
NORTH- HfRLAND

PARTIAL DEDUCTION IN DISJUNCTIVE
LOGIC PROGRAMMING

CHIAKI SAKAMA AND H I R O H I S A SEKI

I> This paper presents a partial deduction method in disjunctive logic
programming. Partial deduction in normal logic programs is based on un-
folding between normal clauses, hence it is not applicable to disjunctive
logic programs in general. Then we introduce a new partial deduction
technique, called disjunctive partial deduction, which preserves the mini-
mal model semantics of positive disjunctive programs and the stable model
semantics of normal disjunctive programs. From the procedural side,
disjunctive partial deduction is combined with a bottom-up proof proce-
dure of disjunctive logic programs, and top-down partial deduction is
introduced for query optimization. Disjunctive partial deduction is also
applied to optimizing abductive logic programs and compiling proposi-
tional disjunctive programs. © Elsevier Science Inc., 1997 <1

1. INTRODUCTION

Partial deduction or partial evaluation is known as one of the optimization tech-
niques in logic programming. Given a logic program, partial deduction derives a
more specific program through performing deduction on a part of the program,
while preserving the meaning of the original program. Such a specialized program
is usually more efficient than the original program when executed.

Partial deduction in logic programming was first introduced by Komorowski [10]
and has been investigated by several researchers in various aspects. (For an
introduction and bibliographies, see [11] and [27], for example.) From the semantic
viewpoints, Lloyd and Shepherdson [12] formalized partial evaluation for normal
logic programs and provided conditions to assure the correctness with respect to
Clark's program completion semantics. In the context of the unfold/fold transfor-

Address correspondence to Chiaki Sakama, Department of Computer and Communication Sciences,
Wakayama University, Sakaedani, Wakayama 640, Japan, E-mail: sakama@sys.wakayama-u.ac.jp.

Received February 1995; accepted August 1996.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1997
655 Avenue of the Americas, New York, NY 10010

0743-1066/97/$17.00
PII S0743-1066(96)00120-3

2 3 0 c . SAKAMA AND H. SEKI

mation of logic programs, Tamaki and Sato [28] showed that partial deduction
preserves the least Herbrand model semantics of definite logic programs. The
result was extended to the perfect model semantics for stratified logic programs
[14, 25], and the stable model semantics and the well-founded semantics for normal
logic programs [24, 26].

Recent studies of logic programming extended its framework to include indefi-
nite information in a program. Disjunctive logic programming [13] is such an
extension of logic programming, and due to its expressiveness, it has been given
increasing attention over the past few years. However, the expressiveness of
disjunctive logic programming implies the difficulty of realizing efficient proce-
dures. In fact, it is known that the computation of disjunctive logic programs is
generally harder than that of normal logic programs [4]. In order to make
disjunctive logic programming practical, it is necessary to develop optimization
techniques such as partial deduction for disjunctive logic programs. Partial deduc-
tion in normal logic programs is based on unfolding between normal clauses, so
that some extension is needed to apply the technique to disjunctive logic programs.

In this paper, we develop partial deduction techniques for disjunctive logic
programming. We first extend the unfolding operation in normal logic programs to
the one which supplies unfolding between disjunctive clauses. Then we introduce a
new partial deduction method, called disjunctive partial deduction, for disjunctive
logic programs. We prove that disjunctive partial deduction preserves the minimal
model semantics of positive disjunctive programs, and the stable model semantics
of normal disjunctive programs. On the procedural side, disjunctive partial deduc-
tion is combined with a bottom-up proof procedure for disjunctive logic programs,
and top-down partial deduction is introduced for query optimization. Disjunctive
partial deduction is also applied to optimizing abductive logic programs and
compiling propositional disjunctive programs.

The rest of this paper is organized as follows. In Section 2, we provide basic
terminologies which shall be used in this paper. In Section 3, we introduce
disjunctive partial deduction for positive disjunctive programs, and show that it
preserves the minimal model semantics. Section 4 extends the result to normal
disjunctive programs and shows that the stable model semantics is preserved by
disjunctive partial deduction. A connection between normal and disjunctive partial
deduction is also addressed. In Section 5, disjunctive partial deduction is combined
with a proof procedure of disjunctive logic programs, and top-down partial deduc-
tion is introduced. Section 6 presents applications of disjunctive partial deduction
for abductive logic programs and propositional disjunctive programs. Section 7
discusses related issues and Section 8 summarizes the paper.

2. PRELIMINARIES

We first introduce the framework of disjunctive logic programming which is
standard in the literature.

A normal disjunctive program is a set of clauses of the form

A ~ V . . . V A t ~ - - B 1 A . . . A B m A n O t B m + l A ' " A notB n (l>_O,n>m>_O),

where Ai's and Bj's are atoms and not is the negation-as-failure operator. The
left-hand side of the clause is the head, while the right-hand side is the body. The

P A R T I A L D E D U C T I O N IN DISJUNC'TIVE LP 231

clause is ca l led disjunctive (resp. normal) if l > 1 (resp. l = 1). The clause is ca l led
an integrity constraint if the head is e m p t y (l = 0). A no rma l dis junct ive p r o g r a m
with no occu r rences o f not is ca l led a positive disjunctive program, while a p r o g r a m
conta in ing no dis junct ive c lause is ca l led a normal logic program. A ground
c l a u s e / p r o g r a m is a c l a u s e / p r o g r a m conta in ing no var iables . In this pape r , when
we wri te A v E ~ F, E deno t e s a (possibly empty) d is junct ion in the head , and F
deno t e s a (possibly empty) con junc t ion in the body. 1

A substitution is a m a p p i n g f rom var iab les to t e rms or = { x l / t I xn/tn}, where
each xi is a var iable , each t i is a t e rm dis t inct f rom x i, and the var iab les x I , xn
are dist inct . T h e subs t i tu t ion o- is ca l led a ground substitution if all ti 's a re ground.
A subs t i tu t ion tr is a unifier of two a toms A and B if A t r = B~r. A unif ier tr of
two a toms A and B is a most general unifier (mgu) if for any unif ier 0 of A and B,
0 = Ao- holds for some subs t i tu t ion A.

An interpretation of a p r o g r a m is a subset of the H e r b r a n d base of the p rog ram.
F o r a posi t ive dis junct ive p r o g r a m P, an i n t e rp re t a t i on I is ca l led a minimal model
of P if I is a min ima l set satisfying the p rog ram. A posi t ive disjunct ive p r o g r a m is
consistent if it has a min ima l model ; o therwise , a p r o g r a m is inconsistent. The
minimal model semantics [16] of a posi t ive dis junct ive p r o g r a m P is def ined as the
set o f all min ima l m o d e l s o f P (d e n o t e d by ~ Z p) .

Given a n o r m a l dis junct ive p r o g r a m P and an i n t e rp re t a t i on I , a g round
posi t ive dis junct ive p r o g r a m P~ is def ined as follows. A c lause A 1 v -.- v A l ,---
B 1A . . . A B m is in p l iff A 1 v -.. vAt<- -B 1A . . . A B m AnotBm+ 1A "" A n o t B n
is a g round ins tance o f a c lause in P and {Bin+ 1 B,} • I = 0 . Then , I is cal led
a stable model of P if I co inc ides with a min ima l m o d e l of pl. A norma l
dis junct ive p r o g r a m can have none , one, o r mul t ip le s table mode l s in genera l . A
p r o g r a m having no s table m o d e l is ca l led incoherent. The stable model semantics [6,
17] of a n o r m a l dis junct ive p r o g r a m P is def ined as the set of all s table mode l s of
P (d e n o t e d by ~ e) . T h e s table m o d e l semant ics co inc ides with G e l f o n d and
Lifschi tz ' s s table m o d e l semant ics [5] in n o r m a l logic p rograms .

3. P A R T I A L D E D U C T I O N IN P O S I T I V E D I S J U N C T I V E P R O G R A M S

3.1. Normal Partial Deduction

Par t ia l d e d u c t i o n cons ide red in this p a p e r is def ined as unfolding be tween clauses
in a p rog ram. 2 F o r a n o r m a l logic p r o g r a m P , par t ia l deduc t ion is formal ly
p r e s e n t e d as follows.

Given a n o r m a l c lause C f rom P ,

C : H ~ A A F ,

suppose that C 1 C k a re all of the c lauses in P such that

C i : A i ~ - F i (1 < i _ k) ,

whe re A M =Ai~r i holds with an mgu ~ for each i.

i When we write a clause as A v ~, ,-- F, it does not necessarily mean that A should be the left-most
atom in the head of the clause. That is, any two clauses are identified modulo the permutation of
disjuncts/conjuncts in their heads/bodies.

2 Partial deduction (also called partial evaluation) is defined in terms of SLDNF procedure in [12],
but here we prefer to define it independently of particular procedures.

232 C. SAKAMA AND H. SEKI

Then the normal partial deduction of P (with respect to C on A) is defined as
the program ~{cN;A}(P) (called a residualprogram) such that

= (P \ { C I) o {C', C;,},

where each C~ is defined as

C : (H ,-- r A

When any particular clause C and an atom A are not important in the context,
we simply write ~N(p) instead of "/r{N;A)(P).

Example 3.1. Let P be the program consisting of clauses

C,: p(x) ~-q(x),

C2: q(y) ~ r(y),

C3". q(a)

Then the normal partial deduction of P with respect to C 1 on q(x) becomes
'rr{Nj; q(x)}(P) = {C2, C3, C~, C~}, where

C'2: p(y) o r (y) ,

C'3: p(a) ~-

In the context of the unfold/fold transformation of logic programs, Tamaki and
Sato [28] showed that normal partial deduction preserves the least Herbrand model
semantics of definite logic programs. The result was later extended to the stable
model semantics and the well-founded semantics of normal logic programs [24, 26].
In disjunctive logic programming, however, a program possibly contains disjunctive
clauses and normal partial deduction presented above is not applicable in general.

Example 3.2. Let P be the program consisting of clauses

C1: p(a) Vp(b) V q (c) * - ,

C2: p(x) ~-q(x),

C3: r(y) *-p(y).

Considering partial deduction with respect to C 3 on p(y), C 3 is unfolded by C 2. In
addition, the disjunctive clause C 1 contains disjuncts unifiable with p(y); then C 3
must be unfolded by C1.

So our first task is to extend normal partial deduction to the one which supplies
unfolding for disjunctive clauses.

3.2. Disjunctive Partial Deduction
Partial deduction in positive disjunctive programs is defined as follows.

Definition 3.1. Let P be a positive disjunctive program and C a clause in P of the
form

C: ~ * - A A F. (1)

P A R T I A L D E D U C T I O N IN D I S J U N C I ~ V E LP 233

Suppose that C1 C k are all of the clauses in P such that

c , : A, v ~ , , - r, (1 < / _ k) , (2)

where A~cr/=Air/ holds with an mgu o-~ for each i.
Then a disjunctive partial deduction of P (with respect to C on A) is defined as a

residualprogram ~.D A}(p) such that

(P U (C', C~,},
,-/T D ~c; A~(P) =

~ (P \ (C }) U {C', C,~},

where

c ; : (~ v E, , - r ,x r ,) o-,. (3)

if there is a clause C~ in P such
that ~ i contains an atom unifiable
with A;
otherwise,

A simplified notation ¢rD(p) is also used hereafter. In the above transformation,
the clause C~ is produced by resolution in the residual program. In addition, the
original clause C is kept in the residual program if Ci contains multiple disjuncts
unifiable with A. This is because in this case C would be used for unfolding
between A and other unifiable atoms in E~. Otherwise, if each C~ has at most one
disjunct unifiable with A, C is removed in the residual program.

Note that in contrast to normal partial deduction, a residual program depends
on the choice of the disjunct A i in C i if C i contains multiple disjuncts unifiable
with A. In the absence of disjunctive clauses, disjunctive partial deduction coin-
cides with normal partial deduction in the previous section.

Example 3.3. Let P be the program of Example 3.2. Then a disjunctive partial
O t t deduction ~'~c3; p(y)}(P) becomes {C~, C 2, C 3, C 1, C2}, where

C'~: r (a) v p (b) V q (c) ¢--- (by C 3 and C 1 with the mgu {y /a}) ,

C'z: r (x) ~ q (x) (by C 3 and C 2 with the mgu {y /x}) .

On the other hand, wD q~x)}(p)becomes {CI,C3,C'(}, where {C2;

C';: p (a) v p (b) V p (c) ~- (by C2 and C1 with the mgu {x /c}) .

Now we show that disjunctive partial deduction preserves the minimal model
semantics of positive disjunctive programs. We first present a preliminary lemma.

Lemma 3.1. Let P be a positive disjunctive program and M its minimal model. Then
an atom A is in M iff there is a ground clause A v "~ ~- F from P such that
M \ {A} ~ F and m \ {A} ~ E.

PROOF. (~) Suppose that for some atom A in M, there is no ground clause
A v E *-- F from P such that M \ { A } ~ F and M \ { A } ~ E. Then, for each ground
clause C of the form A V Y ~ F, M \ {A} I¢ F or M \ {A} ~ E; hence is holds that
M \ { A } ~ F implies M \ { A } ~ ~. In this case, M \ { A } satisfies each clause C and
becomes a model of P, which contradicts the assumption that M is a minimal
model. Hence the result follows.

(~) Assume that A is not in M. Then M \ { A } =M, and for a ground clause
A v E ~ F in P, M ~ F and M ~ E imply A ~ M , contradiction. []

234 C. S A K A M A AND H. SEKI

Theorem 3.2. Let P be a positive disjunctive program and zr D(p) any residual program
of P. Then ~t'~t'p =~Zc'J¢" ~(p).

PROOF. Let us consider a disjunctive partial deduction of P with respect to C of
the form (1) on the atom A. First consider the case that there is a clause C i of the
form (2) in P such that Ei contains an atom unifiable with A. In this case,
~'¢CD;m(P) = P U {C' t C~,}. Since P and zCt~;A~(P) are logically equivalent, the
result immediately holds. Next consider the case that for any clause C i of the form
(2) in P, Ei contains no atom unifiable with A.

(___) Let M be a minimal model of P. Since the clause (3) is a resolvent of the
clauses (1) and (2) in P, M satisfies each clause (3) in 7r(D;A}(P). Thus M is a
model of ~'/cD; A}(P)-Assume that there is a minimal model U of "rgtD;A}(P) such
that N c M. Since N is not a model of P, N does not satisfy the clause (1). Then,
for some ground substitution 0 such that (E ~ A / x F)0 is a ground clause, it holds
that N ~ FO, N ~AO, and N ~ E0. As the minimal model N of yr{D;A}(P) includes
AO, it follows from Lemma 3.1 that there is a ground instance of a clause E of the
form (2) or (3) from zrlD;m(P) such that it contains AO in the head. Let E $ be
such a ground clause for some substitution ~0. Put 0 ' = 0~. Then EqJ=EO'
contains AO' =AO in the head. Also, by N ~ F0, N ~ A O , and Ng:EO, it holds
that N~FO' , N ~ A O ' , and N ~ E O ' . (i) Suppose first that EO' is a ground
instance of the clause of the form (2) such that AiO' =AO'. Then N ~AO' implies
N\{AO' } ~ FiO' and N\{AO'} ~'ZiO' (by Lemma 3.1). Here N \ { A O ' } ~ FiO'
implies N ~ Fs0'. Since Xi contains no atom unifiable with A, Xi0' does not
contain AO'. Thus N\{AO'} ~'£i0' also implies N~'ZiO'. Hence, N does not
satisfy the ground clause (E v ~ *-- F/x Fi)O'. But since AO' =AiO' and o- i is an
mgu of A and A i, it holds that 0' = crih for some h. Then, the above clause, which
is not satisfied in N, is an instance of the clause (3). This contradicts the
assumption that N is a model of IrtD: A}(P)- (ii) Next suppose that EO' is a ground
instance of the clause of the form (3) such that (~ v Xi)O' contains AO'. In this
case, it holds that 0' = o-~h for some A; then Atr i =Aitr i implies AO' =AiO'. As
E~0' does not contain A~O' in CiO', E0 ' contains AO'. Then N ~ A O ' implies
N ~ E0 ' , which contradicts the fact N ~ E0 ' . Therefore, M is also a minimal
model of ZrtcD; A~(P).

(_D) Let M be a minimal model of ~-t~; re(P). If M is not a model of P, M does
not satisfy the clause (1). In this case, M~: E0, M ~ A O , and M r F0 hold for the
ground clause (E ~ A / x F)0 with a ground substitution 0. Since the minimal
model M of ~'t~;A~(P) includes AO, it follows from Lemma 3.1 that there is a
ground instance of the clause E of the form (2) or (3) in ~-t~; re(P) such that it
contains A O in the head. Let 0' be a ground substitution defined in the same
manner as above. When E is of the form (2), M ~ A O ' implies M ~ FiO' and
M 0~ Ei 0 ' (by the same argument as (i) presented above). Thus M does not satisfy
the corresponding clause (3), which contradicts the assumption that M is a model
of 1rt~; A~(P). Else when E is of the form (3), by the same argument as (ii) above, it
holds that M ~AO' implies M ~ E0 ' , which contradicts the fact M ~: E0 ' . Hence
M is a model of P. Next assume that there is a minimal model N of P such that
N c M. By (c_), N is also a minimal model of ~-t~; A~(P), but this is impossible since
M is a minimal model of "n'(cD;A}(P). []

Corollary 3.3. Let P be a positive disjunctive program. Then P is inconsistent iff zr D(p)
is inconsistent.

PARTIAL D E D U C T I O N IN DISJUNCTIVE LP 235

Example 3 4 If is easy to see that both 7 r~ . , v (P) and 75~ ~ x (P) in Example • . { ~;~(~)} . f iq()}

3.3 have the minimal models {p(a), r(a)}, {p(b), r(b)}, and {p(c), q(c), r(c)}, which
are exactly the same as ~".//'p.

4. PARTIAL DEDUCTION IN NORMAL DISJUNCTIVE PROGRAMS

4.1. Disjunctive Partial Deduction in Normal Disjunctive Programs

Disjunctive partial deduction is defined as unfolding between positive subgoals and
disjunctive heads, so the presence of negation as failure in clause bodies does not
affect the process of partial deduction• Therefore, disjunctive partial deduction in
normal disjunctive programs is defined in the same manner as Definition 3•1,
except that in this case each clause possibly contains negation as failure. Then we
show that disjunctive partial deduction preserves the stable model semantics of
normal disjunctive programs. In the following, notF means the conjunction of
negation-as-failure formulas.

Theorem 4.1• Let P be a normal disjunctive program. Then SPJp = ~ O (p) .

PROOF. Let M be a stable model of P. Then M is a minimal model of pM. Since
pM is a positive disjunctive program, M is a minimal model of pM iff M is a
minimal model of rrD(P M) (by Theorem 3.2). Now let us consider the clauses

C: £ ~ A A F A notF'

and

Ci: Aiv~, i<--FiAnotr ' i (l < i < k)

in P, where A ~ i = A i ~ for some mgu o- i. Let 0 be any ground substitution which
makes both C and C i ground and AO =AiO. 3 In this case, ~ is an mgu of A and
Az, so 0 = criA holds for some substitution A.

(i) If M ~ F '0 and M ~ ["0 for some i (1 < i < k), the clauses

EO: (£ ~ A A F)O

and

EiO: (A i V wZ i <-- r i) o

are in pM. From these clauses, disjunctive partial deduction generates the clause

E;O: (:~ v ~,i ~- r A r ,) o

in w D {C;AI(PM). On the other hand, from C and C i in P, there is the clause

C~: (~, V ~'i <--- F A F i A notF' A notF[) ~r i

in ~r{Oc;,4}(P). Since M ~ F'O and M ~ F/'0 hold for 0 = erda, C[O becomes E~O in
7rlcD; A}(P) M.

(ii) Else if M ~ F '0 or M ~ F/0 for any i (1 < i < k), the clause EO or EiO is not
included in pg. Then the clause E~O is not produced in "rr{D;A}(PM). On the other
hand, each clause C~O from ~(D;AI(P) is eliminated in 7r{D;AI(P) M.

3 Such a g r o u n d subs t i tu t ion is o b t a i n e d by combin ing a g round subs t i tu t ion for C and one for C i
with su i tab le va r i ab le r enaming .

236 C. SAKAMA AND H. SEKI

Thus, there is a one-to-one correspondence between the clauses i n ~{D;A}(pM)
and the clauses in rr{~; m(P)M; hence, 7r{D; A}(P M) = rq D. A}(P) M. Therefore, M is a
minimal model of a rrD(P M) iff M is a minimal model of rrD(p) M and a stable
model of ~rD(P). []

Corollary 4.2. Let P be a normal disjunctive program. Then P is incoherent iff 7r D(p)
is incoherent.

The above theorem also implies that in normal logic programs, normal partial
deduction preserves Gelfond and Lifschitz's stable model semantics.

Corollary 4.3. Let P be a normal logic program. Then SP3-e = S~ N(p) .

The above corollary justifies the corresponding result of [24].

4.2. Connection between Normal and Disjunctive Partial Deduction

Next we present a method of computing disjunctive partial deduction in terms of
normal partial deduction.

Let C be a clause of the form A v ~ ~- F. Then, we define Sfi(C, A) as the
clause

(~: A ¢--- F A ~

where £ =.41/x -.. A.4 t for £ = A 1 v -.- v At, and each ,4 i is a new atom intro-
duced for each A i. In particular, C = C if £ is empty. Conversely, the function
Sft-1 is defined as the transformation which transforms any clause (~ to C in a
program. Given a normal disjunctive program P, 15 is a normal logic program in
which any disjunctive clause C in P is replaced with some normal clause (~.

Theorem 4.4. Given a normal disjunctive program P, let C be a clause of the form (1)
and C i a clause of the form (2) such that A~r i = A i o " i with an mgu cr i. Then,

I Sft l(~r{~; a}(15u {A ~ A})), ifthere is a clause C i in e such
that "£i contains an atom

3"g{D ; A }(P) = unifia ble with A;
~Sft ' (~r,~; A~(ff)), otherwise,

where t 5 is a normal logic program in which C is replaced with some C and each Ci
is replaced with Sfi(C i, A i) .

PROOF. Let C = H 1 ~ A A F A E, where £ = H 1 V " ' " V H l and ~- = / J 2 /~ ""~A /~l"
When each C i contains at most one disjunct unifiable with A, by C and
Sft(Ci, A i) = A i ~ F i A ~i, rr{~; A1(15) produces clauses

O;: (/-/1 ' - r A =_ A r, A S ,) < ,

which become the disjunctive clause (3) by Sft -1. Therefore, Sft-l(rqN;A}(15))=
~rl~; A}(P). Else when some C i contains more than one disjunct unifiable with A, by
unfolding C with A *--A, rrU-{c; A}(15 U {A ~A}) produces C as well as (~. Therefore,

1 N " Sft- (rr{o; A}(P U {A ~ a})) coincides with rr{~; A}(P). []

PARTIAL DEDUCTION IN DISJUNCTIVE LP 237

Example 4.1. Let P be the program

C~: p(a) V p (b) ~ ,

C2: q(x) ~ p (x) .
D t Then, a disjunctive partial deduction 7r{c2; p~x))(P) becomes {C1, C2, CO, where

C',: p(b) v q (a) ~ .

On the other hand, Sft(C1, p(a)) is

61: p(a) ~ (b) ,

and /5= {~1,C2}. Since C1 has two disjuncts unifiable with p(x), by putting
N - I.) {C3}) {C1, C2 , C3, C4}, where C 3 = p (x) *-p(x), "n'{c2; p (x) l (P =

Ca: q(a) ~ fi(b).

C 4 becomes C' 1 by Sft-1, so Sfi- l('rrtN;p<x)}(/5 U {C3})) = {C 1, C2, C3, C'1}. Here C 3 is
D a tautology; hence, Sfi-l(Tr{N;e<x)~(/5 0 {C3})) is equivalent t o ~ { C 2 ; q (x) } (P) .

The above theorem shows that disjunctive partial deduction can be computed
using normal partial deduction together with suitable program transformations.

5. COMPUTING PARTIAL DEDUCTION

5.1. Bottom- Up Proof Procedure
Computation of minimal and stable models of a disjunctive program is achieved in
a bottom-up fashion. The following procedure, which generates a set of models of a
positive disjunctive program, is a standard one in the literature [7, 13, 15].

Given a positive disjunctive program P, let J e ° = {0}. Then for i > 0 do:

1. For any I ~ , there is an integrity constant in P of the form

~-- -B 1 A "'" A B m

such that I ~ (B 1 A -.. A B,,)~ for some ground substitution o-, then remove
1 from ~ .

2. For any I ~ and for every clause in P of the form

A i V . . . V A t ~ B 1A.. . AB m (l>_1)

such that I ~ (B 1A ..- AB,~)cr and I ~ (A 1 v ... vAt)~r for some ground
substitution ~r, put I O {A/~r} into j ~ + l for every j = 1 l.

3. Iterate the above two steps until it reaches the fixpoint ~ n + 1 =Sff.

In step 1, the procedure prunes interpretations which do not satisfy integrity
constraints in the program. In step 2, the procedure generates the new set of
interpretations ~ + 1 from ~ by performing forward-reasoning based on hyper-
resolution and case-splitting on non-unit derived clauses.

The soundness of case-splitting is guaranteed in range-restricted programs, 4
while the termination of the procedure is assured in function-free programs. The
next lemma presents that the above procedure is used to compute the minimal
model semantics.

4 Any variable in a clause has an occurrence in a positive atom in the body.

238 C. S A K A M A A N D H. SEKI

Lemma 5.1 [7, 13, 15]. Let P be a range-restricted function-free positive disjunctive
program and Jp" the fixpoint o f the above procedure. Then, ~t'A'p = min(~y) ,
where m i n (J) = {I ~ J l ~ J ~ J such that J c I} .

Now we show that disjunctive partial deduction can be combined with the
procedure presented above.

Lemma 5.2. Let P be a range-restricted positit,e disjunctive program. Then any residual
program 7r D (p) is also range-restricted.

PROOF. Since P is range-restricted, any variable occurring in Ei in (2) also occurs
in F/. On the other hand, any variable occurring in E of (1) occurs in either F or
A. If it occurs in F, then the clause (3) is range-restricted. Else if it occurs in A,
each variable xj in A is unified with the corresponding term tj in Ai, where
variables, if any, in t~ occur in I" i. Thus, the clause (3) is range-restricted. Hence,
the residual program 7r{D;A}(P) is range-restricted. []

By Lemmas 5.1 and 5.2 and Theorem 3.2, the following result holds.

Theorem 5.3. Let P be a range-restricted function-free positive disjunctive program and
7rD(p) any residual program of P. Then,

At'At'p = min (Jp ~) = min(J f i , o,,).

Computation of stable models and partial deduction in normal disjunctive
programs are similarly achieved using the program transformation in [7].

5.2. T o p - D o w n Part&l Deduct ion

Top-down partial deduction specializes a program with respect to a given atom,
which is useful to optimize programs for query-answering in deductive databases.

Given a normal disjunctive program P, an atom A is true in P under the stable
model semantics if for every stable model I of P, there is a substitution ~r such
that A or is included in I. Else if for some stable model I of P there is o- such that
Act is included in I, A is possibly true in P. Otherwise, if there is no such
substitution, A is false in P.

Top-down partial deduction in normal disjunctive programs is defined as follows.

Definition 5.1. Given a normal disjunctive program P and an atom A, let us define

I I ° (P) = P ,

I I ~ + ' (p) = ~r{f,B,,(II~(P)),

where C is any clause of the form A ' v E <---F in I I~(P) such that A' is
unifiable with A, and Bj ¢ F. Then top-down partial deduction with respect to A
is defined as any I I~(P) (i > 0).

By definition, I I~(P) is defined as a residual program which is obtained from P
by iteratively performing disjunctive partial deduction with respect to any clause
containing an atom unifiable with A in the head. As a result, deduction steps
starting from the target atom A are reduced in residual programs when queried.

PARTIAL DEDUCTION IN DISJUNCq'IVE LP 239

Since top-down part ial deduct ion is def ined as an i terative appl icat ion of
disjunctive par t ia l deduc t ion , the next resul t immed ia t e ly follows f rom
T h e o r e m 4.1.

Theorem 5.4. Let P be a normal disjunctive program. Then, A is true (resp. possibly
true, false) in P iff A is true (resp. possibly true, false) in I I ~ (P) (i > 0).

Example 5.1. Let P be the p r o g r a m

61: q (x) <---p(x),

C2: p (x) ~ r (x) ,

C3: r(a) v s (b) <---

Then, II2<x)(P) = {C 2, C 3, Ca}, where

64: q(a) v s (b) ~ ,

and q(x) is possibly true.

6. A P P L I C A T I O N S

6.1. Optimizing Abductive Logic Programs

Abductive logic programming [9] is an extension of logic p r o g r a m m i n g which has
impor tan t appl icat ions in c o m m o n - s e n s e reasoning and knowledge representa t ion .
I noue and S a k a m a [8, 19] showed that abduct ive logic p rog rams are expressed in
t e rms of disjunctive logic p rograms . This fact implies that disjunctive part ial
deduct ion is also used to opt imize abduct ive logic p rograms . In this section,
we address an appl icat ion of disjunctive part ial deduct ion to abductive logic
p rog ramming .

An abduct ive logic p r o g r a m is def ined in te rms of a no rma l disjunctive p rog ram
as follows.

Definition 6.1 [8, 19]. Le t P be a no rma l disjunctive p r o g r a m and ~¢ a set o f a toms
called abducibles. Then, an abductive disjunctive program is def ined as a normal
disjunctive p r o g r a m

PA = P U {A V d ~ IA ~},

where A is a newly introduced atom associated with each A. 5

In an abductive disjunctive program, an abductive hypothesis is either assumed
or not. The situation is encoded in the program by the augmented disjunctive
clause. Namely, the disjunct A is chosen if an abducible A is assumed, while A is
chosen otherwise.

Let PA be an abductive disjunctive program and O a ground atom which
represen ts an observation. 6 Then, a set E c J is an explanation of O in PA if there

5 In [8], a negation-as-failure formula not A is used instead of A.
6 If an observation contains variables O(x), we introduce a clause O' ,-- O(x) to a program and

consider the newly introduced ground atom O' as an observation.

240 C. SAKAMA AND H. SEKI

is a stable model M of PA such that O ~ M and E = M A ..~.7 An explanation E is
minimal if no other explanation F exists such that F c E.

Example 6.1. Let P be the program

C 1 : o ~ p ,

C2: p ~ a ,

C3: p ~ notb,

with the abducibles ~¢ = {a, b}. Then the abductive disjunctive program PA includes
the additional clauses

C 4 : a v a ~--- ,

C s : b v b c - -

Suppose that o is an observation. Then PA has three stable models containing o:
{o, p, 5,/~}, {o, p, a,/9}, {o, p, a, b}. Hence, ~ , {a}, and {a, b} are explanations of o,
while Q is the minimal explanation.

Now we apply top-down partial deduction to optimize abductive logic programs.

Theorem 6.1. Let PA be an abductive disjunctive program and 0 an observation. Then,
E is a (minimal) explanation of 0 in PA iff E is a (minimal) explanation of 0 in
H~)(P A) (i > 0).

PROOF. The result follows from the definition of explanations and Theorem 5.4.
[]

Thus, top-down partial deduction optimizes abductive logic programs by reduc-
ing inference steps from an observation to explanations.

Example 6.2. In Example 6.1, I12o(PA) = { C 2 , C 3 , C 4 , C 5 , C 6 , C 7 } , where

C6: O V a 4-- ,

C 7 : o ~ not b.

Then HZo(PA) has three stable models containing o, which are equivalent to those
of PA" Hence, all the (minimal) explanations are preserved.

Sakama and Inoue [21] also introduce another method of partial deduction for
abductive logic programs.

6. 2. Compiling Propositional Disjunctive Programs to Normal Logic Programs

In propositional disjunctive programs, disjunctive partial deduction is used to
compile disjunctive logic programs to normal logic programs.

A ground clause is called a conditional fact if it has no positive subgoals (i.e.,
E ~-notF). A propositional normal disjunctive program is called a normal form if
every clause in the program is a conditional fact. A ground clause E ~-F is a

7 Here, ~¢ is identified with its ground instances.

PARTIAL DEDUCTION IN DISJUNCTIVE LP 241

tautology if]2 f3 F v~ •. Brass and Dix [3] showed that the iterative applications of
disjunctive partial deduction and the elimination of tautology transform any
propositional normal disjunctive program to a semantically equivalent disjunctive
program in a normal form.

Example 6.3. Le t Po be the program

C1: p ~ q A notr ,

CE: q<--p,

C3- F <--- s,

C4: pVq<---

First, 7r D {C~,q}(Po) becomes P1 = {Cz, C3, C4, Cs, C,}, where 8

C5: p ~ p Ano t r ,

C 6 : p ~ not r.

Here, C 5 is a tautology, hence removed. Put P e = P I \ { C s } . Then, 7r(~:,f,)(P:)
becomes P3 = {C3, C4, C6, C7, C8}, where

CT:q<--- ,

C8: q ,--- not r.

Finally, 7r{O3;s}(P3)just removes the clause C 3 from the program, and the resulting
program P4 = {C4, C6, C7, C8} is a normal form.

A dependency graph of a propositional normal disjunctive program P is a
directed graph in which its nodes are ground atoms from P and there is an edge
from A to B iff there is a ground clause C from P such that A appears in the
head and B appears positively in the body of C. A propositional normal disjunctive
program P is a head-cycle-free [1] if its dependency graph contains no cycle which
goes through two atoms appearing in the head of the same disjunctive clause.

Let P be a propositional normal disjunctive program. Then the normal logic
program n (P) is obtained from P by replacing each disjunctive clause

A 1 V ... V A t <--- F

with l normal clauses

A i ~ - - F A n o t A 1A ... A n o t A i _ 1 A n o t A i + 1A "" A n o t A t (1 < i < l) .

We call the above transformation shifting. Then the following result holds.

L e m m a 6.2 [1]. Let P be a head-cycle-free proposition normal disjunctive program.
Then M is a stable model o f P iff M is a stable model o f n (P) .

Thus any head-cycle-free propositional normal disjunctive program is trans-
formed to a semantically equivalent normal logic program.

Any disjunctive program in a normal form contains no positive subgoal; hence, it
is always head-cycle-free. This fact, together with Lemma 6.2, implies the following
result.

8 In C6, p Vp ~ notr is identified with p ~ notr. Such merging is also done in C 7.

242 C. SAKAMA A N D H. SEKI

Theorem 6.3. Let P be a propositional normal disjunctive program. Then, P is
transformed to a semantically equivalent (under the stable model semantics) normal
logic program by the transformation sequences of disjunctive partial deduction and
tautology elimination, and shifting.

Example 6.4. In Example 6.3, by shifting, P4 is transformed to the program
P5 = {C6, C7, C8, C9, C10}, where

C 9 : p ~ not q,

Clo : q ~ notp.

Then, P0 and P5 have the same stable model {p, q}.

It is known that the computation of stable models in propositional normal
disjunctive programs is generally harder than that in propositional normal logic
programs. Namely, the computational complexity of stable models in propositional
normal disjunctive programs is at the second level of the polynomial hierarchy,
while in propositional normal logic programs it is at the first level [4]. Therefore,
there is no polynomial-time transformation from normal disjunctive programs to
normal logic programs in general, unless the polynomial hierarchy collapses. In this
sense, the above transformation costs exponential computation in the worst case,
but it might be useful as a compilation technique from disjunctive to normal logic
programs. Note that in a predicate disjunctive program, disjunctive partial deduc-
tion and tautology elimination cannot transform the program to a normal form in
general; hence, such compilation is impossible. 9

7. DISCUSSION

Partial deduction in logic programming has been widely investigated for normal
logic programs, while few results are known for disjunctive logic programs. Sakama
and Seki [22] introduced disjunctive partial deduction for propositional disjunctive
programs. Brass and Dix [2, 3] also independently developed partial deduction for
propositional disjunctive programs which is equivalent to [22]. In [2, 3], the authors
investigate several abstract properties of disjunctive logic programs and character-
ize various semantics in terms of partial deduction. Procedurally, [2] introduces a
bottom-up procedure to compute a fixpoint of conditional facts in a function-free
and range-restricted normal disjunctive program.

Disjunctive partial deduction reduces deduction steps by unfolding clauses in a
program, while it generally introduces new disjunctions in the program. For
example, given the program

P: p V q ~ ,

r ~ q ,

disjunctive partial deduction generates the program

P': p V q * - - ,

p V r * - .

9 For instance, the positive subgoal in p(f(x)),-p(x) cannot be eliminated by disjunctive partial
deduction and tautology elimination.

PARTIAL DEDUCTION IN DISJUNCTIVE LP 243

In other words, disjunctive partial deduction reduces the depth of a model tree [13],
while introducing additional branches as a trade-off. By contrast, folding, which is a
dual operation of unfolding, often reduces the number of disjunctions in a
program. In the above example, folding P ' will generate P. Thus, folding will also
be useful when one wants to reduce the number of branches in a model tree. A
general framework of folding in disjunctive logic programming is not known and is
an interesting topic to be investigated.

In the previous section, we presented some applications of disjunctive partial
deduction. Further applications of disjunctive partial deduction are as follows.
First, positive disjunctive programs are identified with first-order theories; there-
fore, disjunctive partial deduction can be used as an optimization technique for
first-order theorem provers. Sato [23] proposes unfold/ fold transformation systems
for first-order programs, but he does not treat disjunctive clauses in a program.
Second, disjunctive partial deduction is also directly applicable to disjunctive logic
programs containing classical negation [6]. This is because the answer set semantics
of extended disjunctive programs can be translated into the stable model semantics
of normal disjunctive programs by viewing negative literals as new atoms [6]. Third,
disjunctive logic programming is closely related to other nonmonotonic formalisms
in AI [4, 18], so that the partial deduction technique presented in this paper has
potential application to nonmonotonic reasoning systems.

Finally, it is worth noting that the resolution-based disjunctive partial deduction
does not always preserve the syntax-dependent logic programming semantics.
Among others, semantics for inclusive disjunctions such as the possible model
semantics [20] are not preserved in general. For instance, in the program presented
above, {p, q} and {p, r} are possible models of P ' , which are not possible models of
P. This is because models for inclusive disjunctions are usually weakly supported, 1°
and weakly supported models are not preserved by disjunctive partial deduction in
general [3].

8. CONCLUSION

This paper presented partial deduction techniques in disjunctive logic program-
ming. We introduced disjunctive partial deduction for disjunctive logic programs,
which is a natural extension of normal partial deduction. It was shown that
disjunctive partial deduction preserves the minimal model semantics of positive
disjunctive programs, and the stable model semantics of normal disjunctive pro-
grams. Disjunctive partial deduction was combined with a bottom-up proof proce-
dure of disjunctive logic programs, and top-down partial deduction was introduced
for query optimization. We also addressed applications of disjunctive partial
deduction to optimizing abductive logic programs and compiling propositional
disjunctive programs.

The potential importance of disjunctive logic programming in artificial intelli-
gence and knowledge representation is recognized these days. Disjunctive logic
programming has rich expressive power but its computation is generally expensive.
In this respect, partial deduction makes disjunctive logic programming more
practical by providing a method for optimizing disjunctive logic programs and
disjunctive deductive databases.

10 A model M of a program P is weakly supported if for each .4 ~ M, there is a clause A v E ~ F
from P such that M ~ F [3].

244 C. SAKAMA AND H. SEKI

We thank Katsumi Inoue for useful discussion on the subject of this paper. The result of Section 6.2 was
suggested by Jia-Huai You. Thanks also to the anonymous referee for detailed comments on the earlier
draft of this paper.

REFERENCES
1. Ben-Eliyahu, R. and Dechter, R., Propositional Semantics for Disjunctive Logic Pro-

grams, in: Proceedings of the Joint International Conference and Symposium on Logic
Programming, MIT Press, Cambridge, MA, 1992, pp. 813-827.

2. Brass, S. and Dix, J., Disjunctive Semantics Based upon Partial and Bottom-Up Evalua-
tion, in: Proceedings of the 12th International Conference on Logic Programming, MIT
Press, Cambridge, MA, 1995, pp. 199-213.

3. Brass, S. and Dix, J., Characterizations of the Stable Semantics by Partial Evaluation, in:
Proceedings of the 3rd International Conference on Logic Programming and Nonmonotonic
Reasoning, LNAI 928, Springer-Verlag, Berlin, 1995, pp. 85-98.

4. Eiter, T. and Gottlob, G., Complexity Results for Disjunctive Logic Programming and
Application to Nonmonotonic Logics, in: Proceedings of the International Logic Program-
ming Symposium, MIT Press, Cambridge, MA, 1993, pp. 266-278.

5. Gelfond, M. and Lifschitz, V., The Stable Model Semantics for l_~gic Programming, in:
Proceedings of the 5th International Conference and Symposium on Logic Programming,
MIT Press, Cambridge, MA, 1988, pp. 1070-1080.

6. Gelfond, M. and Lifschitz, V., Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing 9:365-385 (1991).

7. Inoue, K., Koshimura, M., and Hasegawa, R., Embedding Negation as Failure into a
Model Generation Theorem Prover, in: Proceedings of the l lth International Conference
on Automated Deduction, LNAI 607, Springer-Verlag, Berlin, 1992, pp. 400-415.

8. Inoue, K. and Sakama, C., On Positive Occurrences of Negation as Failure, in:
Proceedings of the 4th International Conference on Principles of Knowledge Representation
and Reasoning, Morgan Kaufmann, Los Altos, CA, 1994, pp. 293-304.

9. Kakas, A. C., Kowalski, R. A., and Toni, F., Abductive Logic Programming, J. Logic and
Computation 2:719-770 (1992).

10. Komorowski, J., A Specification of an Abstract Prolog Machine and Its Application to
Partial Evaluation, Technical Report LSST 69, Link6ping University, 1981.

11. Komorowski, J., An Introduction to Partial Deduction, in: Proceedings of the 3rd
International Workshop on Meta-Programming in Logic, LNCS 649, Springer-Verlag,
Berlin, 1992, pp. 49-69.

12. Lloyd, J. W. and Shepherdson, J. C., Partial Evaluation in Logic Programming, J. Logic
Programming 11:217-242 (1991).

12. Lobo, J., Minker, J., and Rajasekar, A., Foundations" of Disjunctive Logic Programming,
MIT Press, Cambridge, MA, 1992.

14. Maher, M., A Transformation System for Deductive Database Modules with Perfect
Model Semantics, Theoretical Computer Science 110:377-403 (1993).

15. Manthey, R. and Bry, F., SATCHMO: A Theorem Prover Implemented in Prolog, in:
Proceedings of the 9th International Conference on Automated Deduction, LNCS 310,
Springer-Verlag, Berlin, 1988, pp. 415-434.

16. Minker, J., On Indefinite Data Bases and the Closed World Assumption, in: Proceedings
of the 6th International Conference on Automated Deduction, LNCS 138, Springer-Verlag,
Berlin, 1982, pp. 292-308.

17. Przymusinski, T. C., Stable Semantics for Disjunctive Programs, New Generation Com-
puting 9:401-424 (1991).

18. Sakama, C. and Inoue, K., Relating Disjunctive Logic Programs to Default Theories, in:
Proceedings of the 2nd International Workshop on Logic Programming and Nonmonotonic
Reasoning, MIT Press, Cambridge, MA, 1993, pp. 266-282.

P A R T I A L D E D U C T I O N IN D I S J U N C T I V E LP 245

19. Sakama, C. and Inoue, K., On the Equivalence between Disjunctive and Abductive
Logic Programs, in: Proceedings of the 11th International Conference on Logic Program-
ming, MIT Press, Cambridge, MA, 1994, pp. 489-503.

20. Sakama, C. and Inoue, K., An Alternative Approach to the Semantics of Disjunctive
Logic Programs and Deductive Databases, J. Automated Reasoning 13:145-172 (1994).

21. Sakama, C. and Inoue, K., The Effect of Partial Deduction in Abductive Reasoning, in:
Proceedings of the 12th International Conference on Logic Programming, MIT Press,
Cambridge, MA, 1995, pp. 383-397.

22. Sakama, C. and Seki, H., Partial Deduction of Disjunctive Logic Programs: A Declara-
tive Approach, in: Proceedings of the 4th International Workshop on Logic Program
Synthesis and Transformation, LNCS 883, Springer-Verlag, Berlin, 1994, pp. 170-182.

23. Sato, T., Equivalence-Preserving First Order Unfold/Fold Transformation Systems,
Theoretical Computer Science 105:57-84 (1992).

24. Seki, H., A Comparative Study of the Well-Founded and the Stable Model Semantics:
Transformation's Viewpoint, in: Proceedings of the Workshop on Logic Programming and
Nonmonotonic Logic, Association for Logic Programming and Mathematics Sciences
Institute, Cornell University, 1990, pp. 115-123.

25. Seki, H., Unfold/Fold Transformation of Stratified Programs, Theoretical Computer
Science 86:107-139 (1991).

26. Seki, H., Unfold/Fold Transformation of General Logic Programs for the Well-Founded
Semantics, J. Logic Programming 16:5-23 (1993).

27. Sestoft, P. and Zamulin, A. V., Annotated Bibliography on Partial Evaluation and Mixed
Computation, New Generation Computing 6:309-354 (1988).

28. Tamaki, H. and Sato, T., Unfold/Fold Transformation of Logic Programs, in: Proceed-
ings of the 2nd International Conference on Logic Programming, 1984, pp. 127-138.

