 
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Theorem 3.2. Let P be a positive disjunctive program and zr D( p ) any residual program 
of P. Then ~t'~t'p =~Zc'J¢" ~(p). 

PROOF. Let us consider a disjunctive partial deduction of P with respect to C of 
the form (1) on the atom A. First consider the case that there is a clause C i of the 
form (2) in P such that Ei contains an atom unifiable with A. In this case, 
~'¢CD;m(P) = P U {C' t . . . . .  C~,}. Since P and zCt~;A~(P) are logically equivalent, the 
result immediately holds. Next consider the case that for any clause C i of the form 
(2) in P, Ei contains no atom unifiable with A. 

(___) Let M be a minimal model of P. Since the clause (3) is a resolvent of the 
clauses (1) and (2) in P, M satisfies each clause (3) in 7r(D;A}(P). Thus M is a 
model of ~'/cD; A}(P)-Assume that there is a minimal model U of "rgtD;A}(P) such 
that N c M. Since N is not a model of P, N does not satisfy the clause (1). Then, 
for some ground substitution 0 such that (E ~ A / x  F)0 is a ground clause, it holds 
that N ~ FO, N ~AO, and N ~ E0. As the minimal model N of yr{D;A}(P) includes 
AO, it follows from Lemma 3.1 that there is a ground instance of a clause E of the 
form (2) or (3) from zrlD;m(P) such that it contains AO in the head. Let E $  be 
such a ground clause for some substitution ~0. Put 0 ' =  0~. Then EqJ=EO' 
contains AO' =AO in the head. Also, by N ~  F0, N ~ A O ,  and Ng:EO, it holds 
that N~FO' ,  N ~ A O ' ,  and N ~ E O ' .  (i) Suppose first that EO' is a ground 
instance of the clause of the form (2) such that AiO' =AO'. Then N ~AO'  implies 
N\{AO' }  ~ FiO' and N\{AO'}  ~'ZiO' (by Lemma 3.1). Here  N \ { A O ' }  ~ FiO' 
implies N ~  Fs0'. Since Xi contains no atom unifiable with A, Xi0' does not 
contain AO'. Thus N\{AO'}  ~'£i0' also implies N~'ZiO'.  Hence, N does not 
satisfy the ground clause (E v ~ *-- F/x Fi)O'. But since AO' =AiO' and o- i is an 
mgu of A and A i, it holds that 0' = crih for some h. Then, the above clause, which 
is not satisfied in N, is an instance of the clause (3). This contradicts the 
assumption that N is a model of IrtD: A}(P)- (ii) Next suppose that EO' is a ground 
instance of the clause of the form (3) such that (~  v Xi)O' contains AO'. In this 
case, it holds that 0' = o-~h for some A; then Atr i =Aitr i implies AO' =AiO'. As 
E~0' does not contain A~O' in CiO', E0 '  contains AO'. Then N ~ A O '  implies 
N ~  E0 ' ,  which contradicts the fact N ~  E0 ' .  Therefore,  M is also a minimal 
model of ZrtcD; A~(P). 

(_D) Let M be a minimal model of ~-t~; re(P). If M is not a model of P, M does 
not satisfy the clause (1). In this case, M~: E0, M ~ A O ,  and M r  F0 hold for the 
ground clause ( E ~ A / x  F)0 with a ground substitution 0. Since the minimal 
model M of ~'t~;A~(P) includes AO, it follows from Lemma 3.1 that there is a 
ground instance of the clause E of the form (2) or (3) in ~-t~; re(P) such that it 
contains A O in the head. Let 0'  be a ground substitution defined in the same 
manner as above. When E is of the form (2), M ~ A O '  implies M ~ FiO' and 
M 0~ Ei 0 '  (by the same argument as (i) presented above). Thus M does not satisfy 
the corresponding clause (3), which contradicts the assumption that M is a model 
of 1rt~; A~(P). Else when E is of the form (3), by the same argument as (ii) above, it 
holds that M ~AO'  implies M ~ E0 ' ,  which contradicts the fact M ~: E0 ' .  Hence 
M is a model of P. Next assume that there is a minimal model N of P such that 
N c M. By (c_), N is also a minimal model of ~-t~; A~(P), but this is impossible since 
M is a minimal model of "n'(cD;A}(P). [] 

Corollary 3.3. Let P be a positive disjunctive program. Then P is inconsistent iff zr D(p) 
is inconsistent. 
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Example 3 4 If is easy to see that both 7 r~ . ,  v (P )  and 75~ ~ x (P )  in Example • . { ~;~(~)} . f iq(  )} 

3.3 have the minimal models {p(a), r(a)}, {p(b), r(b)}, and {p(c), q(c), r(c)}, which 
are exactly the same as ~".//'p. 

4. PARTIAL DEDUCTION IN NORMAL DISJUNCTIVE PROGRAMS 

4.1. Disjunctive Partial Deduction in Normal Disjunctive Programs 

Disjunctive partial deduction is defined as unfolding between positive subgoals and 
disjunctive heads, so the presence of negation as failure in clause bodies does not 
affect the process of partial deduction• Therefore,  disjunctive partial deduction in 
normal disjunctive programs is defined in the same manner  as Definition 3•1, 
except that in this case each clause possibly contains negation as failure. Then we 
show that disjunctive partial deduction preserves the stable model semantics of 
normal disjunctive programs. In the following, notF means the conjunction of 
negation-as-failure formulas. 

Theorem 4.1• Let P be a normal disjunctive program. Then SPJp = ~ O ( p ) .  

PROOF. Let M be a stable model of P. Then M is a minimal model of pM. Since 
pM is a positive disjunctive program, M is a minimal model of pM iff M is a 
minimal model of rrD(P M) (by Theorem 3.2). Now let us consider the clauses 

C: £ ~ A  A F A notF' 

and 

Ci: Aiv~, i<--FiAnotr '  i ( l < i < k )  

in P, where A ~  i = A i ~  for some mgu o- i. Let 0 be any ground substitution which 
makes both C and C i ground and AO =AiO. 3 In this case, ~ is an mgu of A and 
Az, so 0 = criA holds for some substitution A. 

(i) If M ~ F '0  and M ~ ["0 for some i (1 < i < k), the clauses 

EO: ( £  ~ A  A F)O 

and 

EiO: ( A i V wZ i <-- r i ) o  

are in pM. From these clauses, disjunctive partial deduction generates the clause 

E;O: (:~ v ~,i ~- r A r , ) o  

in w D {C;AI(PM). On the other hand, from C and C i in P, there is the clause 

C~: ( ~, V ~'i <--- F A F i A notF' A notF[) ~r i 

in ~r{Oc;,4}(P). Since M ~  F'O and M ~  F/'0 hold for 0 =  erda, C[O becomes E~O in 
7rlcD; A}( P ) M. 

(ii) Else if M ~ F '0  or M ~ F/0 for any i (1 < i < k), the clause EO or EiO is not 
included in pg. Then the clause E~O is not produced in "rr{D;A}(PM). On the other 
hand, each clause C~O from ~(D;AI(P) is eliminated in 7r{D;AI(P) M. 

3 Such a g r o u n d  subs t i tu t ion  is o b t a i n e d  by combin ing  a g round  subs t i tu t ion  for C and  one  for C i 
with  su i tab le  va r i ab le  r enaming .  



236 C. SAKAMA AND H. SEKI 

Thus, there is a one-to-one correspondence between the clauses i n  ~{D;A}(pM) 
and the clauses in rr{~; m(P)M; hence, 7r{D; A}(P M) = rq D. A}(P) M. Therefore, M is a 
minimal model of a rrD(P M) iff M is a minimal model of rrD(p) M and a stable 
model of ~rD(P). [] 

Corollary 4.2. Let P be a normal disjunctive program. Then P is incoherent iff 7r D( p)  
is incoherent. 

The above theorem also implies that in normal logic programs, normal partial 
deduction preserves Gelfond and Lifschitz's stable model semantics. 

Corollary 4.3. Let P be a normal logic program. Then SP3-e = S~ N( p ) .  

The above corollary justifies the corresponding result of [24]. 

4.2. Connection between Normal  and Disjunctive Partial Deduction 

Next we present a method of computing disjunctive partial deduction in terms of 
normal partial deduction. 

Let C be a clause of the form A v ~ ~- F. Then, we define Sfi(C, A)  as the 
clause 

(~: A ¢--- F A ~ 

where £ =.41/x -.. A.4 t for £ = A 1 v -.- v At, and each ,4 i is a new atom intro- 
duced for each A i. In particular, C = C if £ is empty. Conversely, the function 
Sft-1 is defined as the transformation which transforms any clause (~ to C in a 
program. Given a normal disjunctive program P, 15 is a normal logic program in 
which any disjunctive clause C in P is replaced with some normal clause (~. 

Theorem 4.4. Given a normal disjunctive program P, let C be a clause of  the form (1) 
and C i a clause of  the form (2) such that A~r i = A i o "  i with an mgu cr i. Then, 

I Sft l(~r{~; a}(15u {A ~ A})), ifthere is a clause C i in e such 
that "£i contains an atom 

3"g{D ; A }(P) = unifia ble with A; 
~Sft ' (~r,~; A~(ff)), otherwise, 

where t 5 is a normal logic program in which C is replaced with some C and each Ci 
is replaced with Sfi(C i, A i ) .  

PROOF. Let C = H  1 ~ A  A F A E, where £ = H  1 V " ' "  V H  l and ~- = / J 2  /~ ""~A /~l" 
When each C i contains at most one disjunct unifiable with A, by C and 
Sft(Ci, A i) = A  i ~ F i A ~i, rr{~; A1(15) produces clauses 

O;: (/-/1 ' -  r A =_ A r, A S , ) < ,  

which become the disjunctive clause (3) by Sft -1. Therefore, Sft-l(rqN;A}(15))= 
~rl~; A}(P). Else when some C i contains more than one disjunct unifiable with A, by 
unfolding C with A *--A, rrU-{c; A}(15 U {A ~A})  produces C as well as (~. Therefore, 

1 N " Sft- (rr{o; A}(P U {A ~ a})) coincides with rr{~; A}(P). [] 
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Example 4.1. Let P be the program 

C~: p(a) V p ( b ) ~ ,  

C2: q(x)  ~ p ( x ) .  
D t Then, a disjunctive partial deduction 7r{c2; p~x))(P) becomes {C1, C2, CO, where 

C',: p(b) v q ( a )  ~ . 

On the other hand, Sft(C1, p(a)) is 

61: p(a) ~ ( b ) ,  

and /5= {~1,C2}. Since C1 has two disjuncts unifiable with p(x), by putting 
N - I.) {C3} ) {C1, C2 ,  C3,  C4}, where C 3 = p ( x )  *-p(x), "n'{c2; p ( x ) l ( P  = 

Ca: q( a) ~ fi( b). 

C 4 becomes C' 1 by Sft-1, so Sfi- l('rrtN;p<x)}(/5 U {C3})) = {C 1, C2, C3, C'1}. Here C 3 is 
D a tautology; hence, Sfi-l(Tr{N;e<x)~(/5 0 {C3})) is equivalent t o  ~ { C 2 ; q ( x ) } ( P ) .  

The above theorem shows that disjunctive partial deduction can be computed 
using normal partial deduction together with suitable program transformations. 

5. COMPUTING PARTIAL DEDUCTION 

5.1. Bottom- Up Proof Procedure 
Computation of minimal and stable models of a disjunctive program is achieved in 
a bottom-up fashion. The following procedure, which generates a set of models of a 
positive disjunctive program, is a standard one in the literature [7, 13, 15]. 

Given a positive disjunctive program P, let J e  ° = {0}. Then for i > 0 do: 

1. For any I ~ ,  there is an integrity constant in P of the form 

~-- -B  1 A "'" A B  m 

such that I ~ (B 1 A -.. A B,,)~ for some ground substitution o-, then remove 
1 from ~ .  

2. For any I ~ and for every clause in P of the form 

A i V . . .  V A t ~ B  1A.. .  AB m (l>_1) 

such that I ~ ( B  1A ..- AB,~)cr and I ~ ( A  1 v ... vAt)~r for some ground 
substitution ~r, put I O  {A/~r} into j ~ + l  for every j = 1 . . . . .  l. 

3. Iterate the above two steps until it reaches the fixpoint ~ n  + 1 =Sff.  

In step 1, the procedure prunes interpretations which do not satisfy integrity 
constraints in the program. In step 2, the procedure generates the new set of 
interpretations ~ + 1  from ~ by performing forward-reasoning based on hyper- 
resolution and case-splitting on non-unit derived clauses. 

The soundness of case-splitting is guaranteed in range-restricted programs, 4 
while the termination of the procedure is assured in function-free programs. The 
next lemma presents that the above procedure is used to compute the minimal 
model semantics. 

4 Any variable in a clause has an occurrence in a positive atom in the body. 
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Lemma 5.1 [7, 13, 15]. Let P be a range-restricted function-free positive disjunctive 
program and Jp" the fixpoint o f  the above procedure. Then, ~t'A'p = min(~y) ,  
where m i n ( J )  = {I ~ J  l ~ J ~ J  such that J c I} .  

Now we show that disjunctive partial deduction can be combined with the 
procedure presented above. 

Lemma 5.2. Let P be a range-restricted positit,e disjunctive program. Then any residual 
program 7r D ( p ) is also range-restricted. 

PROOF. Since P is range-restricted, any variable occurring in Ei in (2) also occurs 
in F/. On the other hand, any variable occurring in E of (1) occurs in either F or 
A. If it occurs in F, then the clause (3) is range-restricted. Else if it occurs in A, 
each variable xj in A is unified with the corresponding term tj in Ai, where 
variables, if any, in t~ occur in I" i. Thus, the clause (3) is range-restricted. Hence, 
the residual program 7r{D;A}(P) is range-restricted. [] 

By Lemmas 5.1 and 5.2 and Theorem 3.2, the following result holds. 

Theorem 5.3. Let P be a range-restricted function-free positive disjunctive program and 
7rD( p )  any residual program of  P. Then, 

At'At'p = min ( Jp  ~) = min(J f i ,  o,,). 

Computation of stable models and partial deduction in normal disjunctive 
programs are similarly achieved using the program transformation in [7]. 

5.2. T o p - D o w n  Part&l Deduct ion  

Top-down partial deduction specializes a program with respect to a given atom, 
which is useful to optimize programs for query-answering in deductive databases. 

Given a normal disjunctive program P, an atom A is true in P under the stable 
model semantics if for every stable model I of P, there is a substitution ~r such 
that A or is included in I. Else if for some stable model I of P there is o- such that 
Act is included in I, A is possibly true in P. Otherwise, if there is no such 
substitution, A is false in P. 

Top-down partial deduction in normal disjunctive programs is defined as follows. 

Definition 5.1. Given a normal disjunctive program P and an atom A, let us define 

I I ° ( P )  = P ,  

I I ~ + ' (p )  = ~r{f,B,,(II~(P)), 

where C is any clause of the form A ' v  E <---F in I I~(P)  such that A' is 
unifiable with A, and Bj ¢ F. Then top-down partial deduction with respect to A 
is defined as any I I~(P)  (i > 0). 

By definition, I I~(P)  is defined as a residual program which is obtained from P 
by iteratively performing disjunctive partial deduction with respect to any clause 
containing an atom unifiable with A in the head. As a result, deduction steps 
starting from the target atom A are reduced in residual programs when queried. 
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Since top-down part ial  deduct ion  is def ined as an i terative appl icat ion of  
disjunctive par t ia l  deduc t ion ,  the  next  resul t  immed ia t e ly  follows f rom 
T h e o r e m  4.1. 

Theorem 5.4. Let P be a normal disjunctive program. Then, A is true (resp. possibly 
true, false) in P iff A is true (resp. possibly true, false) in I I ~ ( P )  (i > 0). 

Example 5.1. Let P be the p r o g r a m  

61: q (x )  <---p(x), 

C2: p ( x )  ~ r ( x ) ,  

C3: r(a) v s ( b )  <--- 

Then,  II2<x)(P) = {C 2, C 3, Ca}, where  

64:  q(a) v s ( b )  ~ , 

and q(x) is possibly true.  

6. A P P L I C A T I O N S  

6.1. Optimizing Abductive Logic Programs 

Abductive logic programming [9] is an extension of  logic p r o g r a m m i n g  which has 
impor tan t  appl icat ions  in c o m m o n - s e n s e  reasoning  and knowledge  representa t ion .  
I noue  and S a k a m a  [8, 19] showed that  abduct ive logic p rog rams  are expressed in 
t e rms  of  disjunctive logic p rograms .  This  fact implies that  disjunctive part ial  
deduct ion  is also used to opt imize  abduct ive logic p rograms .  In this section, 
we address  an appl icat ion of  disjunctive part ial  deduct ion  to abductive logic 
p rog ramming .  

An  abduct ive logic p r o g r a m  is def ined in te rms  of  a no rma l  disjunctive p rog ram 
as follows. 

Definition 6.1 [8, 19]. Le t  P be  a no rma l  disjunctive p r o g r a m  and ~¢ a set o f  a toms 
called abducibles. Then,  an abductive disjunctive program is def ined as a normal  
disjunctive p r o g r a m  

PA = P U  {A V d ~  IA ~}, 

where A is a newly introduced atom associated with each A. 5 

In an abductive disjunctive program, an abductive hypothesis is either assumed 
or not. The situation is encoded in the program by the augmented disjunctive 
clause. Namely, the disjunct A is chosen if an abducible A is assumed, while A is 
chosen otherwise. 

Let PA be an abductive disjunctive program and O a ground atom which 
represen ts  an observation. 6 Then,  a set E c J is an explanation of  O in PA if there  

5 In [8], a negation-as-failure formula not A is used instead of A. 
6 If an observation contains variables O(x), we introduce a clause O' ,-- O(x) to a program and 

consider the newly introduced ground atom O' as an observation. 
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is a stable model M of PA such that O ~ M and E = M A ..~.7 An explanation E is 
minimal if no other explanation F exists such that F c E. 

Example 6.1. Let P be the program 

C 1 : o ~ p ,  

C2: p ~ a ,  

C3: p ~ notb, 

with the abducibles ~¢ = {a, b}. Then the abductive disjunctive program PA includes 
the additional clauses 

C 4 :  a v a ~--- , 

C s : b v b c - -  

Suppose that o is an observation. Then PA has three stable models containing o: 
{o, p, 5,/~}, {o, p, a,/9}, {o, p, a, b}. Hence, ~ ,  {a}, and {a, b} are explanations of o, 
while Q is the  minimal explanation. 

Now we apply top-down partial deduction to optimize abductive logic programs. 

Theorem 6.1. Let PA be an abductive disjunctive program and 0 an observation. Then, 
E is a (minimal) explanation of 0 in PA iff E is a (minimal) explanation of 0 in 
H~)(P A) (i > 0). 

PROOF. The result follows from the definition of explanations and Theorem 5.4. 
[] 

Thus, top-down partial deduction optimizes abductive logic programs by reduc- 
ing inference steps from an observation to explanations. 

Example 6.2. In Example 6.1, I12o(PA) = { C 2 , C 3 , C 4 , C 5 , C 6 , C 7 }  , where 

C6:  O V a  4-- , 

C 7 : o ~ not b. 

Then HZo(PA) has three stable models containing o, which are equivalent to those 
of PA" Hence, all the (minimal) explanations are preserved. 

Sakama and Inoue [21] also introduce another method of partial deduction for 
abductive logic programs. 

6. 2. Compiling Propositional Disjunctive Programs to Normal Logic Programs 

In propositional disjunctive programs, disjunctive partial deduction is used to 
compile disjunctive logic programs to normal logic programs. 

A ground clause is called a conditional fact if it has no positive subgoals (i.e., 
E ~-notF). A propositional normal disjunctive program is called a normal form if 
every clause in the program is a conditional fact. A ground clause E ~-F  is a 

7 Here, ~¢ is identified with its ground instances. 
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tautology if ]2 f3 F v~ •. Brass and Dix [3] showed that the iterative applications of 
disjunctive partial deduction and the elimination of tautology transform any 
propositional normal disjunctive program to a semantically equivalent disjunctive 
program in a normal form. 

Example 6.3. Le t  Po be the program 

C1: p ~ q A notr ,  

CE: q<--p,  

C3- F <--- s, 

C4: pVq<---  

First, 7r D {C~,q}(Po) becomes P1 = {Cz, C3, C4, Cs, C,}, where 8 

C5: p ~ p  Ano t r ,  

C 6 : p ~ not r. 

Here,  C 5 is a tautology, hence removed. Put P e = P I \ { C s } .  Then, 7r(~:,f,)(P:) 
becomes P3 = {C3, C4, C6, C7, C8}, where 

CT:q<--- , 

C8: q ,--- not r. 

Finally, 7r{O3;s}(P3)just removes the clause C 3 from the program, and the resulting 
program P4 = {C4, C6, C7, C8} is a normal form. 

A dependency graph of a propositional normal disjunctive program P is a 
directed graph in which its nodes are ground atoms from P and there is an edge 
from A to B iff there is a ground clause C from P such that A appears in the 
head and B appears positively in the body of C. A propositional normal disjunctive 
program P is a head-cycle-free [1] if its dependency graph contains no cycle which 
goes through two atoms appearing in the head of the same disjunctive clause. 

Let P be a propositional normal disjunctive program. Then the normal logic 
program n ( P )  is obtained from P by replacing each disjunctive clause 

A 1 V ... V A  t <--- F 

with l normal clauses 

A i ~ - - F A n o t A  1A ... A n o t A i _  1 A n o t A i +  1A "" A n o t A  t (1 < i < l ) .  

We call the above transformation shifting. Then the following result holds. 

L e m m a  6.2 [1]. Let  P be a head-cycle-free proposition normal disjunctive program. 
Then M is a stable model  o f  P iff  M is a stable model  o f  n (P) .  

Thus any head-cycle-free propositional normal disjunctive program is trans- 
formed to a semantically equivalent normal logic program. 

Any disjunctive program in a normal form contains no positive subgoal; hence, it 
is always head-cycle-free. This fact, together with Lemma 6.2, implies the following 
result. 

8 In C6, p Vp ~ notr is identified with p ~ notr. Such merging is also done in C 7. 



242 C. SAKAMA A N D  H. SEKI 

Theorem 6.3. Let P be a propositional normal disjunctive program. Then, P is 
transformed to a semantically equivalent (under the stable model semantics) normal 
logic program by the transformation sequences of  disjunctive partial deduction and 
tautology elimination, and shifting. 

Example 6.4. In Example 6.3, by shifting, P4 is transformed to the program 
P5 = {C6, C7, C8, C9, C10}, where 

C 9 : p ~ not q, 

Clo : q ~ notp. 

Then, P0 and P5 have the same stable model {p, q}. 

It is known that the computation of stable models in propositional normal 
disjunctive programs is generally harder than that in propositional normal logic 
programs. Namely, the computational complexity of stable models in propositional 
normal disjunctive programs is at the second level of the polynomial hierarchy, 
while in propositional normal logic programs it is at the first level [4]. Therefore, 
there is no polynomial-time transformation from normal disjunctive programs to 
normal logic programs in general, unless the polynomial hierarchy collapses. In this 
sense, the above transformation costs exponential computation in the worst case, 
but it might be useful as a compilation technique from disjunctive to normal logic 
programs. Note that in a predicate disjunctive program, disjunctive partial deduc- 
tion and tautology elimination cannot transform the program to a normal form in 
general; hence, such compilation is impossible. 9 

7. DISCUSSION 

Partial deduction in logic programming has been widely investigated for normal 
logic programs, while few results are known for disjunctive logic programs. Sakama 
and Seki [22] introduced disjunctive partial deduction for propositional disjunctive 
programs. Brass and Dix [2, 3] also independently developed partial deduction for 
propositional disjunctive programs which is equivalent to [22]. In [2, 3], the authors 
investigate several abstract properties of disjunctive logic programs and character- 
ize various semantics in terms of partial deduction. Procedurally, [2] introduces a 
bottom-up procedure to compute a fixpoint of conditional facts in a function-free 
and range-restricted normal disjunctive program. 

Disjunctive partial deduction reduces deduction steps by unfolding clauses in a 
program, while it generally introduces new disjunctions in the program. For 
example, given the program 

P: p V q ~ ,  

r ~ q ,  

disjunctive partial deduction generates the program 

P':  p V q * - - ,  

p V r * -  . 

9 For instance, the positive subgoal in p(f(x)),-p(x) cannot be eliminated by disjunctive partial 
deduction and tautology elimination. 
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In other words, disjunctive partial deduction reduces the depth of a model tree [13], 
while introducing additional branches as a trade-off. By contrast, folding, which is a 
dual operation of unfolding, often reduces the number of disjunctions in a 
program. In the above example, folding P '  will generate P. Thus, folding will also 
be useful when one wants to reduce the number of branches in a model tree. A 
general framework of folding in disjunctive logic programming is not known and is 
an interesting topic to be investigated. 

In the previous section, we presented some applications of disjunctive partial 
deduction. Further applications of disjunctive partial deduction are as follows. 
First, positive disjunctive programs are identified with first-order theories; there- 
fore, disjunctive partial deduction can be used as an optimization technique for 
first-order theorem provers. Sato [23] proposes unfold/ fold  transformation systems 
for first-order programs, but he does not treat disjunctive clauses in a program. 
Second, disjunctive partial deduction is also directly applicable to disjunctive logic 
programs containing classical negation [6]. This is because the answer set semantics 
of extended disjunctive programs can be translated into the stable model semantics 
of normal disjunctive programs by viewing negative literals as new atoms [6]. Third, 
disjunctive logic programming is closely related to other nonmonotonic formalisms 
in AI [4, 18], so that the partial deduction technique presented in this paper has 
potential application to nonmonotonic reasoning systems. 

Finally, it is worth noting that the resolution-based disjunctive partial deduction 
does not always preserve the syntax-dependent logic programming semantics. 
Among others, semantics for inclusive disjunctions such as the possible model 
semantics [20] are not preserved in general. For instance, in the program presented 
above, {p, q} and {p, r} are possible models of P ' ,  which are not possible models of 
P. This is because models for inclusive disjunctions are usually weakly supported, 1° 
and weakly supported models are not preserved by disjunctive partial deduction in 
general [3]. 

8. CONCLUSION 

This paper presented partial deduction techniques in disjunctive logic program- 
ming. We introduced disjunctive partial deduction for disjunctive logic programs, 
which is a natural extension of normal partial deduction. It was shown that 
disjunctive partial deduction preserves the minimal model semantics of positive 
disjunctive programs, and the stable model semantics of normal disjunctive pro- 
grams. Disjunctive partial deduction was combined with a bottom-up proof proce- 
dure of disjunctive logic programs, and top-down partial deduction was introduced 
for query optimization. We also addressed applications of disjunctive partial 
deduction to optimizing abductive logic programs and compiling propositional 
disjunctive programs. 

The potential importance of disjunctive logic programming in artificial intelli- 
gence and knowledge representation is recognized these days. Disjunctive logic 
programming has rich expressive power but its computation is generally expensive. 
In this respect, partial deduction makes disjunctive logic programming more 
practical by providing a method for optimizing disjunctive logic programs and 
disjunctive deductive databases. 

10 A model M of a program P is weakly supported if for each .4 ~ M, there is a clause A v E ~ F 
from P such that M ~ F [3]. 
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