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Abstract

Abductive logic programming (ALP) and disjunctive logic programming (DLP) are two dif-

ferent extensions of logic programming. This paper investigates the relationship between ALP

and DLP from the program transformation viewpoint. It is shown that the belief set semantics

of an abductive program is expressed by the answer set semantics and the possible model se-

mantics of a disjunctive program. In converse, the possible model semantics of a disjunctive

program is equivalently expressed by the belief set semantics of an abductive program, while

such a transformation is generally impossible for the answer set semantics. Moreover, it is

shown that abductive disjunctive programs are always reducible to disjunctive programs both

under the answer set semantics and the possible model semantics. These transformations are

veri®ed from the complexity viewpoint. The results of this paper turn out that ALP and DLP

are just di�erent ways of looking at the same problem if we choose an appropriate seman-

tics. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

1.1. Background

Abduction is a form of commonsense reasoning in arti®cial intelligence (AI), and
early AI systems realize abduction in ®rst-order logic or default reasoning systems
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[5,31±33]. In the context of logic programming, Eshghi and Kowalski [12] introduced
an abductive framework and provided an abductive interpretation of negation as fail-
ure. Kakas and Mancarella [22] developed the framework and introduced the notion
of generalized stable models, which is an extension of the stable model semantics of
Ref. [14], as a declarative semantics of abductive normal programs. A similar idea
was independently developed by Gelfond [16]. In the paper, Gelfond introduced
the belief set semantics which characterizes explanation-based reasoning in a know-
ledge system having disjunctions, default and explicit negations. The belief set
semantics was lately applied by Inoue and Sakama [21] to the semantics of abductive
(extended) disjunctive programs. The framework of abductive logic programming
(ALP) was established and made popular by the survey paper [23]. Background
and recent studies in the area are also reviewed in Refs. [24,25].

Logic programs were originally de®ned as a set of (de®nite) Horn clauses. It is
known that Horn logic programs provide a powerful computational language. How-
ever, they can represent only de®nite information in the world and provide no infer-
ence mechanism for reasoning with inde®nite information. A disjunctive program is a
logic program possibly containing inde®nite or disjunctive information in a program.
A theory of disjunctive programs was ®rstly studied by Minker [29] in which he in-
troduced the minimal model semantics and a theory of negation in positive disjunctive
programs. Later, the minimal model semantics has been extended in various ways to
disjunctive programs containing negation. Such extensions include the disjunctive
stable model semantics [34] and the possible model semantics [37] of normal disjunctive
programs, and the answer set semantics [15] of extended disjunctive programs. An in-
tensive study on disjunctive logic programming (DLP) is done in the monograph [27].
Historical background and recent techniques in the area are described in Refs. [3,30].

1.2. ALP vs DLP

ALP supplies the ability to perform reasoning with hypotheses. It is known that
abduction is useful for various AI problems including diagnosis, planning, and the-
ory revision [24]. ALP enables us to use logic programming as an inference engine for
solving these abductive problems. On the other hand, DLP provides us with a meth-
od of reasoning with inde®nite information. DLP extends Horn logic to a larger sub-
set of ®rst-order logic. It has close relation to ®rst-order theorem proving [27], and
also provides a powerful database query language [11]. DLP is useful in representing
knowledge having non-deterministic and multiple possible interpretations. Applica-
tions include legal rules, biological inheritance, natural language understanding, and
so on [6].

Thus, ALP and DLP supply apparently di�erent forms of reasoning and have
been independently studied in logic programming. Indeed, ALP and DLP handle in-
complete information in their own ways, and have di�erent syntax and semantics
from each other. Comparing these two languages, however, it is observed that there
are some similarities between hypothetical knowledge in ALP and inde®nite know-
ledge in DLP. In ALP, a set of hypotheses are distinguished as abducibles, then in
the process of abduction each candidate hypothesis is examined whether it is adopted
or not to explain the observation. For instance, consider an abduction problem such
that a background knowledge has the rules:
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wet-grass rained;

wet-grass sprinkler-on;

with the abducibles rained and sprinkler-on. Given the observation wet-grass, abduc-
tion produces either rained or sprinkler-on (or both) as a possible explanation. Here,
each abducible can take alternative truth values, and the situation can be speci®ed as
meta-level disjunctive knowledge that either an abducible is true or not.

On the other hand, in DLP each disjunction is considered to represent knowledge
about possible alternative beliefs and such beliefs can also be regarded as a kind of
hypotheses. For instance, consider the disjunctive program:

:lh-usable lh-broken;

:rh-usable rh-broken;

lh-broken j rh-broken :

We remember a person with a broken hand, but we are not sure which one (left or
right) is broken. We also know that the broken hand is not usable. Here, the disjunc-
tion represents our uncertain knowledge and each disjunct represents a possible
assumption. Selecting one disjunct, we reach a di�erent conclusion.

Thus, the two formalisms appear to deal with very similar problems from di�erent
viewpoints. Then the question naturally arises whether there is any formal corres-
pondence between ALP and DLP. Relating di�erent frameworks to each other helps
one to better understand the semantic nature of each language. Moreover, linking
di�erent types of reasoning contributes to a uni®ed theory of commonsense reason-
ing in AI. On the practical side, a transformation between di�erent languages enables
one to use a proof procedure of one language for the other. It also extends and en-
riches applications in both areas.

1.3. Related work

There are some studies which relate ALP and DLP. Inoue and Sakama [21] pres-
ent a transformation from abductive programs to disjunctive programs and use a
bottom-up model generation procedure of DLP for computing abduction. They also
introduce another program transformation from abductive programs to disjunctive
programs which contain negation as failure in the heads of rules [20]. Dung [7] pre-
sents a transformation from acyclic disjunctive programs to normal programs under
the stable model semantics and uses Eshghi and Kowalski's abductive proof proce-
dure [12] for such programs. You et al. [41] extend the work and generalize the EK-
procedure to (propositional) DLP. Aravindan [1] characterizes negative inference in
disjunctive programs through abduction. Lifschitz and Turner [26] provide a trans-
formation from disjunctive programs to abductive programs in a particular action
theory. These works provide one-way transformations or characterizations for par-
ticular purposes, and do not consider the bi-directional relationships between the
two frameworks in general.

1.4. Outline of the paper

This paper is intended to investigate a general correspondence between ALP and
DLP under the answer set semantics [15], the belief set semantics [16,21], and the
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possible model semantics [35,37]. For the part from abductive programs to disjunc-
tive programs, we show that the belief sets of an abductive program are expressed by
the answer sets and the possible models of the transformed disjunctive program.
Conversely, from disjunctive programs to abductive programs, we show that the pos-
sible models of a disjunctive program are exactly the belief sets of the transformed
abductive program. In contrast, the answer sets of a disjunctive program are unlikely
to be expressed by the belief sets of an abductive program in general. Moreover, ab-
ductive disjunctive programs can be reduced to disjunctive programs under the an-
swer set semantics and the possible model semantics. It is also shown that abductive
disjunctive programs are reducible to abductive programs under the possible model
semantics.

This paper is an extended form of Ref. [36]. The rest of this paper is organized as
follows. Section 2 reviews the frameworks of ALP and DLP. Section 3 introduces
program transformations from abductive programs to disjunctive programs. Section
4 presents a reverse transformation from disjunctive programs to abductive pro-
grams. In Section 5, it is shown that abductive disjunctive programs are reducible
to disjunctive programs. Section 6 provides a connection between the possible mod-
els and the answer sets of a disjunctive program. Section 7 discusses the relation be-
tween ALP and DLP from the complexity viewpoint. Section 8 concludes the paper.

2. Preliminaries

2.1. Disjunctive logic programming

A program considered in this paper is an extended disjunctive program (EDP) [15]
which is a set of rules of the form:

L1 j � � � j Ll  Ll�1; . . . ; Lm; not Lm�1; . . . ; not Ln �nPmP lP 0�; �1�
where each Li is a positive or negative literal. `j' represents a disjunction and not
means negation as failure. The disjunction to the left of  is the head and the con-
junction to the right of  is the body of the rule. In this paper, we often use the
Greek letter C to denote the conjunction in the body. A rule is called disjunctive
(resp. normal) if its head contains more than one literal (resp. exactly one literal).
A rule with the empty head is called an integrity constraint. A not-free EDP is an
EDP in which each rule contains no not, i.e., for each rule m � n. An EDP is called
(i) an extended logic program (ELP) if l6 1 for each rule (1); and (ii) a normal disjunc-
tive program (NDP) if every Li is an atom. An NDP is called (i) a normal logic pro-
gram (NLP) if l6 1 for each rule (1); and (ii) a positive disjunctive program (PDP) if it
contains no not. EDPs, NDPs, and PDPs are simply called disjunctive programs when
such distinction is not important in the context. A program (rule, literal) is ground if
it contains no variable. A program P is semantically identi®ed with its ground in-
stantiation, i.e., the set of ground rules obtained from P by substituting variables
in P by elements of its Herbrand universe in every possible way. Throughout the
paper, a program containing variables is considered as a shorthand of its ground
instantiation.

As the semantics of EDPs, we consider the answer set semantics [15] and the
possible model semantics [35,37] in this paper.
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Let Lit be the set of all ground literals from the language of a program P. First, let
P be a not-free EDP and S � Lit. Then, S is a (consistent) answer set of P if S is a
minimal set satisfying the conditions:

(i) S satis®es every ground rule from P, i.e., for each ground rule

L1 j � � � j Ll  Ll�1; . . . ; Lm

in the ground instantiation of P, fLl�1; . . . ; Lmg � S implies fL1; . . . ; Llg \ S 6� ;. In
particular, for each integrity constraint  L1; . . . ; Lm from P, fL1; . . . ; Lmg 6� S;

(ii) S does not contain a pair of complementary literals L and :L.1
Secondly, let P be any EDP and S � Lit. The reduct PS of P by S is a not-free EDP

obtained as follows: a ground rule

L1 j � � � j Ll  Ll�1; . . . ; Lm

is in PS i� there is a ground rule

L1 j � � � j Ll  Ll�1; . . . ; Lm; not Lm�1; . . . ; not Ln

from P such that fLm�1; . . . ; Lng \ S � ;. For programs of the form PS , their answer
sets have already been de®ned. Then, S is an answer set of P if S is an answer set of
PS.

An EDP has none, one or multiple answer sets in general. In NDPs answer sets
coincide with (disjunctive) stable models [34], and in PDPs answer sets coincide with
minimal models.

Next, given an EDP P, a split program is de®ned as a ground ELP obtained from
P by replacing every ground disjunctive rule

r : L1 j � � � j Ll  C

from P with the rules in R � Splitr, where

Splitr � fLi  C j i � 1; . . . ; lg
and R is a non-empty subset of Splitr. Each rule in Splitr is called a split rule of r. By
the de®nition, P has multiple split programs in general. Then, a possible model of P is
de®ned as an answer set of a split program of P. A possible model S of P is minimal if
there is no possible model T of P such that T � S. Any answer set is a possible model
but not vice versa.

Example 2.1. Let P be the program:

a j :b not c;

d  a;:b:
Then P has the following three split programs:

P1 : a not c; P2 : :b not c; P3 : a not c;
d  a;:b; d  a;:b; :b not c;

d  a;:b;

1 In this paper we are interested in consistent programs and do not consider the contradictory answer set

Lit.
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and fag, f:bg, fa;:b; dg are the possible models of P. Here, fag and f:bg are also
answer sets of P, while fa;:b; dg is not an answer set of P.

In the example, the answer sets provide exclusive interpretations of the disjunction,
while the possible models provide both exclusive and inclusive interpretations. 2 Note
that if one prefers exclusive interpretations under the possible model semantics, it is
done by inserting the additional constraint a; :b to the program. Thus, under the
possible model semantics we can freely specify both inclusive and exclusive interpre-
tations of disjunctions.

The above de®nition of possible models is a direct extension of those introduced
in PDPs [35] and NDPs [37]. The following properties immediately follow from the
results in Ref. [37].

Proposition 2.1 (Properties of possible models).
(i) In an EDP, the answer sets are minimal possible models, but not vice versa.
(ii) In a not-free EDP, the answer sets coincide with the minimal possible models.
(iii) In an ELP, the possible models coincide with the answer sets.

The converse of Proposition 2.1(i) does not hold in general. For a counter-
example, consider the program P:

a j b ; b a;  not a:

Then, P has the minimal possible model fa; bg, while P has no answer set. In the pro-
gram, the ®rst disjunctive rule asserts that either a or b is true. As the third integrity
constraint presents that a should be true, a is selected from the disjunction. On the
other hand, a implies b by the second rule, hence it is natural to conclude both a and
b to be true. This example illustrates that the answer set semantics (or equivalently
the stable model semantics) often fails to provide a natural meaning of a program.
The possible model semantics has some nice properties for inferring negation
[35,4,37] and also has theoretical relation to autoepistemic logic [20]. Recent study
[40] presents that the possible model semantics is useful for representing product
con®guration applications.

2.2. Abductive logic programming

An abductive program is de®ned as a pairP � hP ;Ai where P is a program andA
is a set of literals from the language of P called abducibles. The set A is identi®ed
with the set of ground instances from A, and any instance of an element from A
is also called an abducible. An abductive program is called an abductive EDP (resp.
ELP) when P is an EDP (resp. ELP). An abductive program is also called an ab-
ductive NDP (resp. NLP) when P is an NDP (resp. NLP) and A is a set of atoms.
An abductive EDP (resp. ELP, NDP, NLP) is abbreviated as AEDP (resp. AELP,

2 Note that an answer set also provides an inclusive interpretation of disjunctions in the program

fa j b ; a b; b ag. However, minimality-based semantics interprets disjunctions as exclusive as
possible [41].
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ANDP, ANLP). AEDPs, AELPs, ANDPs and ANLPs are simply called abductive
programs when such distinction is not important in the context.

A set of literals S�� Lit� is a belief set of P (wrt E) if S is an answer set of P [ E
where E �A. A belief set S is called minimal if there is no belief set T such that
T � S. A belief set S is called A-minimal if there is no belief set T such that
T \A � S \A. Each belief set reduces to an answer set of P when A � ;. Belief
sets are called belief models [21] when P is either an NDP or an NLP. Belief models
are also called generalized stable models [22] when P is an NLP.

Let P � hP ;Ai be an abductive program and O a ground literal which represents
an observation. 3 A set E ��A� is an explanation of O (wrt P) if O is true in a belief
set S of P such that E � S \A. An explanation E of O is minimal if no E0 � E is an
explanation of O. With these settings, the problem of ®nding an explanation is essen-
tially equivalent to the problem of ®nding a belief set. That is, E is a (minimal)
explanation of O with respect to hP ;Ai i� S is an (A-minimal) belief set of
hP [ f notOg;Ai such that S \A � E [21].

Remark.

1. The above de®nition provides a credulous explanation. In contrast, a skeptical ex-
planation is de®ned as a set E �A such that O is true in every belief set S of P
such that E � S \A. In this paper, an explanation means a credulous explana-
tion.

2. The condition E � S \A identi®es the abducibles included in a belief set in which
an observation holds. This condition is useful for computing explanations via
belief sets, while the existence of this condition is not important in the transforma-
tions between ALP and DLP considered in this paper.

Example 2.2. Let P � hP ;Ai be an abductive program such that

P : p�x�  q�x�; not r�x�;
q�x�  s�x�;
q�x�  t�x�:

A : s�x�; t�b�:

Given the observation O � p�a�, O is true in the (A-minimal) belief set
S � fp�a�; q�a�; s�a�g of P and E � S \A � fs�a�g. Hence, O has the (minimal)
explanation E. Here, S is also the unique (A-minimal) belief set of
hP [ f not p�a�g;Ai.

The next proposition presents that an A-minimal belief set is always a minimal
belief set.

Proposition 2.2 (A-minimal belief sets are minimal). Let P � hP ;Ai be an AEDP.
If S is an A-minimal belief set of P, then S is a minimal belief set of P.

3 Without loss of generality an observation is assumed to be a (non-abducible) ground literal [21].
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Proof. If S is an A-minimal belief set of P, there is no belief set T of P such that
T \A � S \A. To see that S is also minimal, suppose that there is a belief set S0

of P such that S0 � S. As S0 \A 6� S \A, it holds that S0 \A � S \A and
S 0 \A � S \A, where A � Lit nA. Put F � S0 \A � S \A. Then, S and S0 are
answer sets of P [ F . Since any answer set is minimal, S cannot be an answer set
of P [ F by S 0 � S. Contradiction. �

The converse also holds when P is an ELP and P n I contains no not, where I is the
set of integrity constraints in P.

Proposition 2.3 (Minimal belief sets are A-minimal (sometimes)). Let P � hP ;Ai
be an AELP such that P n I contains no not. If S is a minimal belief set of P, then
S is an A-minimal belief set of P.

Proof. Suppose that a minimal belief set S is not A-minimal. Then, there is a belief
set T of P such that T \A � S \A. Let S be an answer set of P [ E where E �A.
Then, T is an answer set of P [ F such that F � E. When P n I contains no not, a
belief set monotonically grows by the introduction of abducibles to the ELP P, as
far as the set satis®es integrity constrains I. Since S and T satisfy I and S 6� T by
T \A � S \A, F � E implies T � S. This contradicts the assumption that S is
minimal. �

When a program contains disjunctions or negation as failure, the above proposi-
tion does not hold in general.

Example 2.3. Let P1 � hP1;Ai be an abductive program such that

P1 : p  not a:

A : a:

Then, fpg and fag are the minimal belief sets wrt E1 � ; and E2 � fag, respectively.
But fag is not an A-minimal belief set.

Next, let P2 � hP2;Ai be an abductive program such that

P2 : p j q ;

a p:

A : a:

Then, both fa; pg and fqg are the minimal belief sets wrt E � ;, but fa; pg is not an
A-minimal belief set.

3. Transforming abductive LP to disjunctive LP

3.1. From belief sets to answer sets

We ®rst present a program transformation from abductive programs to disjunc-
tive programs, which converts the belief sets of an AELP into the semantically equiv-
alent answer sets of an EDP.
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Given an abductive program P � hP ;Ai, each abducible in A is either true or
not in constructing a belief set. The situation is declaratively speci®ed by a disjunc-
tive program.

De®nition 3.1 (dlp-transformation). Let P � hP ;Ai be an AELP. Then the dlp-
transformation transforms P to the EDP dlp�P�, which is obtained from P by intro-
ducing the following disjunctive rules for each abducible A 2A:

A j eA  �2�

where eA is an atom appearing nowhere in P and is uniquely associated with each A.4

The intuitive meaning of the dlp-transformation is as follows. When an abduci-
ble A is assumed in an abductive program P, the corresponding disjunct A is
chosen from (2) in the transformed disjunctive program dlp�P�. Else when A is
not assumed, the newly introduced atom eA is chosen from (2). Thus the dlp-trans-
formation encodes meta-level knowledge representing whether each abducible is
assumed or not.

Formally, this transformation converts the belief sets of an AELP P into the
semantically equivalent answer sets of an EDP dlp�P�. For an answer set S of an
EDP P, we say that S is A-minimal if there is no answer set T of P such that
T \A � S \A.

Theorem 3.1 (Belief sets of an AELP! answer sets of an EDP). Let P � hP ;Ai be
an AELP.

(i) If S is a belief set of P, there is an answer set T of dlp�P� such that T \ Lit � S.
Conversely, if T is an answer set of dlp�P�, there is a belief set S of P such that
S � T \ Lit.
(ii) If S is an A-minimal belief set of P, there is an A-minimal answer set T of
dlp�P� such that T \ Lit � S. Conversely, if T is an A-minimal answer set of
dlp�P�, there is an A-minimal belief set S of P such that S � T \ Lit.

Proof. (i) When S is a belief set of P, each abducible A inA is either true or not in S.
Then there is an answer set T of dlp�P� such that T \A � S \A with A � Lit nA,
and for each ground disjunctive rule A j eA  from dlp�P�, A 2 T i� A 2 S, and
eA 2 T i� A 62 S. Hence the result follows. Conversely, when T is an answer set of
dlp�P�, T contains either A or eA for each ground disjunctive rule A j eA  from
dlp�P�. Put E � fA : A 2 T and there is a ground rule A j eA  from dlp�P�g.
Then, T \ Lit is an answer set of P [ E where E �A, hence T \ Lit � S is a belief
set of P.

(ii) The result follows from (i) and the de®nitions of A-minimal belief sets and
A-minimal answer sets. �

Using the dlp-transformation, abductive explanations are computed in the trans-
formed disjunctive programs.

4 A similar transformation is introduced in Ref. [20] using negation as failure in the head.
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Corollary 3.1 (Characterization of explanations via answer sets). Let P � hP ;Ai be
an AELP. Then, an observation O has a (minimal) explanation E iff there is an
(A-minimal) answer set S of dlp�P� such that O 2 S and S \A � E.

Example 3.1. Let P � hP ;Ai be an abductive program such that

P : wet-shoes wet-grass; not driving-car;

wet-grass rained;

wet-grass sprinkler-on:

A : rained; sprinkler-on:

Then P has four belief sets:

;;
frained;wet-grass; wet-shoesg;
fsprinkler-on; wet-grass; wet-shoesg;
frained; sprinkler-on; wet-grass; wet-shoesg:

On the other hand, dlp�P� is the program:

wet-shoes wet-grass; not driving-car;

wet-grass rained;

wet-grass sprinkler-on;

rained j er  ;

sprinkler-on j es  :

Then, dlp�P� has the answer sets:

fer; esg;
fes; rained; wet-grass; wet-shoesg;
fer; sprinkler-on; wet-grass; wet-shoesg;
frained; sprinkler-on; wet-grass; wet-shoesg:

Thus, the belief sets of P and the answer sets of dlp�P� coincide up to the literals
in P. In particular, fer; esg is the A-minimal answer set which corresponds to the
A-minimal belief set ; of P.

3.2. From belief sets to possible models

Next we consider converting the belief sets of an AELP into the possible models of
an EDP.

For an AELP P every disjunctive rule in the program dlp�P� is of the form (2),
then the following result holds.

Lemma 3.1 (Answer sets vs possible models in dlp�P�). Let P � hP ;Ai be an
AELP.

(i) If S is an answer set of dlp�P�, then S is a possible model of dlp�P�.
(ii) For any possible model T of dlp�P�, there is an answer set S of dlp�P� such that
S \ Lit � T \ Lit.
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Proof. (i) Since an answer set is a possible model, the result immediately follows.
(ii) The di�erence between an answer set and a possible model is that a possible

model may contain both A and eA for each ground disjunctive rule A j eA  from
dlp�P�. When a possible model T contains both A and eA, only A is included in
T \ Lit. In this case, there is an answer set S of dlp�P� which contains A. Hence
the result holds. �

Using the above Lemma, the results of Theorem 3.1 are directly applied to the
possible models. In the following, S is called an A-minimal possible model if it is
a possible model such that S \A is minimal.

Theorem 3.2 (Belief sets of an AELP ! possible models of an EDP). Let
P � hP ;Ai be an AELP. If S is an (A-minimal) belief set of P, there is an (A-min-
imal) possible model T of dlp�P� such that T \ Lit � S. Conversely, if T is an (A-min-
imal) possible model of dlp�P�, there is an (A-minimal) belief set S of P such that
S � T \ Lit.

Under the possible model semantics, the dlp-transformation is further simpli®ed
as follows.

Let P � hP ;Ai be an AELP. Then, the dlppm-transformation transforms P to the
EDP dlppm�P� which is obtained from P by introducing the following disjunctive
rules for each abducible A 2A:

A j e �3�

where e is an atom appearing nowhere in P. Comparing (2) and (3), the dlppm-trans-
formation does not distinguish each eA from eB for any other abducible B. Then the
following result holds.

Theorem 3.3 (Belief sets of an AELP ! possible models of an EDP ± simpli®ed
transformation). Let P � hP ;Ai be an AELP. If S is an (A-minimal) belief set of P,
there is an (A-minimal) possible model T of dlppm�P� such that T n feg � S. Converse-
ly, if T is an (A-minimal) possible model of dlp�P�, there is an (A-minimal) belief set
S of P such that S � T n feg.

Proof. Let T be a belief set of P. Then T is an answer set of P [ E where E �A.
Then there is a split program P 0 of dlppm�P� such that for each ground disjunctive
rule A j e from dlp�P�, �A � 2 P 0 if A 2 E; and �e � 2 P 0 if A 62 E. When e 
is in P 0, T [ feg is an answer set of P 0 and also a possible model of dlppm�P�. Else
when e is not in P 0, T is an answer set of P 0 and also a possible model of
dlppm�P�. Hence the result of the only-if part follows.

In converse, when S is a possible model of dlppm�P�, it is an answer set of some
split program P 0 of dlppm�P�. Let E be the set of all split rules included in P 0. Then
S is an answer set of P [ E. Since E n fe g consists of instances from A, S n feg is a
belief set of P.

The correspondence between the A-minimal belief sets and the A-minimal pos-
sible models also follows from the above result and the de®nitions. �
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Example 3.2. In the program of Example 3.1, dlppm�P� has the rules in P plus the
disjunctive rules:

rained j e ;

sprinkler-on j e :

Then, dlppm�P� has ®ve possible models:

S1 � feg;
S2 � fe; rained; wet-grass; wet-shoesg;
S3 � fe; sprinkler-on; wet-grass; wet-shoesg;
S4 � frained; sprinkler-on; wet-grass; wet-shoesg;
S5 � fe; rained; sprinkler-on; wet-grass; wet-shoesg:

Thus, the belief sets of P and the answer sets of dlppm�P� coincide up to the
literals in P. In particular, S1 is the A-minimal possible model which corresponds
to the A-minimal belief set ; of P.

Note here that the sets S2, S3 and S5 do not become answer sets of dlppm�P�, since
S1 � S2, S1 � S3, and S1 � S5. Therefore, the simpli®ed transformation dlppm cannot
be used for relating AELPs to EDPs under the answer set semantics.

4. Transforming disjunctive LP to abductive LP

4.1. From possible models to belief sets

Inde®nite information in disjunctive programs is considered to represent alterna-
tive beliefs. This suggests the possibility of converting disjunctive knowledge into ab-
ducibles in an abductive program. However, disjunctive rules generally have
conditions in their bodies, while abductive programs introduced in Section 2 lack
the ability of expressing assumptions with preconditions. To ®ll the gap, we ®rst
consider the knowledge system [19] which has a mechanism of hypothesizing rules
in an ELP.

A knowledge system (KS) is a pair K � hT ;Hi, where both T and H are ELPs.
The rules in H are hypothetical rules that are used for abducing an observation to-
gether with the background theory T. Abductive programs introduced in Section 2
are considered as a special case of a knowledge system in which each hypothetical
rule has the empty precondition. The belief sets of a knowledge system is de®ned
as follows. Given a KS K � hT ;Hi, a set of literals S �� Lit� is a belief set of K
(wrt E) if S is an answer set of T [ E where E � H . Clearly, the belief sets introduced
above reduce to those presented in Section 2 when H consists of abducible literals.

We ®rst provide a program transformation which transforms an EDP to a KS in-
troduced above. For an EDP P, we de®ne P � disj�P � [ disj�P� where disj�P � is the
set of all disjunctive rules from P and disj�P � is the set of all non-disjunctive rules
(i.e., normal rules and integrity constraints) from P.
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De®nition 4.1 (ks-transformation). Given an EDP P, let us consider the set of
normal rules

H � fLi  C : �L1 j � � � j Ll  C� 2 disj�P � and 16 i6 lg �4�
and the integrity constraints

IC � f C; not L1; . . . ; notLl : �L1 j � � � j Ll  C� 2 disj�P �g: �5�
Then the ks-transformation transforms P to the knowledge system ks�P� � hT ;Hi
where T � disj�P � [ IC.

The ks-transformation replaces each disjunctive rule in a program with a set of
hypothetical rules (4) in H. The integrity constraints (5) in IC impose the condition
that at least one disjunct is chosen as a hypothesis whenever the body of the disjunc-
tive rule is true.

It is shown that the possible models of an EDP P are equivalent to the belief sets
of the transformed KS ks�P �.

Theorem 4.1 (Possible models of an EDP! belief sets of a KS). Let P be an EDP.
Then S is a possible model of P iff S is a belief set of ks�P �.

Proof. Let S be a possible model of P. Then there is a split program P 0 of P such that
S is an answer set of P 0. Suppose that each ground disjunctive rule
rk : L1 j � � � j Llk  Ck from P is replaced by split rules Rk in P 0 where Rk is a non-
empty subset of Splitrk � fLi  Ck j i � 1; . . . ; lkg. Then S is an answer set of
disj�P � [S

k Rk, where
S

k Rk is a collection of split rules from each rk. Since
S

k Rk

consists of instances from H and S satis®es the integrity constraints IC, S is also a
belief set of ks�P �.

Conversely, let S be a belief set of ks�P �. Then S is an answer set of T [ E where
T � disj�P � [ IC and E � H . For each normal rule Li  C in E, there is a corre-
sponding disjunctive rule r : L1 j � � � j Ll  C in disj�P� such that 16 i6 l. As S sat-
is®es the integrity constraints IC, when S satis®es C, at least one normal rule Li  C
is included in E for each r. In this case, there is a split program P 0 of P in which each
ground instance of the rule r is split into a ground instance of the rule Li  C in E.
Thus S is also an answer set of P 0, hence a possible model of P. �

Example 4.1 [4]. Let P be the program:

violent j psychopath suspect;

dangerous violent; psychopath;

suspect :

Then it becomes ks�P� � hT ;Hi where
T : dangerous violent; psychopath;

suspect ;

 suspect; not violent; not psychopath:

H : violent  suspect;

psychopath suspect:
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The knowledge system ks�P � has three belief sets:

fsuspect; violentg;
fsuspect; psychopathg;
fsuspect; violent; psychopath; dangerousg;

which coincide with the possible models of P.

Note that in the above example P has no answer set containing dangerous. By
contrast, ks�P � has a belief set in which dangerous is true, which corresponds to a
possible model in which the disjunction is inclusively true.

A knowledge system hT ;Hi can be transformed to a semantically equivalent
abductive program hP ;Ai as follows [19].

Given a KS hT ;Hi, consider a program P and abducibles A such that

P � T [ fL dr;C j r � �L C� 2 Hg;
A � fdr j r 2 Hg:

Here, dr is a newly introduced atom appearing nowhere in T and is uniquely associ-
ated with each hypothetical rule r in H. This transformation is called naming of hy-
pothetical rules. 5 Then, there is a one-to-one correspondence between the belief sets
of hT ;Hi and the belief sets of hP ;Ai.

Proposition 4.1 (Knowledge system vs abductive program [19]). Let hT ;Hi be a
knowledge system and hP ;Ai an abductive program as presented above. If S is a belief
set of hT ;Hi, there is a belief set S0 of hP ;Ai such that S0 \ Lit � S. Conversely, if S0 is
a belief set of hP ;Ai, there is a belief set S of hT ;Hi such that S � S0 \ Lit.

For instance, the knowledge system ks�P � of Example 4.1 is transformed to the
abductive program hP 0;Ai such that

P 0 : dangerous violent; psychopath;

suspect ;

 suspect; not violent; not psychopath;

violent  d1; suspect;

psychopath d2; suspect:

A : d1; d2:

Here, d1 and d2 are newly introduced abducibles associated with the hypothetical
rules violent  suspect and psychopath suspect, respectively. Then, hP 0;Ai has
three belief sets:

fsuspect; violent; d1g;
fsuspect; psychopath; d2g;
fsuspect; violent; psychopath; dangerous; d1; d2g;

which correspond to the belief sets of ks�P �.

5 A similar technique is introduced in Ref. [31].
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Since the possible models of an EDP are converted into the belief sets of a
KS (Theorem 4.1), the above fact implies that the possible models of an EDP
are also expressed by the belief sets of an AELP. We de®ne the alp-transforma-
tion which transforms an EDP P to an AELP alp�P � by combining the ks-
transformation and naming as presented above. Then, we have the following
result.

Theorem 4.2 (Possible models of an EDP ! belief sets of an AELP). Let P be an
EDP. If S is a possible model of P, there is a belief set T of an AELP alp�P � such that
T \ Lit � S. Conversely, if T is a belief set of alp�P �, there is a possible model S of P
such that S � T \ Lit.

Proof. The result follows from Theorem 4.1 and Proposition 4.1. �

4.2. From answer sets to belief sets

Next we consider converting the answer sets of a disjunctive program into the be-
lief sets of an abductive program. In not-free EDPs, the following result holds.

Theorem 4.3 (Answer sets of a not-free EDP!A-minimal belief sets of an AELP).
Let P be a not-free EDP. If S is an answer set of P, there is an A-minimal belief set T
of alp�P � such that T \ Lit � S. Conversely, if T is an A-minimal belief set of alp�P �,
there is an answer set S of P such that S � T \ Lit.

Proof. In a not-free EDP, the answer sets coincide with the minimal possible models
(Proposition 2.1). Let alp�P� � hP 0;Ai and I be the set of integrity constraints in P 0.
Then, P 0 n I contains no not, so that the minimal belief sets of alp�P � coincide with
theA-minimal belief sets of alp�P� (Propositions 2.2 and 2.3). By Theorem 4.2, there
is a one-to-one correspondence between the (minimal) possible models of P and the
(minimal) belief sets of alp�P �. Therefore, there is also a one-to-one correspondence
between the answer sets of P and the A-minimal belief sets of alp�P �. Hence, the re-
sult follows. �

The above result does not hold for EDPs containing negation as failure.

Example 4.2. Let P1 be the program:

a j b ;

a b; not c;

b a; not d;

c not a;

d  not b;

which has three answer sets: fa; dg, fb; cg, fa; bg. Then, alp�P1� � hP 01;Ai becomes
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P 01 : a da;

b db;

 not a; not b;

a b; not c;

b a; not d;

c not a;

d  not b:

A : da; db:

Here, alp�P1� has the belief sets: T1 � fa; d; dag, T2 � fb; c; dbg, T3 � fa; b; da; dbg, of
which T3 is not A-minimal. Thus, for an answer set S of an EDP P, there does not
necessarily exist an A-minimal belief set T of alp�P � such that T \ Lit � S.

Next let P2 be the program:

a j b ;

b j c ;

b a;

c not a;

which has the answer set fb; cg. Then, alp�P2� � hP 02;Ai becomes

P 02 : a da;

b db;

c dc;

 not a; not b;

 not b; not c;

b a;

c not a :

A : da; db; dc:

Here, alp�P2� has two A-minimal belief sets: T1 � fb; c; dbg and T2 � fa; b; dag, but
there is no answer set of P2 which corresponds to T2. Thus, for an A-minimal belief
set T of alp�P�, there does not necessarily exist an answer set S of an EDP P such
that S � T \ Lit.

From the result of Section 4.1, the alp-transformation converts the possible
models of an EDP into the belief sets of an AELP. In contrast, the answer sets of
an EDP are not expressed by the belief sets of an AELP, while they are characterized
by the A-minimal belief sets if an EDP is not-free (Theorem 4.3). It is left open
whether there is another transformation which converts the answer sets of an
EDP into the A-minimal belief sets of an AELP in general.
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5. Transforming abductive disjunctive LP to disjunctive LP

Abductive disjunctive programs are disjunctive programs with abducibles, and
their semantics are de®ned as the belief set semantics in Section 2. The possible
model semantics are also extended to abductive disjunctive programs as follows.

Given an AEDP P � hP ;Ai, S is a possible belief set of P if S is a possible model
of the EDP P [ E where E �A. A possible belief set S is A-minimal if there is no
possible belief set T such that T \A � S \A. By the de®nition, the possible belief
sets coincide with the belief sets in AELPs, and reduce to the possible models in
EDPs.

A di�erence between belief sets and possible belief sets is illustrated below.

Example 5.1. Let P � hP ;Ai be an abductive program such that

P : p  q; r;

q j r a:

A : a:

Then, ;; fq; ag; fr; ag; fp; q; r; ag are the possible belief sets of P, while fp; q; r; ag
is not a belief set. Given the observation O � p, it has the explanation a under the
possible belief set semantics, while no explanation is available under the belief set se-
mantics.

Thus, the possible belief set semantics can provide explanations which come from
inclusive disjunctions, while such explanations do not come out under the belief set
semantics in general.

The belief sets of an abductive disjunctive program are converted into the answer
sets of a disjunctive program using the dlp-transformation in Section 3. For an
AEDP P � hP ;Ai, its dlp-transformation dlp�P� is de®ned as De®nition 3.1. Then
the following result holds.

Theorem 5.1 (Belief sets of an AEDP! answer sets of an EDP). LetP � hP ;Ai be
an AEDP. If S is an (A-minimal) belief set of P, there is an (A-minimal) answer set T
of dlp�P� such that T \ Lit � S. Conversely, if T is an (A-minimal) answer set of
dlp�P�, there is an (A-minimal) belief set S of P such that S � T \ Lit.

Proof. Similar to the proof of Theorem 3.1. �

The above theorem presents that the belief sets of an AEDP are expressed by the
answer sets of the transformed EDP. This implies the signi®cant fact that abducibles
do not introduce additional expressive power to disjunctive programs. Such reduction is
also done using the possible belief sets.

Theorem 5.2 (Possible belief sets of an AEDP ! possible models of an EDP). Let
P � hP ;Ai be an AEDP. If S is an (A-minimal) possible belief set of P, there is
an (A-minimal) possible model T of dlppm�P� such that T n feg � S. Conversely, if
T is an (A-minimal) possible model of dlp�P�, there is an (A-minimal) possible belief
set S of P such that S � T n feg.
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Proof. Similar to the proof of Theorem 3.3. �

Theorem 5.2 presents that AEDPs are reducible to EDPs also under the possible
model semantics. Moreover, in Section 4.1 it was shown that the possible models
of an EDP P are converted into the belief sets of an AELP alp�P � (Theorem 4.2).
Combining these results, we have the following result.

Corollary 5.1 (Possible belief sets of an AEDP ! belief sets of an AELP). Let
P � hP ;Ai be an AEDP. If S is an (A-minimal) possible belief set of P, there is
an (A-minimal) belief set T of an AELP alp�dlppm�P�� such that T \ Lit � S.
Conversely, if T is an (A-minimal) belief set of alp�dlppm�P��, there is an (A-minimal)
possible belief set S of P such that S � T \ Lit.

Proof. The result follows from Theorems 5.2 and 4.2. �

The above corollary presents that AELPs are as expressive as AEDPs under the
possible belief set semantics. That is, disjunctions do not introduce additional express-
ibility to abductive programs under the possible belief set semantics.

6. Relating possible models to answer sets

The alp-transformation converts the possible models of an EDP into the belief sets
of an AELP. On the other hand, the belief sets of an AELP are converted into the
answer sets of an EDP by the dlp-transformation. Composing these two transforma-
tions, the possible models of an EDP are transformed to the answer sets of an EDP.

Theorem 6.1 (Possible models of an EDP ! answer sets of an EDP). Let P be an
EDP. If S is a possible model of P, there is an answer set T of dlp�alp�P�� such that
T \ Lit � S. Conversely, if T is an answer set of dlp�alp�P ��, there is a possible model S
of P such that S � T \ Lit.

Proof. The result follows from Theorems 4.2 and 3.1. �

Example 6.1. Let P be the program:

a j :b c;

c not d;

which has three possible models: S1 � fa; cg, S2 � f:b; cg, S3 � fa;:b; cg.
First, alp�P � becomes hP 0;Ai where

P 0 : a d1; c;

:b d2; c;

 c; not a; not :b;
c not d:

A : d1; d2:
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Then, dlp�alp�P �� becomes

a d1; c;

:b d2; c;

 c; not a; not:b;
c not d;

d1 j ed1  ;

d2 j ed2  ;

which has three answer sets: T1 � fa; c; d1; ed2g, T2 � f:b; c; ed1 ; d2g, T3 �
fa;:b; c; d1; d2g. Thus, Si � Ti \ Lit �i � 1; 2; 3� holds.

The above theorem presents that possible models are expressed by answer sets in
general. However, this fact does not depreciate the value of the possible model se-
mantics. Indeed, the transformation from possible models to answer sets requires
the introduction of new symbols, and the resulting program is less natural and hard-
er to understand than the original program. 6 Moreover, the possible model seman-
tics has a nice computational property as presented in the next section.

7. Discussion

7.1. Computational complexity

In this section, we discuss the relationship between ALP and DLP from the com-
putational complexity viewpoint. Throughout this section, programs mean ground
programs.

While there are various complexity measures in abduction problems [8,10], we
consider in this section the decision problem of ®nding a (credulous) explanation
for a given observation. Recall that the problem of ®nding a (credulous) explana-
tion for an observation is identical to the problem of ®nding a belief set satisfying
the observation (Section 2.2). Then, the above decision problem is rephrased as the
set-membership problem in an abductive program, i.e., deciding whether there is a
(possible) belief set satisfying an observation. When abductive programs do not con-
tain negation as failure, Eiter and Gottlob [8] and Selman and Levesque [39] show
that the decision problem of ®nding an explanation for an observation in an
abductive Horn program is NP-complete. In other words, in an abductive Horn
program deciding whether there is a belief model satisfying an observation is
NP-complete.

Inoue [19] shows that an abductive ELP can be transformed to a semantically
equivalent ELP under the answer set semantics. For an AELP P � hP ;Ai, consider
an ELP obtained from P by adding the following rules for each abducible L in A:

L not L0;
L0  not L

6 Ref. [20] provides another simpler transformation, but it still needs the introduction of extra symbols.
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where L0 is a literal appearing nowhere in P and is uniquely associated with each L.
Then it is shown that there is a one-to-one correspondence between the belief sets of
P and the answer sets of the transformed ELP. Satoh and Iwayama [38] introduce a
similar transformation from ANLP to NLP. These results imply the following fact.

Theorem 7.1 (Set-membership problem for the belief sets of an AELP). Deciding
whether there is a belief set of an AELP satisfying an observation is NP-complete.

Proof. It is known that deciding whether a literal is true in an answer set of an ELP is
NP-complete [2,28]. Belief sets include answer sets as a special case, then the set-
membership problem in an AELP is NP-hard. As the polynomial-time transforma-
tion from an AELP to an ELP presented above translates the decision problem for
the belief sets of an AELP into the corresponding problem for the answer sets of an
ELP which is in NP, the membership in NP also follows. 7 �

Sakama and Inoue [37] show that the possible models of an NDP can be expressed
by the stable models of an NLP. Given an NDP P, consider an NLP obtained from
P by replacing each disjunctive rule:

A1 j � � � j Al  C

in P with the following normal rules and the integrity constraint:

Ai  C; notA0i for i � 1; . . . ; l;

A0i  C; notAi for i � 1; . . . ; l;

 C; A01; . . . ;A
0
l

where each A0i is an atom appearing nowhere in P and is uniquely introduced for
each Ai in the Herbrand base. Then they show that there is a one-to-one corres-
pondence between the possible models of P and the stable models of the trans-
formed NLP. Using the transformation, they prove that the set-membership
problem in an NDP under the possible model semantics is NP-complete. This re-
sult is immediately extended to EDPs. As shown in Section 5, the possible belief
sets of an AEDP are converted into the possible models of an EDP. Hence, the
set-membership problem for the possible belief sets of an AEDP is e�ciently
translated into the corresponding problem for the possible models of an EDP.
This fact implies that:

Theorem 7.2 (Set-membership problem for the possible belief sets of an AEDP).
Deciding whether there is a possible belief set of an AEDP satisfying an observation is
NP-complete.

On the other hand, the set-membership problem in an EDP under the answer set
semantics is known to be RP

2 -complete [9]. Then we have the following result.

7 Recall that if a problem L0 is polynomial-time reducible to an NP problem L, L0 is also in NP

[17, Lemma 13.1].
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Theorem 7.3 (Set-membership problem for the belief sets of an AEDP). Deciding
whether there is a belief set of an AEDP satisfying an observation is RP

2 -complete.

Proof. As belief sets include answer sets as a special case, the set-membership prob-
lem in an AEDP is RP

2 -hard. To see that it is in RP
2 , the dlp-transformation in Section

5 e�ciently translates the decision problem for the belief sets of an AEDP into the
corresponding problem for the answer sets of an EDP which is in RP

2 . Then the mem-
bership in RP

2 follows. �

These results are summarized in Table 1.
The above complexity analyses verify the results of this paper that there are bi-

directional polynomial-time transformations between the belief sets of an AELP
and the possible models of an EDP. Moreover, we can observe that there is no effi-
cient way to express the answer sets of an EDP in terms of the belief sets of an AELP in
general unless the polynomial hierarchy collapses. This observation extends the
well-known fact that there is no e�cient way to express the answer sets of an
EDP in terms of the answer sets of an ELP in general [9]. 8 On the other hand, The-
orem 4.3 presents that the answer sets of a not-free EDP are converted into the
A-minimal belief sets of an AELP. Since the set-membership problem for the
answer sets of a not-free EDP is RP

2 -complete, the corresponding decision problem
for theA-minimal belief sets of an AELP is RP

2 -hard. The fact presents that checking
the A-minimality introduces an additional source of complexity to abduction. This
observation coincides with the result in [10], which indicates that in nonmonotonic
theories checking the minimality of an explanation causes an increase in complexity
by one level of the polynomial hierarchy.

We can also observe that when considering an extension from AELPs to AEDPs,
the possible belief set semantics extends the framework without increasing computa-
tional complexity, while this is not the case for the belief set semantics of AEDPs.
The fact that the complexity of computing answer sets of EDPs (or belief sets of
AEDPs) is higher than the complexity of computing possible models of EDPs (or
possible belief sets of AEDPs) is explained as follows. Computation of answer sets
or belief sets introduces an additional source of complexity for its minimality-check-
ing, while this is not the case for computation of possible models or possible belief
sets due to its `non-minimal' feature. From the complexity viewpoints, the answer
set semantics is strictly more expressive than the possible model semantics. Neverthe-

Table 1

Comparison of computational complexity

Program Semantics Complexity

Abductive LP Belief model (Horn) NP-complete [8,39]

Belief set (AELP) NP-complete (Theorem 7.1)

Disjunctive LP Answer set RP
2 -complete [9]

Possible model NP-complete [37]

Abductive DLP Belief set RP
2 -complete (Theorem 7.3)

Possible belief set NP-complete (Theorem 7.2)

8 Such reduction is possible if an EDP is head-cycle-free [2].

C. Sakama, K. Inoue / J. Logic Programming 44 (2000) 75±100 95



less, as shown in this paper, the possible model semantics is useful for knowledge
representation and reasoning in both abductive and disjunctive programs.

7.2. Relations between extensions of LPs

AELPs are expressed by EDPs under the answer set semantics (Theorem 3.1), and
AEDPs are reducible to EDPs (Theorem 5.1). In other words, under the answer set
semantics abducibles are equivalently speci®ed by disjunctions, but not vice versa.
Also, as presented in Section 7.1, AELPs/ANLPs are reducible to ELPs/NLPs under
the answer set/stable model semantics [19,38]. That is, abducibles are expressed using
negation as failure. 9 The authors in Refs. [13,18] introduce program transformations
from the stable models of NLPs and NDPs to the minimal models of PDPs. This fact
implies that negation as failure is equivalently speci®ed by disjunctions (plus integrity
constraints). However, specifying disjunctions in terms of negation as failure is gen-
erally impossible. This is because NDPs are not e�ciently reducible to NLPs under
the stable model semantics in general [9]. Summarizing the results, the relationship
between the extensions of logic programming under the answer set semantics is illus-
trated in Fig. 1. Recall that (A)EDPs and (A)ELPs are respectively reducible to
(A)NDPs and (A)NLPs, by replacing each negative literal :A with a new atom A0

and inserting the integrity constraint  A;A0 for every such new atom [15]. Thus
(abductive) extended (disjunctive) programs are identi®ed with (abductive) normal
(disjunctive) programs in Fig. 1.

In Fig. 1, an arrow A! B presents the existence of a polynomial-time transforma-
tion from a program in the class of A to a semantically equivalent program in the
class of B. An arrow A!�B presents that A is a subclass of B (hence a transformation
from A to B is trivial). Every program transformation in Fig. 1 is modular, i.e., a
transformation of a part of a program is done independently from the other part
of the program.

9 In converse, Refs. [12,22] simulate negation as failure using abducibles, together with (meta-level)

integrity constraints in disjunctive formulas.

Fig. 1. Relationship between various extensions of logic programming under the answer set semantics.
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Under the possible model semantics, on the other hand, AELPs are expressed by
EDPs and vice versa (Theorems 3.3 and 4.2). In other words, abducibles are equiv-
alently speci®ed by disjunctions, and vice versa. Also, AEDPs are reducible to EDPs
(Theorem 5.2) and to AELPs (Corollary 5.1). In Ref. [37] it is shown that under the
possible model semantics NDPs and NLPs are transferable to semantically equiva-
lent PDPs. Furthermore, Ref. [37] show that NDPs/PDPs are reducible to NLPs
using the program transformation presented in Section 7.1. The program transfor-
mation from AELPs/ANLPs to ELPs/NLPs of Refs. [19,38] is also applicable under
the possible model semantics, since possible belief sets (resp. possible models) are
equivalent to belief sets (resp. answer sets) in AELPs (resp. ELPs). These relations
are summarized in Fig. 2. Every program transformation in Fig. 2 is also modular
and performed in polynomial time.

From Fig. 2, it is observed that the di�erence between the answer set semantics
and the possible model semantics is the existence of the links: AEDP/ANDP !
AELP/ANLP, PDP! ELP/NLP, and EDP/NDP! (A)ELP/ (A)NLP. That is, dis-
junctions can also be replaced by negation as failure or abducibles under the possible
model semantics. As a result, there is a cycle ELP/NLP ! AELP/ANLP ! AEDP/
ANDP! EDP/NDP! PDP! ELP/NLP. This implies a rather surprising fact that
all `extensions' of logic programming, i.e., normal and extended programs, disjunctive
programs, and abductive programs, are essentially equivalent under the possible model
semantics. That is, negation as failure, disjunctions, and abducibles can be used inter-
changeably under the possible model semantics.

The possible model semantics is originally introduced as a semantics for disjunc-
tive programs. However, the above observation indicates that the possible model
emantics can provide a uni®ed framework for various extensions of logic program-
ming.

8. Conclusion

Abductive hypotheses and disjunctive knowledge appear to deal with very similar
problems from di�erent viewpoints. This paper veri®ed this conjecture and revealed
the close relationship between abductive logic programming and disjunctive logic
programming. The main results of this paper are summarized as follows.

Fig. 2. Relationship between various extensions of logic programming under the possible model seman-

tics.
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· Abductive programs can be transformed to disjunctive programs both under the
answer set semantics and the possible model semantics.

· Disjunctive programs can be transformed to abductive programs under the possi-
ble model semantics, while such a transformation is most unlikely possible in
general under the answer set semantics.

· Abductive disjunctive programs can be reduced to disjunctive programs both
under the answer set semantics and the possible model semantics. Furthermore,
abductive disjunctive programs are reducible to abductive (non-disjunctive)
programs under the possible model semantics.
By the transformation from abductive programs to disjunctive programs, it is

concluded that abducibles are equivalently speci®ed by disjunctions. In particular,
abductive disjunctive programs are reducible to disjunctive programs, hence no
expressive power is gained by introducing abducibles to disjunctive programs. On
the other hand, disjunctive programs are e�ciently transformed to abductive
programs under the possible model semantics. From these facts, we can conclude
that abducibles and disjunctions are essentially equivalent under the possible model
semantics. In other words, abductive programs and disjunctive programs are just
di�erent ways of looking at the same problem under the possible model semantics.

The results of this paper verify the usefulness of the possible model semantics as a
semantics not only for disjunctive programs but also for abductive programs. More-
over, the possible model semantics can provide a unifying framework for various
extensions of logic programming without introducing additional computational
complexity more than the classical propositional satis®ability.
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