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A F I X P O I N T  C H A R A C T E R I Z A T I O N  OF 
A B D U C T I V E  LOGIC P R O G R A M S *  

K A T S U M I  I N O U E  A N D  C H I A K I  S A K A M A  t 

t> A new fixpoint semantics for abductive logic programs is provided, in which 
the belief models of an abductive program are characterized as the fixpoint 
of a disjunctive program obtained by a suitable program transformation. In 
the transformation, both negative hypotheses through negation as failure 
and positive hypotheses from the abducibles are dealt with uniformly. The 
result is further generalized to a fixpoint semantics for abductive extended 
disjunctive programs. These characterizations allow us to have a parallel 
bottom-up model generation procedure for computing abductive explana- 
tions from any (range-restricted and function-free) normal, extended, and 
disjunctive programs with integrity constraints. <1 

1. I N T R O D U C T I O N  

Abduction is an inference to explanation. Recently, abduction has been recognized 
as a very important form of reasoning for logic programming as well as various 
AI problems. In [8, 12, 16, 21], abduction is expressed as an extension of logic 
programming. Eshghi and Kowalski [8] give an abductive interpretation of negation 
as failure [3] in the class of normal logic programs, and show a 1-1 correspondence 
between the stable models [13] of a normal logic program and the extensions of 

*This is a revised and extended version of the paper [19] which was presented at the Tenth 
International Conference on Logic Programming, Budapest, Hungary, June 21-25, 1993. 

? Department  of Computer  and Communication Sciences, Wakayama University, 930 Sakaedani, 
Wakayama 640, Japan. E-mail: sakamaQsys.vakayam-u.ac.jp.  

Address correspondence to Katsumi Inoue, Department  of Information and Computer  Sci- 
ences, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan. E-mail: 
inoue@tut i c s .  r u t .  ac. j p. 

Received August 1994; accepted July 1995. 

THE JOURNAL  OF LOGIC P R O G R A M M I N G  

(~) Elsevier Science Inc., 1996 0743-1066/96/$15.00 
655 Avenue of the Americas, New York, NY 10010 SSDI 0743-1066(95)00119-0 



108 K. INOUE AND C. SAKAMA 

its associated abductive framework. Their approach is extended by [7, 21], and 
a comprehensive survey is found in [23]. Kakas and Mancarella [21] propose a 
framework of abductive logic programming, which is defined as a triple (P, F, Z), 
where P is a normal logic program, F is a set of abducible predicates, and Z is a 
set of integrity constraints. Then, a canonical model of (P, F, Z / (called generalized 
stable model or belief model) is defined as a stable model of P U E which satisfies 
Z, where E is any set of ground atoms with predicates from F. On the other hand, 
Gelfond [12] proposes an abductive framework with an extended disjunctive program 
[14] P that  allows disjunctions in heads and classical negation along with negation as 
failure. Further, Inoue [16] proposes a general framework for hypothetical reasoning, 
called a knowledge system, by allowing any two extended logic programs as P and 
F, and shows that  every knowledge system can be transformed into a semantically 
equivalent abductive logic programming framework. 

In all of the above frameworks, abduction is defined as a pair of background 
knowledge P U Z (the program with integrity constraints) and candidate hypotheses 
F. Then, an important question for abductive logic programming framework is 
how each abductive framework can be represented by a single program. Namely, 
we would like to express meta-level information of candidate hypotheses at the 
object level, thereby obtaining a program which exactly reflects the meaning of 
the original abductive framework. Such an expression bridges the gap between 
abductive and usual (nonabductive) logic programming, and is useful for the com- 
putational aspect of abduction since we can apply any proof procedure for usual 
logic programs to programs transformed from abductive frameworks. Moreover, 
these transformations shed light on the relationships between different extensions 
of logic programming (including abduction, disjunction, and negation as failure), 
and clarify the expressive power of each language. Several studies have been devoted 
in this direction. For instance, Console et al. [4] characterize abductive frameworks 
through the completed programs, and Inoue [16] transforms a knowledge system 
into a single extended logic program. 

On the other hand, Inoue et al. [17] have proposed program transformation 
techniques which translate a program containing negation as failure into a seman- 
tically equivalent positive disjunctive program, i.e., disjunctive programs containing 
neither negation as failure nor classical negation. These transformations show that  
negation and disjunction in logic programming have close relations in knowledge 
representation. Moreover, such transformations provide a constructive definition of 
stable models of a normal logic program or answer sets of an extended disjunctive 
program, and enable us to realize a bottom-up procedure to compute them based 
on model generation techniques [11, 26]. This procedure is formally characterized 
by a fixpoint semantics for extended disjunctive programs [34]. 

In this paper, we generalize the program transformation techniques of [17] for 
nonabductive programs to deal with abductive frameworks. We introduce a new 
translation from an abductive logic program into a positive disjunctive program, 
and show that  the belief models of an abductive program can be characterized by 
the fixpoint closure of the transformed disjunctive program. In the transforma- 
tion, both negative hypotheses through negation as failure and positive hypotheses 
from the abducibles are dealt with uniformly. This fixpoint characterization is 
further extended to a fixpoint semantics for abduetive extended disjunctive pro- 
grams, i.e., abductive programs that  permit classical negation as well as disjunc- 
tions. For a procedural aspect of our fixpoint semantics, we also show that  a 
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model generation procedure for positive disjunctive programs can be used as a 
sound and complete procedure for computing belief models for function-free and 
range-restricted programs. 

This paper is organized as follows. Section 2 defines a framework for abductive 
logic programming. In Section 3, we successively present fixpoint theories for pos- 
itive disjunctive programs, normal logic programs, abductive Horn programs, and 
abductive normal logic programs. These fixpoint theories are further generalized 
to a fixpoint semantics for abductive extended disjunctive programs in Section 4. 
Section 5 presents a model generation procedure for computing belief models. Some 
comparisons between our fixpoint framework and previously proposed approaches 
are discussed in Section 6, and the paper is concluded in Section 7. 

2. M O D E L  T H E O R Y  F O R  A B D U C T I V E  L O G I C  P R O G R A M S  

There are several definitions of abduction [2, 4, 7, 8, 12, 15, 16, 21, 24, 29]. 
The semantics of abduction we use here is based on the framework of Kakas and 
Mancarella [21]. As stated in Section 1, their abductive framework is given as a 
triple (P, F,:Z), where P is a normal logic program, F is a set of abducible pred- 
icates, and :r is a set of integrity constraints. Compared with abduction based 
on first-order logic by [15, 29], Kakas and Mancarella define a program P not as 
first-order formulas, but  as a normal logic program with negation as failure. This 
definition covers a more general class of programs than Console et al.'s o b j e c t - l e v e l  

abduction [4] that  is defined for hierarchical logic programs (see Section 6.2.1). Two 
different definitions by Gelfond [12] and Inoue [16] are more general than that  by 
[21] in the sense that  they allow more extended classes of programs for P and F. 
We will revisit such an extension in Section 4. 

We define an a b d u c t i v e  n o r m a l  logic  p r o g r a m  1 as a pair (P, F), in a way slightly 
different from Kakas and Mancarella's framework. Instead of separating integrity 
constraints/7 from a program, we include them in a program P and do not distin- 
guish them from other clauses. The main reason for this t reatment is tha t  we would 
like to check the consistency not by an extra mechanism for integrity checking, but  
within closure computation defined in the subsequent sections. For this purpose, 
we first give the syntax and the stable model semantics of normal logic programs 
with integrity constraints. 

D e f i n i t i o n  2 .1 .  

the form 

or of the form 

A n o r m a l  log ic  p r o g r a m  is a finite set of clauses tha t  are either of 

H ~-- B 1  A • • • A B m  A n o t  B m + l  A • • • A n o t  B n  (1) 

~-- B1  A . . . A B m  A n o t  B m + l  A . . . A n o t  B n ,  (2) 

where n >_ m > 0, and H and Bis are atoms. The left-hand (right-hand) side of 
~- is called the h e a d  (body )  of the clause. Each clause of the form (2) is called an 

1Normal logic programs are often called general logic programs in the literature. Similarly, 
abductive normal logic programs are called abductive general logic programs in the previous paper 
[191. 
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integrity constraint. An integrity constraint  is also called a negative clause if it 
does not  contain not, i.e., m = n. A Horn program is a normal  logic program not  
containing not. A definite program is a Horn program not  containing negative 
clauses. 

REMARK 2.2. In Definition 2.1, we allow in a program integri ty constraints  as 
clauses with empty  heads, which are not explicitly defined as such in [13]. While 
Kakas and Mancarel la  [21] define integrity constraints  Z as first-order formulas 
separated from a program P ,  every integrity constraint  in the form of a first-order 
formula F can be first characterized as a clause wi thout  a head ~-- not F, then 
can be t ransla ted into clauses using the t ransformat ion of  [25]. For instance, an 
integri ty constraint  p D q can be expressed by ~-- p A not q.2 

In the semantics of  a normal  logic program, a clause containing variables s tands  
for the  set of its ground instances. An interpretation of a p rogram P is defined as a 
subset of 7-/B, where 7-/B denotes the Herbrand base for the  language of P .  An  inter- 
pre ta t ion I satisfies a ground Horn clause H ~- B1 A . . .  A Bm if { B 1 , . . . ,  Bin} C_ I 
implies H E I .  In particular,  I satisfies a ground negative clause ~- B1 A .-- A Bm 
if { B 1 , . . . ,  Bin} ~: I. For a Horn program P ,  the smallest in terpreta t ion satisfying 
every ground clause from P is called the least model of P .  Note  tha t  the  least model  
does not  necessarily exist in the presence of negative clauses. 

Definition 2.3. Let P be a normal  logic program, and I an interpretat ion.  The  
reduct p I  of P by I is defined as follows: A clause H ~- BI  A . . .  A Bm (resp. 

B1 A . . .  A Bin) is in p1  iff there is a ground clause H ~- B1 A . . .  A Bm A 
not Bm+l A . .  • A not Bn (resp. +- B1 A . . .  A Bm A not Bm+l A . . .  A not Bn) from 
P such tha t  { B m + I , - - . , B n }  ~ I  = ~. 

Then,  I is a stable model [13] of P if I is the least model  of p1.  

Now, we define abduct ive  normal  logic programs and their semantics. 

Definition 2.4. An abductive normal logic program is a pair <P, F>, where P is 
a normal  logic program, and F is a set of a toms from the  language of P .  We 
identify F with the set of all ground instances from F, and call each a tom in F 
an abducible. Note tha t  F C ?/B. 

W h e n  I is an interpretat ion of P and E = I N F, we often write I as IE by 
specifying the abducibles E contained in I .  

W h e n  P is a Horn program, <P, F> is called an abductive Horn program. 

REMARK 2.5. Definition 2.4 is an extension of the definition by Kakas and 
Mancarel la  [21] to allow any normal  logic program (with integrity constraints)  in 
P ,  while [21] requires tha t  abducibles may  not appear  in heads of clauses. Further-  
more, we consider abducible atoms instead of abducible predicates, so tha t  it may  
be the  case tha t  some instances of an a tom can be abducibles, while other  instances 
with the same predicate can be nonabducibles.  See Example  2.8. 

2When we allow classical negation in programs (Section 4), we need more clauses for the 
translation. For example, to express a first-order integrity constraint p D q, we need an additional 
clause ~-- -~q A not ~p. 
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Definition 2.6. Let (P,F)  be an abductive normal logic program. An interpreta- 
tion I is a belief model of (P, F) if it is a stable model of a normal logic program 
P U E for some E C F. 3 

A belief model I is F-minimal if no belief model J satisfies tha t  J n F c I n F. 

Each belief model in the above definition reduces to a stable model of P when 
F = 0. In this sense, a belief model is called a generalized stable model by Kakas 
and Mancarella [21]. 

By definition, if IE is a belief model, then E = IE N F holds. Similarly, if I~  is 
a F-minimal belief model, then there is no belief model JR such that  F C E. Since 
we allow abducibles in heads of ground clauses, such an abducible appearing in the 
head of a clause may be implied by other abducibles (see Example 2.8 below). In 
this case, each belief model IE can be uniquely associated with its "generating" 
abducibles E. A similar notation has been adopted by Preist and Eshghi [30]. 

Definition 2. 7. Let (P, F) be an abductive normal logic program, and O a ground 
atom called an observation. A set E c_ F is an explanation of 0 (with respect to 
(P, F)) if there is a belief model IE of (P, F) such tha t  O • IE. 

An explanation E of O is minimal if no E r C E is an explanation of O. 

Example 2.8. Consider an abductive Horn program (P, F1), where P consists of 

sore(leg) ~ broken(leg), 

broken(leg) ~-- broken(tibia), 

and F1 = {broken(x)}. Let 0 = sore(leg) be an observation. Then 

E = {broken(leg)} 

is a minimal explanation of O with respect to (P, F1), and 

E' = {broken(tibia), broken(leg)} 

is a (nonminimal) explanation of O. However, 

E"  = {broken(tibia)} 

is not called here an explanation of O with respect to (P, F I / s i nce  there is no belief 
model IE,, satisfying E "  = IE,, n F1. In fact, broken(tibia) causes broken(leg), so 
that  E "  can never be the generating hypotheses of any belief model. Thus, the 
definition of (minimal) explanations is purely model-theoretic. In this case, the 
unique minimal explanation E reflects the fact that  the evidence of broken(leg) is 
more likely than that  of broken(tibia). 

If the abducibles are given as F2 = {broken(tibia)}, then the above E "  is the 
only (minimal) explanation of O with respect to (P, F~), while neither E nor E' is 
an explanation of O by definition. 

REMARK 2.9. Without  loss of generality, we will assume tha t  an observation O 
is a nonabducible ground atom. This condition is not restrictive for the following 
reasons. First, if O is an abducible, all of its explanations trivially contain O. 

3For each abducible A E F, we identify the atom A with the clause A *-- in E. 



112 K. INOUE AND C. SAKAMA 

Second, if O(x) contains a tuple of free variables x, then we can introduce a new 
proposition O and add a clause O ~- O(x) to the program P so that  O is t reated 
as an observation. Third, we can ask the system why some atoms O 1 , . . . ,  Om are 
observed and other atoms Ore+ l , . . . ,  On are not observed by introducing a clause 
0 ~- 01 A .. • A Om A not Om+l A • .. A not On and computing explanations of O. 

Definition 2.7 gives a credulous reading of the relationship between an obser- 
vation and its explanations. We can give an alternative, skeptical meaning to an 
explanation of O: that  is, every stable model of P U E contains O. 

Lemma 2.10. Let (P,F) be an abductive normal logic program, E a subset ofF, 
and 0 an observation. 

(a) E is an explanation of 0 with respect to (P, F) iff  IE is a belief model of 
(P  U { ~  not O}, F). 

(b) E is a minimal explanation of O with respect to (P, F) iff IE is a F-minimal 
belief model of (P U not 0},  r). 

PROOF. (a) Immediately follows from the observation that  the addition of ~-- not 0 
to P imposes the integrity constraint that  O should be derived. This result is also 
stated by Satoh and Iwayama [35]. 

(b) E is a minimal explanation of O with respect to (P, F) 

iff no E ~ C E is an explanation of O with respect to (P, F) 
iff no belief model IE, of (P, F) in which O is true satisfies E ~ C E 
iff no belief model IE, of (P  U {*- not 0},  F) satisfies E '  C E 
iff IE is a F-minimal belief model of (P  U {~-- not 0 } ,  F). [] 

Example 2.11. Consider an abductive normal logic program (P, F) where 

P = {p ~-- r A bA notq, 

q~---a, 

r ~---, 

*- not p} 

and 
r = {a, b}. 

The unique belief model of (P, F) is IE = {r,p, b}. If we regard ~-- no tp  as an 
observation, E = IE M F = {b} is the unique explanation of p. Note here tha t  
we cannot add a to E because if we would abduce E ~ = {a, b}, q would block to 
derive p and the integrity constraint could not be satisfied. Hence, abduction is 
nonmonotonic relative to the addition of abducibles. 

3. F I X P O I N T  T H E O R Y  F O R  A B D U C T I V E  L O G I C  P R O G R A M S  

This section presents a fixpoint semantics for abductive normal logic programs. 
First, we introduce (i) a fixpoint semantics for positive disjunctive programs, then 
(ii) a fixpoint semantics for normal logic programs using a transformation into posi- 
tive disjunctive programs by [17]. Next, (iii) a fixpoint semantics for abductive Horn 
programs is given using another program transformation, then finally it is extended 
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to (iv) a fixpoint semantics for abductive normal logic programs by combining the 
transformations of (ii) and (iii). 

3.1. Fixpoint Semantics for Positive Disjunctive Programs 

A positive disjunctive program is a finite set of clauses of the form 

H1 V . . .  V Ht ~-- B1 A- . .  A Bm (l, m _> 0) (3) 

where His and Bjs are atoms. An interpretation I satisfies a ground clause of the 
form (3) if {B1 , . . . ,  Bin} C_ I implies Hi E I for some i (1 < i < l). I is a minimal 
model of P if it is a minimal interpretation satisfying all ground clauses from P. 

To characterize the nondeterministic behavior of a disjunctive program, we define 
the following T p  operator which operates over the set of all sets of interpretations. 
A similar but slightly different operator has been given by Sakama and Inoue [34]. 

Definition 3.1. Let P be a positive disjunctive program, and I a set of interpreta- 
tions. Then the mappmg T p  : 22 ~ 22 is defined as 

I F ( I )  = U Tp(I), 
I E I  

where the mapping Tp : 2 uB --* 22u8 is defined as 

0, if {B1 , . . . ,  Bm} C I for some ground negative clause 
B i A . . . A B m f r o m P ;  

Tp(I) = {J I for each ground clause Ci : HI V. . -  V Hi+ ~ B1 A . . .  A Bm, 
from P such that  {B1, . . . ,Bm+} C_ I 

and {H1, . . . ,Hz ,}  A I = 0, 
J -- I U Uc+ {Hi} (1 _< j _< li) }, otherwise. 

In particular, Tp(O) = ~. 

The intuitive reading of Definition 3.1 is as follows. If an interpretation I does 
not satisfy some ground negative clause, then Tp(I) = 0. Else, if there is a ground 
nonnegative clause Ci that  is not satisfied by I (i.e., I satisfies the body of Ci but 
does not satisfy the head of Ci), then I is expanded by adding each single disjunct 
from the heads of every such Ci. 

Definition 3.2. The ordinal powers of T p  are defined as follows. 

I F  T 0 = {0}, 

T p  T n + 1 = T p ( T p  T n), 

Tp T w= U N "r+"+r n, 
a<w c~<_n<cz 

where n is a successor ordinal and w is a limit ordinal. 

The above definition means that  at the limit ordinal w, the closure retains in- 
terpretations which are persistent in the preceding computation. That  is, for any 
interpretation I in T p  T w, there is an ordinal c~ smaller than w such that,  for every 
n (~ < n < w), I is included in T p  T n. This closure definition is also used in [34] 
for computing possible models of positive disjunctive programs. 
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Example 3.3. For the following program P, T p  T w is obtained as follows. 

P = { p V q ~ - r ,  

8¢--r, 

r 4 - - ,  

*---q A s}, 

T p  T l = {{r}}, 

T p  7 2 = { { r , s , p } , { r , s , q } } ,  

T p  T 3 = {{r , s ,p}}  

= T p  Tw. 

Theorem 3.4. 

(a) 
(b) 
(c) 

Let P be a positive disjunctive program. 

T p  T w is a fixpoint. 
Each element in T p  T w is a model of P.  
Let J~J~p be the set of all minimal models of P.  Then 

.A~.]~V[p ---- min(Tp T w), 

where 

min(I) = {I • I I there is no J E I such that J C I}.  

PROOF.  ( a )  The same as the proof of [34, Theorem 2.10]. 
(b) For any I E Tp  ~ w, I satisfies each ground negative clause from P, and for 

any ground clause H1Y. . .  YHl ¢- B1A. . .  ABm from P, {B1, . . . ,  Bin} C I implies 
Ai E I for some i (1 < i < l). Therefore, I is a model of P. 

(c) Since A/IMp _~ min(Tp T w) is clear from (b), we show the other inclusion. 
Let I be a minimal model of P. Then for each atom A in I ,  there is a ground clause 
H1 V- . .  V Hi ~- B1 A . . .  A Bm from P such that  {B1 , . . . ,Bm} C_ I and A = Hi 
for some i (1 < i < 1). By the definition of fixpoint construction, I is contained in 
I F  T w. Since each element in Tp  T w is a model of P,  I is a minimal element of 
Tp  T w. Hence, I E min(Tp T w). [3 

Corollary 3.5. A positive disjunctive program P is inconsistent (i.e., has no model) 
i f f T p  T w : O .  

Corollary 3. 6. For any definite program P, T p  ~ w contains a unique element 
which is the least model of P. 

By definition, the fixpoint Tp  T w always exists for any positive disjunctive 
program P, and is uniquely determined for each P. We call it the disjunctive 
fixpoint of P. Theorem 3.4 (c) characterizes a fixpoint construction of the minimal 
model semantics [27] for positive disjunctive programs. On the other hand, since 
Corollary 3.5 can be used as a test for the consistency of a positive disjunctive 
program, the emptiness of disjunctive fixpoints accounts for the soundness and 
completeness of model generation theorem provers [11, 17, 26] with respect to the 
satisfiability of first-order theories (see Section 5). Furthermore, Corollary 3.6 says 
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that,  for definite programs, our fixpoint construction reduces to van Emden and 
Kowalski's fixpoint semantics [37]. 

3.2. Fixpoint Semantics for Normal Logic Programs 

To characterize the stable models of a normal logic program, Inoue et al. [17] have 
proposed a program transformation which transforms a normal logic program into 
a semantically equivalent not-free disjunctive program. 

Definition 3.7 [17]. 
obtained as follows. 

1. For each clause H ~- B1 A .. • A Bm A not Bm+l A • .. A not Bn in P, 

(H A -~KBm+l A . . .  A ~KB~) V KBm+I V . "  V KB~ ~- B1 A- . .  A Bm (4) 

is in P~. In particular, each integrity constraint becomes 

KBm+I v . . .  V KB~ ~- B1 A. - .  A Bin. 

2. For each atom B in 7-/B, pn includes the negative clause 

• -- -~KB A B. (5) 

Let P be a normal logic program. Then, P~ is the program 

Here, KB (resp. ~KB) is a new atom which denotes B is believed (resp. disbe- 
lieved). In the transformation (4), each not Bi is rewritten in -~KBi and shifted 
to the head of the clause. Moreover, since the head H becomes true when each 
~KB~ in the body is true, the condition ~KBm+I A. • • A ~KBn is added to H. The 
integrity constraint (5) says that each atom B cannot be true and disbelieved at 
the same time. 

An interpretation I ~ of the transformed program is now defined as a subset of 
the new Herbrand base: 

?--/B '~ = ?-/B U { K B  I B • ?--/B} U {-~KB I B • 

An atom in 7-/B n is called objective if it is in 7-/B, and the set of objective atoms 
in an interpretation I n is denoted as obj(In). Note here that we consider KB and 
--KB not as new formulas in a suitable modal logic, but as newly introduced atoms 
in the new program. The meaning of ~KB is given by the formula (5), while that  
of KB imposes the following canonical constraint. 

Definition 3.8. An interpretation I n is canonical if it satisfies the condition: for 
each ground atom A, if KA • I n, then A • I% For a set I n of interpretations, 
we write 

obj~(I '~) = {obj(In) l I  ~ • I ~ and I n is canonical}. 

In [17], it is shown that the stable models of a program can be produced con- 
structively from the transformed program. To characterize their result by using the 
disjunctive fixpoint of the transformed program, we have t o  deal with a program 
like P~ in Definition 3.7, which allows a disjunction of conjunctions of atoms in 
the head of a clause. Semantically, such a clause can be decomposed into a set of 
clauses of the form (3). Formally, a clause of the form 

( H I , I A ' " A H I , k , ) V " ' V ( H ~ , t A ' " A H z , k , )  ~- B I A " "  ABm. (6) 
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stands for the kl x k2 x . . .  x kt clauses 

Hl,il  V H2,~2 V .. . V Hl,h '--- B1 A . . . A Bin, (7) 

for every il = 1 , . . . ,  kl, i2 -- 1 , . . . ,  k2, • . . ,  ik = 1 , . . . ,  kl. In this sense, we will 
regard a program consisting of clauses of the form (6) also as a positive disjunctive 
program. For example, the program P~ translated from a normal logic program P 
by Definition 3.7 is a positive disjunctive program. 

When a clause of the form (6) is processed, the mapping presented in Definition 3.1 
can be obviously applied to the multiple clauses of the form (7) whose bodies are 
exactly the same. Instead of doing so, we here slightly modify the  mapping to 
manipulate a disjunction of conjunctions of atoms in the head directly, so that  
the clause (6) can be dealt with very efficiently. Now, for a conjunction of atoms 
F = H1 A. . -  A Hk, we denote the set of its conjuncts as con j (F)  = { H 1 , . . . ,  Hk} .  
Let P be a program consisting of clauses of the form (6), and I an interpretation. 
The mapping Tp : 2 uB --, 22 in Definition 3.1 is now redefined as 

0, if {B1 , . . . ,  Bin} C I for some ground negative clause 
~-- B1 A . . .  A Bm from P; 

T p ( I )  = {J  I for each ground clause C~ : F1 V . . .  V F h ~- B1 A . . .  A Bm~ 
from P such that  {B1 , . . . ,Bm ,}  C_ I and 

conj (Fj )  g I for any j = 1 , . . . , l{ ,  
J = I U Uc,  conj (Fj )  (1 _< j _< li)}, otherwise. 

Using this definition, the mapping I F  and its disjunctive fixpoint are also defined 
in the same way as in Section 3.1, and those properties presented there still hold. 
In particular, ADAIR = min(Tp  T w) (Theorem 3.4 (c)) holds. 

The following theorem presents the fixpoint characterization of the stable model 
semantics for normal logic programs. 

Theorem 3.9 [17, 34]. Let P be a normal logic program, P~ its transformed form, 
and S T p  the set of all stable models of  P .  Then 

S T p  = objc(Te~ T ~). 

In particular, P has no stable model if f  objc(Tp~ T w) = 0. 

Example 3.10. 

Then 

Let P be the normal logic program consisting of the clauses 

p ~ not q, 

q ~-- not p, 

r ~ q ,  

r ~-- not r. 

p,~ = ( (p  A -~Kq) V Kq ,~--, 

(q A ~Kp) V Kp ~--, 

r~- -q ,  

(r A ~Kr) V Kr ~ }  

u { * - - -~KBAB I BeT-IB }. 
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N ow, 

Tp.  T 0 = { 0 } ,  

Tp.  T 1 = {{p, ~Kq, q, =Kp, r, ~Kr}, {p, ~Kq, q, ~Kp, Kr}, {p, ~Kq, Kp, r, -~Kr}, 

{p, ~Kp, Kp, Kr}, {Kq, q, -~Kp, r, ~Kr}, {Kq, q, =Kp, Kr}, 

{Kq, Kp, r, ~Kr}, {Kq, Kp, Kr}}, 

Tp.  T 2 = {{p,-~Kq, Kp, Kr}, {Kq, q, ~Kp, Kr, r}, {Kq, Kp, Kr}}, 

Tp* T 3 - - T p -  T2 = T p ,  Tw. 

In T p .  T w, only the second element {Kq, q,-,Kp, Kr, r} is canonical. Hence, 
objc(TP- T w) = {{q,r}}, and {q,r} is the unique stable model of P. 

3.3. Fixpoint Semantics for Abductive Horn Programs 

The basic idea behind the transformation presented in the previous subsection 
(Definition 3.7) is that  we hypothesize the epistemic s ta tement  about an a tom B to 
evaluate the negation-as-failure formula not B. Namely, we assume tha t  B should 
not (or should) hold at the fixpoint. The correctness of the negative hypothesis 
-~KB is checked through the integrity constraint *-- -~KB A B during the fixpoint 
construction, while for the positive hypothesis KB, its integrity checking is carried 
out by the canonical constraint that  all the "assumed" literals are actually "derived" 
at the fixpoint (Definition 3.8). 

Now, we move on to abduction. We first present a transformation of an abductive 
Horn program. Each abducible can also be treated as an epistemic hypothesis as 
in the previous transformation. Thus, we can assume tha t  each abducible is either 
true or false at the fixpoint in order to explain the observation. The only difference 
between the epistemic hypotheses from abducibles and those from negation-as- 
failure formulas is that  the positive hypothesis KA for each abducible A should always 
satisfy the canonical constraint. This is because we can abduce the t ru th  of A 
whenever A should be true but is not deductively derived from the program. Then, 
a natural  translation of abductive Horn programs is as follows. 

Let (P, F) be an abductive Horn program. The program Pfi is obtained from 
(P, F) by replacing each Horn clause in P 

H *-- B1 A . . .  A Bm A A1 A . . .  A A~ (m, n > 0), 

where B~s are nonabducibles and Ajs are abducibles, with 

( H A K A I A - . . A K A n )  V - ~ K A I V . . . V - - K A ~  ~ B 1 A . . . A B m ,  (8) 

and by adding two clauses 

for each abducible A in F. 

~- ~KA A A, (9) 

A ~ KA, (10) 

We can see tha t  the clause (8) transformed from an abductive Horn program and 
the clause (4) transformed from a normal logic program are dual in the sense tha t  
an abduced atom A is dealt with as a positive hypothesis KA, while a negation- 
as-failure formula not B is dealt with as a negative hypothesis ~KB. Moreover, 
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the constraints (9) and (5) are exactly the same, and they are commonly used. 
Here, however, we have the additional clause (10) for each abducible A. Since this 
clause derives A whenever an interpretation contains the positive hypothesis KA, 
it makes every interpretation in Tp~ T w satisfy the canonical constraint. In other 
words, for the positive hypothesis KA for each abducible A, we do not need the 
canonical constraint. The above transformation can thus be rewritten by omitting 
each clause (10) as follows. 

Definition 3.11. 
gram obtained as follows. 

1. For each Horn clause in P 

H ~ - B I A ' " A B m A A I A ' " A A n  (m,n>_O), 

where Bis are nonabducibles and Ajs are abducibles, 

(H A A1 A. . .  A An) V ~KA1 V . . .  V -~KAn ~- B1 A . . .  A Bm 

is in P~. In particular, each integrity constraint becomes 

~KA1 V • • • v -,KAn ~ B1 A • .. A Bin. 

2. For each abducible A in F, P~ contains the negative clause 

~- ~KA A A. 

Let (P, F) be an abductive Horn program. Then, P~ is the pro- 

(ii) 

(12) 

Note in the transformation (12) that  each hypothesis Aj can be considered to be 
skipped instead of being resolved. In fact, this operation is a bottom-up counterpart  
of the "Skip & Cut" rule in SOL-S resolution [15] that  is a top-down abductive 
procedure. In this way, each abduced atom can be added to an interpretation 
without imposing the condition that  it should be derived. The next lemma shows 
that  two transformations, P~ and P1 ~, are equivalent in the sense that  both fixpoints 
are the same as far as the objective atoms are concerned. Hence, we will use the 
transformation P~ for an abductive Horn program P in the rest of this paper. 

Lemma 3.12. Let (P,F) be an abductive Horn program. Then, objc(Tp ~ T w) = 
{obj(I ~) I I '~ e Tp~ T w} = {obj(I ~) I I ~ e Wp~ T w}. 

PROOF.  Straightforward from the above discussion. [] 

REMARK 3.13. In the translation from (11) into (12) in Definition 3.11, when some 
instances of Aj (1 _< j _< n) are abducibles but some are not, P~ includes the original 
clause (11) as well as the transformed clauses of the form (12) with those abducible 
instances. For example, suppose that  a(0) is an abducible but  a(s(O)), a(s(s(O))), . . .  
are not, and that the program P contains the clause p(x) ~-- a(x). Then, PI ~ 
contains both of the clauses 

p(x) *-- a(x), 

(p(O) A a(O)) V -~Ka(O) ~---. 

In this case, the first clause has the instance p(0) ~-- a(0), which is unnecessary 
in the presence of the second clause. Although the precise translation of the first 
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clause might be 

A # 0, 

we can keep the original clause as it is. This is because the clause p(0) +- a(0) is 
always satisfied by any interpretation in Tp~ T w. 

The relationship between the belief models of P and the disjunctive fixpoint of 
the transformed program P~ is given as follows. 

L e m m a  3.14. Let (P, F) be an abduetive Horn program. 

(a) For any I ~ E T p ~  T w, ob j ( I  ~) is a belief model of  (P,F). 
(b) For any belief model I s  of  (P, F), there is a belief model IE, o f  (P, F) such 

that E t C_ E ,  IE, \ E '  = IE \ E ,  and I~,  = ob j ( I  ~) for  some I ~ E T p ~  T w. 

PROOF. (a) Suppose that  I ~ is an interpretation in Tp{ 1" w. Let E = obj ( I '~ )nF,  
and P '  the definite program obtained from P by removing every negative clause. 
By Corollary 3.6, Tp'uE T w contains the unique element I. Then, for each ground 
clause 

H +-- B1 A--.  A Bm A A1 A. . -  A An (Ajs are abducibles) 

from P' ,  if {B~, . . . ,Bm} c_ I, then either {A~ , . . . ,An ,H}  c_ I or Aj ¢ I for some 
j (1 _< j < n). Also, for the corresponding ground clause 

( H  A A1 A . .. A An)  V ~ K A I  V . .. V ~ K A n  +- B1 A . . . A B m  

from P~, if {B1 , . . . ,Bm} C_ I, then either { A 1 , . . . , A n , H }  C_ I ~ or -~KAj E I ~ for 
some j (1 _< j <_ n). Hence, I = obj(I'~). Recall that  I is the least model of P '  U E. 
Now, suppose to the contrary that  I is not the least model of P U E. Since P \ P '  
is a set of negative clauses, P U E has no model. Then, there is a ground negative 
clause 

+-- B1 A . . .  A Bm A A1 A . . .  A An (Ajs are abducibles) 

from P such that  ( B 1 , . . . , B m }  C_ I and (A1 , . . . ,An}  C_ E. In this case, there 
must be the corresponding ground clause 

~KA1 v .. . Y ~KA,~ ,-- B1 A . . .  A Bm 

from P~. Since I ~ is a model of P~ by Theorem 3.4(5), ( B 1 , . . .  ; Bin} C_ I '~ implies 
-~KAi E I ~ for some i (1 < i < n). But this is impossible because (A1 , . . . ,  A n }  C 
E C I C I ~ and I ~ satisfies all the negative clauses of the form +- ~ K A A A .  Hence, 
I is the least model of P U E, and thus the stable model of P U E. By definition, I 
is a belief model of (P, F). 

(b) Suppose that  IF. is a belief model of (P, F). For any atom Hi E IE \ E ,  there 
is a ground clause 

Ci : Hi +-- B1 A . . .  A B, m A A1 A.- .  A An, (Ajs are abducibles) 

from P such that  ( B 1 , . . . , B ,  m }  C_ IE \ E and ( A I , . . . , A n , }  C_ E.  Let 

E'= U 
HI61E\E 
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For Ci, there is the corresponding ground clause 

(Hi A A1 A . . .  A Am) V -~KAI V . . .  V -~KAn~ ~ B1 A . . .  A Bml 

from P~. Therefore, if {B1, . . .  ,Bm,}  C_ J for some J E Tp~ T a and some ordinal 
a, then there exists J '  E Tp~ $ a + 1 such that  J U {Hi, A 1 , . . . ,  An~ } C_ J'. Since 
{Hi, A 1 , . . . ,  An~ } C IE and IE is a stable model of P U  E, J '  satisfies each negative 
clause in PI ~ and is not pruned away. Hence, there exists I ~ E Tp~ T w such 
that  E '  = I ~ N F. By (a), IE, = obj(I ~) is a belief model of (P, F). It follows 
immediately that  E '  C_ E and IE, \ E'  = IE \ E. [] 

Lemma 3.14 characterizes the belief model semantics for abductive Horn pro- 
grams. Namely, part (a) shows that  every interpretation obtained from Tp~ T w 
is a belief model of (P, F). Conversely, part (b) shows that  every F-minimal belief 
model of (P, F) can be obtained from Tp~ T w. 

REMARK 3.15. The completeness result by Lemma 3.14 (b) does not guarantee 
that  every belief model itself can be obtained from Tp~ T w. In particular, non-F- 
minimal belief models are not obtainable in general. For example, if 

P = {p ~-- q A a }  

and F = {a}, then {a} is a belief model of (P, F}, but for 

P ~ = { ( p A a )  V ~ K a ~ - q ,  ~- -~KaAa},  

Tp~ T w = {O}. Thus, belief models not obtainable from the disjunctive fixpoint 
have the property that  the introduction of abducibles has no effect on the status 
of other atoms. Since such belief models are of no use for explaining observations, 
this kind of incompleteness is not a drawback. In other words, all the meaningful 
belief models are obtained at the fixpoint. 

Similarly to Lemma 3.14 (b), we have the following completeness result for the 
minimal explanations of any observation. 

Lemma 3.16. Let (P, F) be an abductive Horn program, 0 an observation. I r E  C_ F 
is an explanation of O, then there is an explanation E t of 0 such that E ~ c_ E 
and Is ,  = obj(I ~) for some I ~ E Tp~ T w. 

PROOF. Since E is an explanation of O, there is a belief model IE of (P, F) satis- 
fying O. By Lemma 3.14 (b), there is a belief model IE, of (P, F) such that  E ~ C_ E, 
Is ,  \ E'  = IE \ E, and IE, = obj(I '~) for some I ~ E Tp~ ~ w. Since O is in I s  \ E, 
it is also in Is ,  \ EC Hence, E ~ is an explanation of O. [] 

Example 3.17 [29, 18]. Suppose that  P consists of the clauses 

sneeze(x) ~-- person(x) A cold(x), 

sneeze(x) ~-- person(x) A hay-fever(x), 

person(Tom) ~---, 

~-- person(x) A cold(x) A hay-fever(x), 
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and the abducibles are F = {cold(x), hay-fever(x)}. Then, the abductive Horn 
program (P, F) is transformed into the following positive disjunctive program P~: 

(cold(z) A sneeze(z)) Y -~Kcold(z) ~ person(z), 

(hay-fever(x) A sneeze(x)) V -~Khay-fever(x) ~-- person(x), 

person(Tom) ~--, 

 Kcold(x) v  Khay-fever(x) person(x), 

-~KA A A for every abducible A. 

Let 0 = sneeze(Tom) be the observation. Then 

Wp~ "[ w =  {M1,M2, M3}, 

where 

M, = {person(Tom), cold(Tom), sneeze(Tom), -~Khay-fever( Tom)}, 

M2 = {person(Tom), -,Kcold( Tom), hay-fever(Tom), sneeze( Tom)}, 

M3 = {person(Tom), -,Kcold( Tom), -~Khay-fever( Tom)}. 

By extracting the abducibles from M1 and M2, we can get the two explanations of 
O, E1 = {cold(Tom)} and E2 = {hay-fever(Tom)}. 

3.4. Fixpoint Semantics for Abductive Normal Logic Programs 

Now, we show a transformation of abductive normal logic programs by combining 
the two transformations shown in Sections 3.2 and 3.3. Each negation-as-failure 
formula not B for a nonabducible B is translated in the same way as Definition 3.7: 
it is split into -~KB and KB. On the other hand, when a negation-as-failure for- 
mula not A mentions an abducible A, it should be split into -~KA and A. This is 
because, for each abducible A, we can deal with it as if the axiom (10) A ~- KA is 
present. 

Definition 3.18. Let (P,F) be an abductive normal logic program. Then, P~ is 
the program obtained as follows. 

1. For each clause 

H +- B I A " " A B m A A I A ' " A A n  

Anot Bm+l A • • • A not Bs A not A,~+I A .. • A not At (13) 

in P,  where s >_ m >_ O, t _> n _> O, Bjs  are nonabducibles, and Aks are 
abducibles, 

H A A A, A A  KAk 
i=1 j = m + l  k = n + l  / 

V V~KAi V KBj V V Ak "~- B1 A . . .  A B m (14) 
i=1 j = m + l  k = n + l  
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2. 

is in P~. In particular, each integrity constraint is transformed into 

-~KA1 V . . .  V -~KA~ V KBm+ 1 V . . .  V KB~ 

V An+l V .. .  V At +- B1 A . . .  A Bin. 

For each atom H in 7-/B, P~ includes the negative clause 

~- -~KH A H. 

Notice that  a transformed program P~ in Definition 3.18 reduces to the program 
P~ in Section 3.2 when F is empty, and reduces to the program P~ in Section 3.3 
when P is a Horn program. 

Lemma 3.19. Let (P,F) be an abductive normal logic program, and E a subset of 
F. Then, IE is a belief model of (P, F) iff IE is a belief model of (p~e, F). 

PROOF. I E is a belief model of (P, F) 

iff IE is a stable model of P U E and E = IE M F 
iff IE is the least (and stable) model of p i e  U E le and E = IE N F 
iff IE is a belief model of (p ie ,  F) (because E le = E). [] 

Lemma 3.20. Let (P, F) be an abductive normal logic program. 

(a) For any I e objc(Tp ~ T co), I is a belief model of (P, F). 
(b) For any belief model IE of (P, F), there exists a belief model IE, of (P, F) 

in objc(Tp ~ T co) such that E' C_ E and IE, \ E' = IF, \ E. 

PROOF. (a)  Let I ~ E Tp~ T w such that  I ~ is canonical, and IE = obj(I~). 
We consider the abductive Horn program (piE, F). Let J~ be an interpretation 
of the program (pIE)~ such that  obj(J ~) = IE. We will show that  such j r  ex- 
ists in T(ple)~ T co. Now, for each ground clause of the form (14) from P~, if 
{B1 , . . . ,  Bin} c_ IE \ E, then either of the following holds: 

(i) {H, A I , . . . ,  A,~} c_ IE and {-~KBm+I,.. . ,  -~KBs,-~KAn+I,... ,  ~KAt}  c_ I '~. 
In this case, since I "  is canonical, it holds that  {Bin+l , . . . ,  Bs} N IE = 0 
and { A n + l , . . . , A t }  M E = ~. Then, there is a ground clause of the 
form (12) from (pI~)~. This clause is satisfied by J~ because {B1, • . . ,  Bin} C_ 
J~ implies {H, A1 , . . . ,  An} C_ J'~. 

(if) -~KAiEI  ~ for s o m e i ( l < i < n ) .  
In this case, there may or may not exist the corresponding ground clause 
of the form (12) from (pIs)~.  If it does exist, the clause is satisfied by J~ 
because {BI , . . .  ,Bin} C_ J'~ implies -~KAi E J~. 

(iii) KBj E I  ~ f o r s o m e j  (m + l _< j _< s). 
In this case, since I ~ is canonical, Bj E IE. Then, there is no corresponding 
clause of the form (12) in (pie)~.  

(iv) Ak E E for some k (n + 1 _< k < t). 
In this case, there is no corresponding clause of the form (12) in (pZs)~. 

Hence, J~ is a model of (p1~)~. By the above four cases, J~ is actually contained 
in T(pis)~ T co- Then, IE is a belief model of (pIE, F) by Lemma 3.14 (a). Hence, 
IE is a belief model of (P, F) by Lemma 3.19. 
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(b) Suppose that  IE is a belief model of (P, F). By Lemma 3.19, IE is a be- 
lief model of (P~E,F). Then, by Lemma 3.14 (b), there is a belief model IE, 
of ( p i e , F )  such that  E'  C_ E, IE, \ E'  = IE \ E, and IE, = obj(I '~) for some 
I ~ E T ( p~ )~  T w. Again, by Lemma 3.19, this IE, is a belief model of (P, F} 
such that  E"  C_ E and IE, \ E  ~ = IE \ E .  Thus, it remains to verify that  
IE, E objc(Tp ~ T w). Since IE, = obj(I  '~) and I ~ c T(p~s)~. T w, for each 

clause (12), if { B 1 , . . . , B m }  C_ IE,, then either: (i) {H, A 1 , . . . , A ~ }  C_ IE, or (ii) 
~KAi • I ~ for some i (1 < i < n). Now, suppose that  a clause (12) in (p l~)~  
was translated from the clause (11) in P ~ ,  and that  the ground instance of (11) 
corresponds to each ground clause C of the form (13) in P.  Consider the following 
three cases. 

Case 1. { B m + l , . . . , B s }  N IE, = 0 a n d  { A n + l , . . . , A t }  N E = 0 .  
In this case, let A(C) = {~KBm+I , . . . ,  "~KBs,-~KAn+I,. . . ,-~KAt}. 

Case 2. Bj  E IE, for s o m e j  ( m + l _ < j _ < s ) .  
In this case, let A(C) = {KBj}. 

Case 3. A k E I E ,  for somek  ( n + l  < k < t ) .  
In this case, let A(C) = {Ak}. 

In either of these three cases, IE, U A(C) obviously satisfies the corresponding 
ground clause of the form (14) from P~. Now, let J~ = IE, U min-Al(P) where 
min-A(P)  is a minimal subset of U c  A(C) such that  each KBj in Case 2 or Ak 
in Case 3 above is chosen in a way that  J~ satisfies every ground clause of the 
form (14) from P~. Then, J~ E Tp¢ T w, and it holds that  obj(J '~) = IE, and that  
KH E J~ implies H C IE, for any H E 7-/B. Hence, IE, E objc(Tg¢ T w). [] 

The next lemma is a generalization of the result of Lemma 3.16. 

Lemma 3.21. Let (P, F) be an abductive normal logic program, and 0 an observa- 
tion. I f  E c_ F is an explanation of O, then there is an explanation E ~ of 0 such 
that E'  C_ E and IE, E objc(Tg ~ T w). 

PROOF. This follows from the completeness result by Lemma 3.20 (b). [] 

The next theorem characterizes the belief model semantics of an abductive nor- 
mal logic program and the minimal explanations of an observation in terms of the 
disjunctive fixpoint of the transformed program. In the following, when I ~ is a set 
of interpretations, we write 

min(I ~) = {IE E I ~ I there is no JF E I ~ such that  F C E}. 
F 

Theorem 3.22. Let (P, F) be an abductive normal logic program. 

(a) Let rain -B,t~4 (g,r) be the set of all F-minimal belief models of (P, F). Then, 
min-B,~/t(p,r) = minr(  objc(T p ~ $ w) ). 

(b) Let E be a subset of F, and 0 an observation. Then, E is a minimal expla- 
nation of O with respect to (P,F I iff IE ~ minr(objc(T(pu{~--notO})~ $ w)). 
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PROOF.  (a) By Lemma 3.20 (b), it follows immediately that  min-B2vi(p,r) C_ 
objc(TP~ T w), and hence min-BA4(p,r) C_ minr(objc(Tp~ T w)) holds. On the 
other hand, by Lemma 3.20 (a), every IE E objc(Tp ~ T w) is a belief model 
of (P,F). If IE E minr(objc(Tp~ T w)) is not in min-BA4(p,r), then there is 
IE, E min-BA4(p,r) such that  E ~ C E. However, by the above discussion, IE, E 
minr(objc(TP~ T w)), contradiction. Therefore, the result follows. 

(b) By Lemma 3.21, for every minimal explanation E of O, there is a be- 
lief model IE of (P, F) in objc(TP~ T w) such that  IE satisfies O. Then, by 
Lemma 2.10 (b), IE E min-BJt4(pu{.--,~otO},r). By (a), min-BJ~A(pu{~-noto},r) 
is given by minr(obj~(T(pu{.--,~oto})~ $ w)). Hence, the result follows. [] 

Example 3.23. (cont. from Example 2.11) The abductive normal logic program 
( P , F ) , w h e r e P = { p * - - r A b A n o t q ,  q ~-- a, r *---, *-- notp} a n d F = { a , b } ,  
is transformed into P~ which contains 

(p A b A ~Kq) V ~Kb V Kq ~-- r, 
(q A a) V -~Ka ~ ,  
r 4 - - ,  

Kp *--, 

and *-- --KH A H for every H E 1-/B. Then, {r,p, b,--Kq, ~Ka, Kp} is the unique 
canonical set in Tp~ T w, and hence min-BA4(p,r) = {{r,p, b}}. 

4. A B D U C T I V E  E X T E N D E D  D I S J U N C T I V E  P R O G R A M S  

Gelfond [12] and Inoue [16] proposed more general frameworks for abduction than 
that  by Kakas and Mancarella [21] by allowing classical negation and disjunctions 
in a program. These extended abductive frameworks are powerful enough to de- 
scribe complex knowledge in such areas as diagnosis and reasoning about action. 
In this section, we consider a fixpoint theory for such extended classes of abductive 
programs by generalizing the results in the previous section. 

4.1. Fixpoint Semantics for Extended Disjunctive Programs 

An extended disjunctive program is a disjunctive program which contains classical 
negation (9) along with negation as failure (not) in the program [14], and is defined 
as a finite set of clauses of the form 4 

L1 V .. .  V Lz ~-- Lt+l A.  •. A L m  A not Lm+l A • • • A not Ln (15) 

where n _> m > l > 0 and each L~ is a positive or negative literal. We denote 
the set of all ground literals in the language as £: = 1-/B U (~B ] B E T/B}. An 
extended disjunctive program P is called an extended logic program if l _< 1 for 
every clause (15) of P. An extended disjunctive program P reduces to a normal 
logic program (resp. positive disjunctive program) if for any clause (15) of P, 1 _ 1 
(resp. m -= n) and every L~ is a positive literal. 

The semantics of extended disjunctive programs is given by the notion of answer 
sets in the following two steps. First, let P be an extended disjunctive program 

4Gelfond and  Lifschitz [14] use  t he  connect ive "1" ins tead  of "V" to d i s t ingu ish  i ts  m e a n i n g  
f rom the  classical f irst-order logic. Here, we take  t he  l iberty of us ing  t he  connect ive  V. 
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without not (i.e., m = n for any clause of P) ,  and S C_/:. Then, S is a consistent 
answer set of P iff S is a minimal set satisfying the conditions: 

1. For each ground clause L1 V .-.  V Ll ~- Lt+l A . . .  ALm (l >_ 1) from P,  if 
{ L l + l , . . . ,  Lm} C_ S, then L~ E S for some i (1 < i < l). In particular, for 
each ground integrity constraint ~- L1 A .-.  ALm from P,  it must be tha t  
{ L I , . . . , L m )  ~: S; and 

2. S does not contain both B and -~B for any a tom B. 

Next, let P be any extended disjunctive program, and S C_ £.  The reduct pS  of P 
by S is defined as follows: A clause L1 V . . .  V Lz ~- Ll+l A . - -A  Lm is in pS  iff there 
is a ground clause of the form (15) from P such tha t  ( L m + l , . . . , L n }  A S = ~. 
Then, S is a consistent answer set of P iff S is a consistent answer set of pS.5 

Since the answer set semantics of extended disjunctive programs is a direct ex- 
tension of both the minimal model semantics of positive disjunctive programs and 
the stable model semantics of normal logic programs, the results presented in Sec- 
tions 3.1 and 3.2 can be naturally extended. The extra  condition we have to consider 
is the constraint that  an a tom B and its negation ~B cannot be in a consistent 
answer set at the same time. 

Definition 4.1 [17]. 
is defined as follows. 

1. For each clause (15) in P,  P~ contains the clause 

(L1 A-~KLm+I A . . .  A ~KLn) V . . -  V (Ll A-~KLm+I A . - .  A-~KL~) 

VKLm+IV...VKL~ +- LI+IA'"ALm. (16) 

2. For each literal L in L, P~ includes the negative clause 

+- ~KL A L. (17) 

3. For each atom B in ~B, P~ includes the negative clause 

~-- -~B A B. (18) 

Let P be an extended disjunctive program. The program P~ 

Note in the above definition tha t  the transformed program P~ is a positive dis- 
junctive program. This is because we regard each negative literal -~B as an atom, 
and then its meaning is given by the extra integrity constraint (18). In the follow- 
ing, the function objc defined in Definition 3.8 is extended to a collection of sets of 
literals in an obvious way. 

Theorem 4.2 [17, 34]. Let P be an extended disjunctive program, and A S p  the set 
of all consistent answer sets of P. Then 

A S p  = objc(A4AAp~ ) = objc(min(Tp~ T w)). 

The above theorem says tha t  the answer sets of an extended disjunctive pro- 
gram P are characterized in terms of the minimal models of P~. For extended 

5In th is  paper,  we do not  consider the  contradictory answer set ~ t h a t  conta ins  all l iterais 
s ince we are interested only  in consistent  theories  augmented  wi th  abducibles.  
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logic programs, the result of Theorem 4.2 is further simplified so tha t  we need not 
compute the minimal models of the disjunctive fixpoint (cf. Theorem 3.9). 

Corollary 4.3 [34]. Let P be an extended logic program. Then 

.ASp = objc(Tp~ T w). 

4.2. Fixpoint Semant ics  for  Abductive Extended Disjunctive Programs 

Now, we define abduction within extended disjunctive programs. 

Definit ion ~.~. An abductive extended disjunctive program is a pair (P, F), where 
P is an extended disjunctive program and F is a set of literals from the language 
of P.  The set F is identified with the set of ground instances from F, and each 
literal in F is called an abducible. Note tha t  F C £.  When P is an extended 
logic program, (P, F) is called an abductive extended logic program. 

For S C_ £,  we often write S as SE when E = S N F. 
A set of literals S is a belief set of (P, F) if it is a consistent answer set of an 

extended disjunctive program P t9 E for some subset E of F. A belief set SE is 
F-min imal  if no belief set TF satisfies tha t  F C E. 

Let O be a ground literal called an observation. E _C F is a (minimal)  expla- 
nation of O if there is a (F-minimal) belief set SE of (P, F) such tha t  O ~ SE. 

Note tha t  the notion of belief sets reduces to that  of belief models for abductive 
normal logic programs. The transformation for an abductive extended disjunctive 
program is defined in the same way as in Definition 3.18. 

Definition 4.5. Let (P, F) be an abductive extended disjunctive program. Then, 
P~ is obtained as follows. 

1. For each clause in P of the form 

2. 

HI V .. . V HI ~-- B 1 A  " " A B m  A A 1 A  " " A An 

A not Bm+l A . . .  A not B8 A not An+l A . . .  A not At  (19) 

where l >_ 0, s >_ m _> 0, t > n > 0, His  are literals, Bjs  are nonabducible 
literals, and Aks are abducible literals, P~ contains the clause 

(H1 A P R E )  V . .. V (Ht A P R E )  V -~KA1 V . .. V -~KAn 

V KBm+I V . . .  V KBs V An+l V . . .  V At ~- B1 A . . .  A Bm (20) 

where P R E  = A1 A.  . • A A,~ A -~KBm+I A..  • A ~KB8 A ~KAn+I A-. • A - 'KAt .  
P~ includes the clauses 

-~KL A L for each literal L E £ ,  

~-- -~H A H for each a tom H E 7-/B. 

I t  is easy to see tha t  the transformed clause (20) for abductive extended disjunc- 
tive programs is a generalization of transformed clauses (4), (12), (14), and (16) 
for normal logic, abductive Horn, abductive normal logic, and extended disjunctive 
programs. Note, again, tha t  the transformed program P~ is a positive disjunc- 
tive program. Therefore, we can get its disjunctive fixpoint like abductive normal  
logic programs. 
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Lemma 4.6. Let (P, F) be an abduetive extended disjunctive program. 

(a) For any S C objc(min(Tpp T w)), S is a belief set of (P, F). 
(b) For any belief set SE of (P, F), there exists a belief set SE, of (P, F) in 

objc(min(Tp~ T w)) such that E'  C_ E and SE, \ E'  = SE \ E. 

PROOF. The  proofs can be given in a similar way to the proof  of L e m m a  3.20, 
except that ,  according to the  existence of disjunctions in P ,  each S ~ is taken from 
min (Tp¢  T w) (as in Theorem 3.4 (c) and Theorem 4.2) instead of  T p ¢  T w. [] 

The  next  theorem characterizes the belief set semantics of an abduct ive  extended 
disjunctive program and the minimal explanations of an observation. 

Theorem 4.7. 

(a) 

(b) 

Let (P, F) be an abductive extended disjunctive program. 

Let min-BS(p, r )  be the set of all E-minimal belief sets of (P, F). Then 

min-BS(p,r)  = m~n(objc (MMp¢)  ) = m~n(objc(min(Tp ~ T w))). 

Let E be a subset of F, and 0 an observation. Then, E is a minimal expla- 
nation of O with respect to (P, F) iff S E E  minr(objc(min(T(po{._not o})~ T 

PROOF. The  proof  can be given in the same way as the proof  of Theorem 3.22 
using L e m m a  4.6. [] 

For abduct ive  extended logic programs, the results of  Theorem 4.7 are fur- 
ther  simplified so tha t  we need not compute  the minimal models of the disjunc- 
tive fixpoint. This is similar to the case of abduct ive  normal  logic programs in 
Theorem 3.22. 

Corollary 4.8. Let (P ,F)  be an abductive extended logic program. Then 

min-BS(p,r)  = n~n(objc(Tp ~ T w)). 

Example 4.9. Consider the abduct ive extended disjunctive program (P, F), where 

P = { p V q  ~-- notr,  

r ~-- not a, 

-~q ~-- b}, 

F = {a, b). 

This program has five belief sets: $1 = {r}, $2 = {a,p}, $3 = {a,q}, $4 = 
{r,b,-~q}, and Ss = {a,p,b,-~q}, and $1 is the F-minimal  belief set. Let  p be 
an observation. Then,  $2 and $5 are those belief sets containing p, and E2 -- 
$2 N F = {a} is the minimal explanat ion of p, but  E5 = $5 N F = {a,b} is its 
nonminimal  explanation. 6 Now, the program with the  observat ion is t ransformed 

6Note, however, that the program P U E2 has another answer set $3 that does not contain p, 
while P U E5 has the unique answer set $5 that contains p. Hence, some alternative definitions of 
explanations can be considered according to credulous or skeptical reasoning for the observation. 
In this respect, see Inoue [16], for example. 
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into ( P U { ~ -no t  p} )~ which includes 

(p A ~Kr) V (q A ~Kr) V Kr ~-, 

(r A -~Ka) V a ~--, 

^ b) v 
~- ~Kr  A r, 

~- -~Ka A a, 

~- -~Kb A b, 

*-- -~q A q, 

Kp ~- . 

Then, T(pu{~_notp}) ~ T w contains two canonical sets, S~ = (p,-~Kr, a,-~Kb} and 
S~ = {p, -~Kr, a, -~q, b}, which correspond to the explanations E2 and E5. 

5. B O T T O M - U P  E V A L U A T I O N  O F  A B D U C T I V E  P R O G R A M S  

In this section, we investigate the procedural aspect of the fixpoint theory for ab- 
ductive programs in the context of a particular inference system called the model 
generation theorem prover (MGTP) [11, 17]. M G T P  is a parallel and refined ver- 
sion of SATCHMO [26], which is a bot tom-up forward-reasoning system tha t  uses 
hyperresolution and case-splitting on nonunit hyperresolvents. 

Let P be a positive disjunctive program consisting of clauses of the form 

(HI,I  A " "  A HI ,k l )  V " " V (HI,I A " "  A HI,k,) +- B 1 A  " " A B m  (21) 

w h e r e B i s ( l < i < m ; m > _ 0 )  a n d H j , l s ( l _ < j _ < l ; l < l < k j ; k j _ > l ; l > _ 0 )  are 
atoms, and all variables are assumed to be universally quantified at  the front of the 
clause. Given an interpretation I ,  M G T P  applies the following two operations to 
I and either expands I or rejects I:  

1. (Interpretat ion Extension) If there is a nonnegative clause of the form (21) 
in P and a substitution a such that  I ~ (BI A . . .  A Bm)G and I ~ (Hi,1 A 
• .. A g i , k , ) a  for all i = 1 , . . .  ,l, then I is expanded in l ways by adding 
Hi, l a , . . . ,  Hi ,k ,a  to I for each i = 1 , . . . ,  1. 

2. (Interpretation Rejection) If  there is a negative clause ~-- B 1 , . . . , B m  in P 
and a substitution a such tha t  I D (B1 h --. A Bin)a,  then I is discarded. 

Start ing from the empty  interpretation I0 = 0, M G T P  repeats to apply the 
above two operations as long as a new interpretation can be expanded or some 
interpretation can be pruned. Here, in obtaining a substitution a in each operation, 
it is sufficient to consider matching instead of full unification if every clause is range- 
restricted [26], tha t  is, if every variable in the clause has at least one occurrence 
in the body. In this case, every set I of atoms constructed by M G T P  contains 
only ground atoms. ~ r t h e r m o r e ,  when a program is function-free, M G T P  always 
terminates in a finite step. 

Thus, a program input to M G T P  is usually assumed to be a finite, function-free 
set of range-restricted clauses. For example, let C be a clause of the form (19) in 
an extended disjunctive program, and C ~ the M G T P  clause of the form (20) tha t  
is t ranslated from C. In order that  C ~ may be range-restricted, every variable in 
C has an occurrence in a nonabducible literal Bi (1 < i < m) tha t  is not preceded 
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by not in the body of C. Note that clauses can be converted in order to satisfy this 
kind of rangerestriction [26]. MGTP gives high inference rates for range-restricted 
clauses by avoiding computation relative to their useless ground instances [11]. 

The connection between closure computation by SATCHMO/MGTP and the 
fixpoint semantics with the mapping Tp given in Section 3 is obvious, which can 
be regarded as an extension of the relation between hyperresolution and van Emden 
and Kowalski's fLxpoint semantics for definite programs [37, sect. 8]. In fact, for 
each split interpretation constructed by MGTP, hyperresolution is applied in the 
same way as in the case of definite programs. Then, since we have presented 
correct transformations of abductive programs into semantically equivalent positive 
disjunctive programs in the previous sections, the soundness and completeness of 
MGTP mentioned above imply that MGTP is also sound and complete to compute 
belief models/sets of function-free, range-restricted abductive programs. 

We summarize the advantages of MGTP for computing belief models/sets of 
abductive programs as follows. Other additional merits of MGTP computation that 
are compared with other styles of implementation will be discussed in Section 6.2. 

1. Since we keep believed literals KL's and ~KL's in each interpretation, when 
new clauses are added to the program, the previous fixpoint closure can be used 
as the input to the next computation. Hence, computation is incremental. 

2. Our program transformation is modular in the sense that adding new clauses 
to a program is reflected by adding new transformed not-free clauses to the 
corresponding transformed program. 

3. While case-splitting is the place where nondeterminism arises in our pro- 
cedure, those split interpretations can be dealt with independently without 
future backtracking. This means that, for every generated interpretation, 
each ground instance of any clause is evaluated only once. 

4. For abductive Horn, normal, and extended (disjunctive) programs, our pro- 
gram translations are especially suitable for OR-paraUelism of MGTP be- 
cause, for each negation-as-failure formula as well as an abducible, we make 
guesses to believe or disbelieve it. Inoue et al. [18] have shown that model 
generation for abductive Horn programs using the translation in Section 3.3 
successfully extracts a great amount of parallelism of MGTP in solving a 
logic circuit design problem. 

5. While MGTP is a bottom-up abductive procedure, it is equipped with var- 
ious devices for reducing the number of combinations of ground hypotheses 
from F in generating belief models (see Section 6.2.3). 

6. Inoue et al. [18] have shown how to recover the "goal-oriented" feature within 
the above parallel abductive procedure by applying the magic set method [1] 
to Horn abduction. Our bottom-up abductive procedure can thus avoid naive 
computation. 

6. C O M P A R I S O N  W I T H  O T H E R  A P P R O A C H E S  

This section compares the proposed abductive theory to related work. Our fixpoint 
theory gives a new, uniform framework for characterizing minimal models, stable 
models, belief models, answer sets, and belief sets of abductive/nonabductive, nor- 
mal/extended, logic/disjunctive programs. Since there have been no algorithms 
to compute the belief sets of arbitrary form of abductive programs, our procedural 
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semantics also provides the most general abductive procedure in the class of function- 
free and range-restricted programs. 

6.1. Fixpoint Characterization for Disjunctive and Normal Programs 

Here, we summarize the differences between other approaches and our fixpoint 
construction for positive disjunctive programs and normal logic programs. 

A fixpoint semantics for positive disjunctive programs has been studied by sev- 
eral researchers. Minker and Rajasekar [28] consider a mapping over the set of 
positive disjunctions (called state), while our fixpoint construction is based on the 
manipulation of standard Herbrand interpretations and directly computes models. 
Fernandez and Minker [9] present a fixpoint semantics for stratified disjunctive 
programs using a fixpoint operator over the sets of minimal interpretations. To 
this end, their fixpoint operator computes minimal sets of atoms at every stage of 
closure computation. With our fixpoint operator, on the other hand, each interpre- 
tation can be treated in a different, independent process in closure computation, so 
that  split interpretations can be taken as the source for exploiting OR-parallelism 
of MGTP. 

For normal and extended disjunctive programs, Gelfond and Lifschitz originally 
defined the stable model semantics [13] and the answer set semantics [14] by means 
of guesses and reducts of programs. On the other hand, our fixpoint is construc- 
tively defined. In contrast to another constructive approach like [31], our fixpoint 
construction is performed in parallel based on case-splitting on derived disjunc- 
tions, and does not need any selection strategies or future backtracking during the 
computation of stable models. Sakama and Inoue [33, 34] also present yet another 
fixpoint semantics for positive and extended disjunctive programs. They use simi- 
lar fixpoint constructions, but the semantics dealt with in [33] is the possible model 
semantics and that  in [34] is the paraconsistent stable/possible model semantics. 

In [10], Fernandez et al. independently develop a method of computing stable 
models by using a similar but different program transformation from ours in Sec- 
tion 3.2. In our transformation (4), each head H is associated with its prerequisite 
condition -~KBm+I A. . .  A ~KBn in an explicit way, while this is not the case in their 
transformation. Then, it is not clear whether Fernandez et al.'s transformation can 
be naturally extended to deal with abductive programs. In this regard, our trans- 
lation appears to be more suitable for handling abducibles. Since the prerequisite 
condition in Definitions 3.18 and 4.5 

P R E  = A1 A • .. A An A Bm+l A • • • A Bs A ~KAn+I A ' "  A ~KAt 

contains abduced literals A1 , . . . ,  An explicitly, we can easily identify abducibles 
from other atoms in each obtained model, and negative clauses can be used to test 
the consistency of abducibles in each interpretation. 

6.2. Various Characterizations for Abductive Programs 

6.2.1. ABDUCTION AS DEDUCTION. Console et al. [4] characterize abduction 
by deduction (called the object-level abduction) through Clark's completion seman- 
tics of a program [3]. According to their framework, abduction is characterized as 
follows: For an abductive logic program (P, F/, let c o m p - r ( P )  be the completion 
of nonabducible predicates in P.  For an atom O (observation), if E is a formula 
from F satisfying the conditions 
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1. comp-r(P) U {O} ~ E, and 
2. no other E '  from F satisfying the above condition subsumes E,  

then a minimal set of literals S C_ F such that  S ~ E is called an explanation of O. 
The object-level abduction coincides with the meta-level characterization of ab- 

duction in terms of SLDNF proof procedure for hierarchical logic programs 7 [4]. 
Note here that  the restriction of hierarchical programs is necessary not only for as- 
suring the completeness of SLDNF resolution, but also for characterizing abduction 
in terms of completion (see also [24]). 

Example 6.1. 

and 

Then 

Let us consider an abductive program containing cyclic clauses 

P =  {p~-q,  

q ~--p, 

q ~ a } ,  

F = {a}. 

c o m p - r ( P ) = { p - q ,  q=-pVa} ,  

and for an observation O = p, P tA {a} ~ p, while comp-r(P) U {O} ~= a. 
On the other hand, 

= {p  q, 

q ~ p ,  

(q A a) V -~Ka ~ ,  

~- --~Ka A a} 

is obtained by our transformation in Section 3.3, and {q,a,p} is in Tp?  T w. 

Denecker and De Schreye [5] propose a model generation procedure for Console 
et al.'s object-level abduction. In contrast to ours, their procedure computes the 
models of the only-if part of a completed program that  is not range-restricted in 
general, even if the original definite clauses are range-restricted. To this end, they 
extend the model generation method by incorporating term rewriting techniques, 
while we can use the original MGTP without any change. Furthermore, the appli- 
cation of their procedure is limited to definite programs, whereas we allow negative 
and disjunctive clauses as well as negation as failure in programs. Bry [2] first 
considered abduction by model generation, but his abduction is defined in terms of 
a meta-theory. 

6.2.2. ABDUCTIVE INTERPRETATION OF NEGATION AS FAILURE. The idea of 
dealing with negation as failure and abduction in a uniform way was first proposed 
by Eshghi and Kowalski [8], and further developed by Sakas and Mancarella [21]. 
Our transformation also realizes a uniform approach, but  is entirely original and 

7Normal logic programs containing no predicates defined via positive/negative cycles. 
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has the advantage of providing a uniform framework for yet another extension of 
logic programming, including disjunction and classical negation. 

Eshghi and Kowalski [8] give an abductive interpretation of negation as failure in 
normal logic programs. For each negation-as-failure formula not B(x), the formula 
B*(x) is associated where B* is a new predicate symbol not appearing anywhere 
in the program. A program P is thereby transformed into the definite program P* 
together with the set F* of abducibles with the predicates B*s. Then, an atom O 
is true in a stable model of P iff there is a set E* of abducibles from F* such that 

1. P* (JE* ~ O, and 
2. P* (J E* satisfies the integrity constraints 

9 (B(x)  A B*(x) ) and B(x) V B*(x) for every abducible predicate B*. 

In this abductive characterization, the difficulty arises in dealing with the dis- 
junctive constraints that cannot be checked without actually computing models in 
general. Thus, it is hard to design an elegant top-down proof procedure which is 
sound with respect to the stable model semantics. In fact, Eshghi and Kowalski 
[8] show an abductive proof procedure for normal logic programs by incorporating 
consistency tests into SLD resolution, but its soundness with respect to the stable 
model semantics is not guaranteed in general s 

For an abductive normal logic program (P, F), Kakas and Mancarella [22] show 
a top-down abductive procedure for the transformed program (P*, F tJ F*), where 
P* and F* are obtained by the transformation of [8]. This transformation inherits 
the difficulty of computation from Eshghi and Kowalski's abductive interpretation 
of negation as failure, and their procedure suffers from the soundness problem 
with respect to the belief model semantics. Satoh and Iwayama [36] develop an 
abductive procedure which is sound with respect to the belief model semantics by 
incorporating a special integrity checking into the procedure of [8, 22]. To our best 
knowledge, no procedure other than ours has been developed so far as a sound 
procedure for abductive extended disjunctive programs. 

6.2.3. COMPUTATION WITH TMS. Satoh and Iwayama [35] and Inoue [16] 
independently show that any abductive normal logic program (P, r)  can be trans- 
formed into a single extended (or normal) logic program. For each atom A in F, 
they introduce the negative literal -~A and a pair of clauses 

A ~- not-~A,  

-~A ~- not  A.  (22) 

Then, there is a 1-1 correspondence between the belief models of (P, F) and the 
answer sets (or stable models if -~A is considered as a new atom) of the transformed 
program. Using this transformation, Satoh and Iwayama [35] propose a bottom-up, 
TMS-style procedure for computing stable models of a normal logic program, which 
is similar to Sacca and Zaniolo's [31] procedure and performs an exhaustive search 
with backtracking. At this point, we can use any procedure other than TMS-style 
procedures for computing stable models. For instance, Dressler's nonmonotonic 

SFor Example 3.10, the top-down abductive procedure of [8] gives a proof for O = p, but no 
stable model satisfies p. However, Eshghi and Kowalski's abductive proof procedure is sound with 
respect to the  preferred extension semantics by Dung [7]. 
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ATMS [6] can also be used to compute belief models. Comparing each procedure, 
the MGTP-based procedure by Inoue et al. [17] has the following advantages over 
the procedures of [31, 35]. First, MGTP can deal with disjunctive programs, while 
TMS and ATMS cannot. Second, MGTP gives high inference rates for range- 
restricted clauses by avoiding computation relative to their useless ground instances, 
while TMS and ATMS generally deal only with the propositional case and have to 
prepare all the ground instances of a program in advance. Third, MGTP performs 
a backtrack-free search and more easily parallelized than others. 

Although the simulation (22) of abducibles is theoretically correct, this technique 
has the drawback that it may generate 2 irl interpretations, even for an abductive 
Horn program, and is, therefore, often explosive for a number of practical applica- 
tions. The program transformation methods proposed in this paper avoid this prob- 
lem in two aspects. First, for each epistemic hypothesis which is either a positive 
hypothesis from abducibles or a negative hypothesis through negation as-failure, 
case-splitting is delayed as long as possible since an interpretation is expanded with 
a ground clause only when the body of the transformed clause becomes true. Sec- 
ond, by using MGTP, a ground instance of hypothesis is introduced only when 
there is a ground substitution for each clause with variables such that the body of 
the clause is satisfied. Hence, hypotheses are introduced when they are necessary, 
and the number of generated interpretations is reduced as much as possible. 

6.2.4. OTHER CHARACTERIZATIONS. Finally, it is worth noting that abduc- 
tive programs can be formalized in other existing logic programming frameworks. 
Inoue and Sakama [20] recently showed that abductive extended disjunctive pro- 
grams can be transformed into extended disjunctive programs with positive occur- 
rences of negation as failure, and then into ordinary extended disjunctive programs. 
Their translation is complete with respect to the all belief sets of any abductive 
program, while the translation in this paper is complete with respect to the F- 
minimal belief sets. On the other hand, Sakama and Inoue [32] recently developed 
a translation from abductive normal logic/disjunctive programs into disjunctive 
programs, as well as a converse translation from disjunctive programs into abduc- 
tive normal logic programs in the context of the possible model semantics, so that 
these two classes of programs are shown to be equivalent. Both works [20, 32] have 
contributed to the theory of the computational complexity of abductive normal 
logic/disjunctive programs. 

7. C O N C L U S I O N  

We have established a uniform framework for fi_xpoint characterization of abductive 
(and nonabductive) Horn, normal, and extended logic (and disjunctive) programs. 
Based on a fLxpoint operator over the sets of Herbrand interpretations, the belief 
model semantics of an abductive normal logic program can be characterized by the 
fixpoint of a suitably transformed positive disjunctive program. In the proposed 
transformations, both negative hypotheses through negation as failure and positive 
hypotheses from the abducibles are dealt with uniformly. 

The result has also been directly applied to the belief set semantics of abduc- 
tive extended disjunctive programs. Compared with other approaches, our fixpoint 
theory provides a constructive way to give explanations for observations. We also 
showed that a bottom-up model generation procedure can be used for computing 
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belief models or belief sets, and has a computational advantage from the view- 
point of parallelism. Since there has been no algorithm which can compute the 
belief sets of arbitrary form of abductive programs, our procedural semantics also 
provides the most general abductive procedure in the class of function-free and 
range-restricted programs. 

The transformation method in this paper is also applicable to other semantics 
of abductive programs. For example, the paraconsistent, multivalued semantics 
for extended disjunctive programs [34] can be extended to incorporate abducible 
literals, and then the corresponding belief sets can be directly characterized by the 
translation and the fixpoint semantics in this paper. 

R E F E R E N C E S  

1. Bancilhon, F., Maler, D., Sagiv, Y., and Ullman, J. D., Magic Sets and Other Strange 
Ways to Implement Logic Programs, in: Proc. 5th A CM SIGMOD-SIGA CT Sym- 
posium on Principles of Database Systems, 1986, pp. 1-15. 

2. Bry, F., Intensional Updates: Abduction via Deduction, in: D. H. D. Warren and P. 
Szeredi (eds.), Logic Programming: Proc. 7th International Conference, MIT Press, 
1990, pp. 561-575. 

3. Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic and 
Data Bases, Plenum Press, 1978, pp. 293-322. 

4. Console, L., Dupre, D. T., and Torasso, P., On the Relationship between Abduction 
and Deduction, J. Logic and Computation 1(5):661-690 (1991). 

5. Denecker, M., and De Schreye, D., On the Duality of Abduction and Model Gen- 
eration, in: Proc. International Conference on Fifth Generation Computer Systems 
1992, Ohmsha, 1992, pp. 650-657. 

6. Dressier, O., Problem Solving with the NM-ATMS, in: Proc. 9th European Confer- 
ence on Artificial Intelligence, Pitman, 1990, pp. 253-258. 

7. Dung, P. M., Negations as Hypotheses: An Abductive Foundation for Logic Pro- 
gramming, in: K. Furukawa (ed.), Logic Programming: Proc. 8th International Con- 
ference, MIT Press, 1991, pp. 3-17. 

8. Eshghi, K., and Kowalski, R. A., Abduction Compared with Negation by Failure, 
in: G. Levi and M. Martelli (eds.), Logic Programming: Proc. 6th International 
Conference, MIT Press, 1989, pp. 234-254. 

9. Fernandez, J. A., and Minker, J., Computing Perfect Models of Disjunctive Stratified 
Databases, in: Proc. ILPS'91 Workshop on Disjunctive Logic Programs, San Diego, 
CA, 1991. 

10. Fernandez, J. A., Lobo, J., Minker, J., and Subrahmanian, V. S., Disjunctive LP + 
Integrity Constraints = Stable Model Semantics, Annals of Mathematics and Artifi- 
cial Intelligence 8:449-474 (1993). 

11. Fujita, H., and Hasegawa, R., A Model Generation Theorem Prover in KL1 Using 
a Ramified-Stack Algorithm, in: K. F urukawa (ed.), Logic Programming: Proc. 8th 
International Conference, MIT Press, 1991, pp. 494-500. 

12. Gelfond, M., Epistemic Approach to Formalization of Commonsense Reasoning, Re- 
search Report, Computer Science Department, University of Texas at El Paso, E1 
Paso, TX, 1990. 

13. Gelfond, M., and Lifschitz, V., The Stable Model Semantics for Logic Programming, 
in: R. A. Kowalski and K. A. Bowen (eds.), Logic Programming: Proc. 5th Interna- 
tional Conference and Symposium, MIT Press, 1988, pp. 1070-1080. 

14. Gelfond, M., and Lifschitz, V., Classical Negation in Logic Programs and Disjunctive 
Databases, New Generation Computing 9(3,4):365-385 (1991). 



FIXPOINT SEMANTICS OF ABDUCTIVE PROGRAMS 135 

15. Inoue, K., Linear Resolution for Consequence Finding, Artificial Intelligence 
56(2,3):301-353 (1992). 

16. Inoue, K., Hypothetical Reasoning in Logic Programs, J. Logic Programming 
18(3):191-227 (1994). 

17. Inoue, K., Koshimura, M., and Hasegawa, R., Embedding Negation as Failure into a 
Model Generation Theorem Prover, in: D. Kapur (ed.), Automated Deduction: Proc. 
11th International Conference, Lecture Notes in Artificial Intelligence 607, Springer- 
Verlag, 1992, pp. 400-415. 

18. Inoue, K., Ohta, Y., Hasegawa, R., and Nakashima, M., Bottom-Up Abduction by 
Model Generation, in: Proc. 13th International Joint Conference on Artificial Intel- 
ligence, Morgan Kaufmann, 1993, pp. 102-108. 

19. Inoue, K., and Sakama, C., Transforming Abductive Logic Programs to Disjunctive 
Programs, in: D. S. Warren (ed.), Logic Programming: Proc: lOth International 
Conference, MIT Press, 1993, pp. 335-353. 

20. Inoue, K., and Sakama, C., On Positive Occurrences of Negation as Failure, in: 
J. Doyle, E. Sandewall, and P. Torasso (eds.), Principles of Knowledge Representa- 
tion and Reasoning: Proc. 4th International Conference, Morgan Kaufmann, 1994, 
pp. 293-304. 

21. Kakas, A. C., and Mancarella, P., Generalized Stable Models: A Semantics for Ab- 
duction, in: Proc. 9th European Conference on Artificial Intelligence, Pitman, 1990, 
pp. 385-391. 

22. Kakas, A. C., and Mancarella, P., Knowledge Assimilation and Abduction, in: 
J. P. Martins and M. Reinfrank (eds.), Truth Maintenance Systems: Proc. ECAI- 
90 Workshop, Lecture Notes in Artificial Intelligence 515, Springer-Verlag, 1991, 
pp. 54-70. 

23. Kakas, A. C., Kowalski, R. A., and Toni, F., Abductive Logic Programming, J. Logic 
and Computation 2(6):719-770 (1992). 

24. Konolige, K., Abduction versus Closure in Causal Theories, Artificial Intelligence 
53:255-272 (1992). 

25. Lloyd, J. W., and Topor, R. W., Making Prolog More Expressive, J. Logic Program- 
ming 3:225-240 (1984). 

26. Manthey, R., and Bry, F., SATCHMO: A Theorem Prover Implemented in Prolog, 
in: Proc. 9th International Conference on Automated Deduction, Lecture Notes in 
Computer Science 310, Springer-Verlag, 1988, pp. 415-434. 

27. Minker, J., On Indefinite Data Bases and the Closed World Assumption, in: Proc. 
6th International Conference on Automated Deduction, Lecture Notes in Computer 
Science 138, Springer-Verlag, 1982, pp. 292-308. 

28. Minker, J., and Rajasekar, A., A Fixpoint Semantics for Disjunctive Logic Programs, 
J. Logic Programming 9:45-74 (1990). 

29. Poole, D., Goebel, R., and Aleliunas, R., Theorist: A Logical Reasoning System 
for Defaults and Diagnosis, in: N. Cercone and G. McCalla (eds.), The Knowledge 
Frontier: Essays in the Representation of Knowledge, Springer, 1987, pp. 331-352. 

30. Preist, C., and Eshghi, E., Consistency-Based and Abductive Diagnoses as Gener- 
alized Stable Models, in: Proe. International Conference on Fifth Generation Com- 
puter Systems 1992, Ohmsha, 1992, pp. 514-521. 

31. Sacca, D., and Zaniolo, C., Stable Models and Non-Determinism in Logic Programs 
with Negation, in: Proc. 9th ACM SIGACT-SIGMOD-SIGART Symposium on 
Principles of Database Systems, 1990, pp. 205-229. 

32. Sakama, C., and Inoue, K., On the Equivalence between Disjunctive and Abduc- 
tive Logic Programs, in: P. V. Hentenryck (ed.), Logic Programming: Proc. 11th 
International Conference, MIT Press, 1994, pp. 489-503. 

33. Sakama, C., and Inoue, K., An Alternative Approach to the Semantics of Disjunctive 
Logic Programs and Deductive Databases, J. Automated Reasoning 13(1):145-172 
(1994). 



136 K. INOUE AND C. SAKAMA 

34. Sakama, C., and Inoue, K., Paraconsistent Stable Semantics for Extended Disjunctive 
Programs, J. Logic and Computation 5(3):265-285 (1995). 

35. Satoh, K., and Iwayama, N., Computing Abduction by Using the TMS, in: K. 
Phrukawa (ed.), Logic Programming: Proc. 8th International Conference, MIT Press, 
1991, pp. 505-518. 

36. Satoh, K., and Iwayama, N., A Query Evaluation Method for Abductive Logic Pro- 
g-ramming, in: K. Apt (ed.), Logic Programming: Proc. Joint International Confer- 
ence and Symposium, MIT Press, 1992, pp. 671-684. 

37. van Emden, M. H., and Kowalski R. A., The Semantics of Predicate Logic as a 
Programming Language, J. A CM 23:733-742 (1976). 


