
Representing Priorities in
Logic Programs

Chiaki Sakama
Department of Computer and Communication Sciences
Wakayama University
Sakaedani, Wakayama 640, Japan
sakama@sys.wakayama-u.ac.jp

http://www.wakayama-u.ac.jp/~sakama

Katsumi Inoue
Department of Information and Computer Sciences
Toyohashi University of Technology
Tempaku-cho, Toyohashi 441, Japan
inoue@tutics.tut.ac.jp

http://ai.tutics.tut.ac.jp/~inoue

Abstract

Reasoning with priorities is a central topic in knowledge representation. A
number of techniques for prioritized reasoning have been developed in the
field of AI, but existing logic programming lacks the mechanism of explicit
representation of priorities in a program. In this paper, we introduce a
framework for representing priorities in logic programming. Prioritized logic
programming represents preference knowledge more naturally than stratified
programs, and is used to reduce non-determinism in logic programming.
Moreover, it can realize various forms of commonsense reasoning such as
abduction, default reasoning, and prioritized circumscription. The proposed
framework increases the expressive power of logic programming and exploits
new applications in knowledge representation.

1 Introduction

Recent extensions of logic programming provide mechanisms of handling in-
complete knowledge in many ways as normal, disjunctive, abductive, and
extended logic programs. In these extended frameworks, each language in-
troduces different kinds of non-determinism as

• multiple minimal models in a program,

• multiple explanations in abduction,

• conflicting extensions in default reasoning.

1

To reduce such non-determinism in programming knowledge, it is important
to introduce explicit representation of preference and specify the intended
meaning of a program.

Priorities in logic programming are conventionally expressed in terms of
stratified negation. However, priorities in stratified programs are determined
by the syntax of a program, and their application is restricted to programs
having a single stratified structure. Also, existing abductive and disjunctive
logic programs provide no mechanism of freely specifying preference over
multiple solutions. In the field of AI, on the other hand, a number of pri-
oritized reasoning systems are developed such as prioritized circumscription
or prioritized default reasoning. Then our concern is whether such general
prioritized reasoning systems in AI are realized in logic programming.

In this paper we present a framework of prioritized reasoning in logic pro-
gramming. Prioritized logic programming introduces a mechanism of explicit
representation of priorities in a program. The declarative semantics of such
programs is given by the preferred answer sets, which distinguish answer
sets according to programmers’ preference. Prioritized logic programming
can represent preference knowledge more naturally than stratified programs,
and is used to reduce non-determinism in logic programming. Moreover, it
can realize various forms of commonsense reasoning such as abduction, de-
fault reasoning, and prioritized circumscription. The proposed framework
increases the expressive power of logic programming and exploits new appli-
cations in knowledge representation.

The rest of this paper is organized as follows. In Section 2, we introduce
a framework of prioritized logic programming and present its properties.
Section 3 presents applications of prioritized logic programming to various
forms of commonsense reasoning. Section 4 discusses the expressive power
of the proposed framework, and Section 5 summarizes the paper.

2 Prioritized Logic Programs

Logic programs we consider in this paper are general extended disjunctive
programs. A general extended disjunctive program (GEDP) consists of rules
of the form:

L1 | . . . | Lk | notLk+1 | . . . | notLl

← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ l ≥ k ≥ 0) (1)

where each Li is a positive or negative literal, and not is negation as failure.
The left-hand side of the rule is the head , and the right-hand side is the
body . A rule with the empty head is an integrity constraint . A rule with
variables stands for the set of its ground instances as usual.

The class of GEDP is introduced in [LW92] as a subclass of minimal
belief and negation as failure (MBNF). GEDP is a fairly general class of
existing LP frameworks in the sense that it includes the so-called normal ,

2

disjunctive and extended logic programs. Moreover, it can also express the
class of abductive logic programs [IS94], which will be discussed in the next
section. A GEDP is called an extended disjunctive program (EDP) if it
contains no not in the head (k = l).

The semantics of GEDP is given by the answer set semantics. First, let
P be a GEDP without not (i.e., k = l and m = n) and S ⊆ LP , where LP is
the set of all ground literals in the language of P . Then, S is a (consistent)
answer set of P iff S is a minimal set satisfying the following two conditions:
(i) for each ground rule L1 | . . . | Ll ← Ll+1, . . . , Lm (l ≥ 1) from P ,
{Ll+1, . . . , Lm} ⊆ S implies Li ∈ S for some i (1 ≤ i ≤ l). In particular, for
each ground integrity constraint ← L1, . . . , Lm from P , {L1, . . . , Lm} �⊆ S
holds; (ii) S does not contain both L and ¬L for any literal L.

Secondly, given any GEDP P and S ⊆ LP , let us consider the not-free
GEDP PS such that a rule L1 | . . . | Lk ← Ll+1, . . . , Lm is in PS iff there
is a ground rule of the form (1) from P such that {Lk+1, . . . , Ll} ⊆ S and
{Lm+1, . . . , Ln} ∩ S = ∅. Then, S is an answer set of P iff S is an answer
set of PS . A GEDP having an answer set is called consistent .1

The above definition of answer sets reduces to that of Gelfond and Lifs-
chitz [GL91] in EDP. Negation as failure in the head introduces additional
utilities to logic programming. In particular, the following GEDP rule is
useful in this paper:

L | notL← .

The rule states that L is true or not, and has two answer sets {L} and ∅.
Next, let L∗P = LP ∪ {notL : L ∈ LP }. Then a reflexive and transitive

relation � is defined between elements from L∗P . For any elements e1 and
e2 from L∗P , if e1 � e2 then we say that e2 has a priority over e1. We write
e1 ≺ e2 if e1 � e2 and e2 �� e1. A priority relation over elements including
variables e1(x) � e2(y), where x and y are tuples of variables, stands for
any relation e1(s) � e2(t) for any instances s of x and t of y.

A prioritized logic program (PLP) is defined as a pair (P,Φ) where P is
a GEDP and Φ is a set of priority relations over elements from L∗P . The
declarative semantics of PLP is defined using the answer sets. Given a PLP
(P,Φ), suppose that S1 and S2 are two distinct answer sets of P . For any
e ∈ L∗P , e ∈ S2 \ S1 means S2 |= e and S1 �|= e, where S |= notL iff S �|= L.
Then, S2 is preferable to S1 (written S1 � S2) if for some element e2 ∈ S2\S1,
(i) there is an element e1 ∈ S1 \ S2 such that e1 � e2, and (ii) there is no
element e3 ∈ S1 \S2 such that e2 ≺ e3. Here the relation � over answer sets
is defined as reflexive and transitive, and the preference relation is defined by
the closure. This preference definition means that S1 � S2 holds iff S2 \ S1

has an element e2 whose priority is higher than e1 in S1 \ S2, and S1 \ S2

does not have another element e3 whose priority is strictly higher than e2.
Note that the condition (ii) is automatically satisfied if there is no priority

1 In this paper we do not consider the contradictory answer set LP , since we are inter-
ested in consistent theories.

3

relation chained over more than two different elements (i.e., e1 � e2 � e3
implies either e1 = e2 or e2 = e3). An answer set S of P is called a preferred
answer set (or p-answer set , for short) of P if S � S′ implies S′ � S for any
answer set S′ of P .

By definition, (P,Φ) has a p-answer set if P has a finite number of answer
sets. In particular, the p-answer sets of (P,Φ) coincide with the answer sets
of P when Φ = ∅. It is also clear that if a program P has the unique answer
set, it also becomes the unique p-answer set of (P,Φ) for any Φ.

Prioritization in PLP is not necessarily monotonic, i.e., increasing prior-
ities does not always decrease answer sets. For example, let P = { a | b←,
b | c ←}, Φ1 = ∅, Φ2 = { a � b }, and Φ3 = { a � b, b � c }. Then (P,Φ1)
has the p-answer sets {a, c} and {b}; (P,Φ2) has {b}; and (P,Φ3) has {a, c}.

PLP is useful when a program has multiple answer sets and a programmer
wants to filter them out according to her preference. For instance, indefinite
aspects of disjunctive logic programming are reduced by PLP.

Example 2.1 Let P be the program

battery-dead | ignition-damaged← turn-key, ¬start,
turn-key ←,

¬start←,

where the first rule attributes the failure of starting a car to a battery or
an ignition. Now a reasoner empirically knows that an ignition causes a
problem less frequently than a battery. This situation is expressed by the
priority relation as Φ = { ignition-damaged � battery-dead }. Then, the
p-answer set of (P,Φ) becomes S = { turn-key, ¬start, battery-dead }.

Note that the above situation is also expressed in a stratified program.
Namely, rewriting the first rule by

battery-dead← turn-key, ¬start, not ignition-damaged,

S becomes the perfect model of the stratified program. However, such static
stratification is not always useful when a situation changes dynamically.
Suppose that the reasoner later finds that the car-radio works and there is
the integrity constraint

← battery-dead, radio-work,

saying that a radio does not work with a dead battery. In this case, she
wants to get the alternative solution ignition-damaged, but it is not ob-
tained from the stratified program. By contrast, if radio-work ← is added
to P , in the presence of the integrity constraint the p-answer set becomes
{ turn-key, ¬start, radio-work, ignition-damaged }, as intended.

Thus PLP can select appropriate answer sets according to the change
of the situation. Note that any knowledge which is irrelevant to priority

4

relations is not affected by the selection of p-answer sets. For example,
suppose that in the above program the first disjunctive rule is replaced with

battery-dead | ignition-damaged | cold-morning ← turn-key, ¬start,
in which cold-morning has no priority over the other two disjuncts. In this
case, in addition to S, { turn-key, ¬start, cold-morning } also becomes a
p-answer set by definition.

In PLP priority relations are defined over elements from L∗P , but they
are used to express preference between more general form of knowledge.
When a priority relation exists between conjunctions (resp. disjunctions) of
elements e1, . . . , em � e′1, . . . , e′n (resp. e1 | . . . | em � e′1 | . . . | e′n), it is
expressed in PLP by introducing rules e0 ← e1, . . . , em and e′0 ← e′1, . . . , e′n
(resp. e0 ← ei (i = 1, . . . ,m) and e′0 ← e′j (j = 1, . . . , n)) with the priority
relation e0 � e′0. Also, when a priority relation e1 � e2 holds under some
condition Γ, we can express the priority by introducing rules e′1 ← e1,Γ
and e′2 ← e2,Γ together with the priority relation e′1 � e′2. For example,
consider the situation that a reasoner prefers coffee to tea when sleepy. This
preference can be expressed as tea � coffee ← sleepy. The conditional
preference relation can be represented in PLP as

tea′ ← tea, sleepy,

coffee ′ ← coffee, sleepy,

with the relation tea′ � coffee ′. First suppose that he drinks either tea or
coffee (but not both):

tea← not coffee,

coffee ← not tea.

Then, if sleepy holds, { sleepy, coffee, coffee ′ } becomes the p-answer set.
Next if it turns that no coffee is available (¬coffee ←), then { sleepy, tea, tea′,
¬coffee } becomes the p-answer set. Thus, PLP chooses appropriate answer
sets according to varying situations. Note that in the first case the condi-
tional preference could be expressed with rules like

tea← not coffee, not sleepy,

coffee ← not tea.

However, these rules cannot be applied to the second case.
Preference between conflicting default rules is also specified in PLP,

which will be discussed later.

3 Commonsense Reasoning in PLP

In this section, we present applications of PLP to various forms of common-
sense reasoning.

5

3.1 Abduction

Abduction is inference to explanations and here we consider abductive logic
programming . We first review the framework of abductive logic programming
in terms of GEDP. The following definition is due to [IS94].

Let P be a GEDP and A a set of literals called abducibles. Then, an
abductive logic program (ALP) is represented as a GEDP

Π = P ∪ {A | notA← : A ∈ A}. (2)

The augmented disjunctive rules in (2) mean that “an abducible A is as-
sumed or not”. Let Π be an ALP and O a ground atom which represents an
observation. Then, a set E ⊆ A is an explanation of O in Π if there is an
answer set S of Π such that E = S ∩ A and O ∈ S. E is an explanation of
O in Π iff S is an answer set of Π ∪ {← notO } such that E = S ∩ A.
Example 3.1 Let Π be the program

wet-shoes← wet-grass,

wet-grass← rained,

wet-grass← sprinkler-on,

rained | not rained←,

sprinkler-on | not sprinkler-on←,

where rained and sprinkler-on are abducibles. Then, given the observa-
tion O = wet-shoes, the program Π ∪ {← notO } has three answer sets
{wet-shoes, wet-grass, rained }, {wet-shoes, wet-grass, sprinkler-on },
{wet-shoes, wet-grass, rained, sprinkler-on }, which imply that { rained },
{ sprinkler-on }, { rained, sprinkler-on } are the possible explanations of O.

In abductive reasoning, selecting best explanations from many candidate
explanations is an important problem. In particular, minimal explanations
are usually preferred as simplest assumptions to explain a given observation.
An explanation E is minimal if no E′ ⊂ E is an explanation. Then, minimal
abduction is expressed in PLP as follows.

Definition 3.1 Given an ALP Π, minimal abduction is defined as a PLP
(Π,Φ) where Φ = {A � notA : A ∈ A}.

In the definition, the priority relation A � notA is read as “A is less
likely to happen”. This priority condition has the effect of eliminating an
abducible A in each p-answer set whenever possible. An answer set S is
called A-minimal if there is no answer set S′ such that S′ ∩ A ⊂ S ∩ A.
Then the following results hold.

Lemma 3.1 [IS94] Let Π be an ALP and O an observation. Then, O has a
minimal explanation E in Π iff Π ∪ {← notO } has an A-minimal answer
set S such that E = S ∩ A. �

6

Theorem 3.2 Let (Π,Φ) be a PLP representing minimal abduction. Then,
an observation O has a minimal explanation E in Π iff (Π ∪ {← notO },Φ)
has a p-answer set S such that E = S ∩ A.
Proof: By Lemma 3.1, it is enough to show that S is an A-minimal answer
set of Π ∪ {← notO } iff S is a p-answer set of (Π ∪ {← notO },Φ).
Put Π′ = Π ∪ {← notO } and let S be an answer set of Π′. Then, S is an
A-minimal answer set of Π′ iff
for any answer set T of Π′, ∃A ∈ (S \ T) ∩ A implies ∃A′ ∈ (T \ S) ∩ A
iff for any answer set T of Π′, ∃A ∈ A s.t. (A ∈ S \ T and notA ∈ T \ S)
implies ∃A′ ∈ A s.t. (A′ ∈ T \ S and notA′ ∈ S \ T)
iff for any answer set T of Π′, S � T implies T � S
iff S is a p-answer set of (Π′,Φ). �

Example 3.2 In Example 3.1, let Φ = { sprinkler-on � not sprinkler-on,
rained � not rained }. Then, (Π ∪ {← notO },Φ) has two p-answer sets
{wet-shoes, wet-grass, rained } and {wet-shoes, wet-grass, sprinkler-on },
which imply the minimal explanations { rained } and { sprinkler-on }.

An abductive logic program generally has multiple minimal explanations.
Further preference over minimal explanations is also specified in PLP.

Theorem 3.3 Let (Π′,Φ) be a PLP representing minimal abduction where
Π′ = Π ∪ {← notO } for an observation O. Also, let Ψ be a set of priority
relations of the form notAi � notAj where Ai and Aj are abducibles, and
Φ′ = Φ ∪ Ψ. Then, S is a p-answer set of (Π′,Φ′) iff S is a p-answer set
of (Π′,Φ) such that for any p-answer set T of (Π′,Φ), notAi ∈ S \ T and
notAj ∈ T \ S imply notAi �≺ notAj in Φ′.

Proof: If S is a p-answer set of (Π′,Φ), there is some Ai such that notAi ∈
S \ T and Ai ∈ T \ S with Ai � notAi for any p-answer set T of (Π′,Φ).
Since there is no notAj ∈ T \ S such that notAi ≺ notAj , T � S holds by
definition. Hence, S is a p-answer set of (Π′,Φ′).

On the other hand, if S is a p-answer set of (Π′,Φ′), then S is a p-answer
set of (Π′,Φ). In this case, since S � T implies T � S for any p-answer set
T of (Π′,Φ), notAi � notAj implies notAj � notAi for any notAi ∈ S \ T
and notAj ∈ T \ S. �

In the theorem, the additional relation notAi � notAj says that an
abducible Aj is less likely to happen than Ai. Introducing this relation to
Φ, the p-answer set S of (Π′,Φ) satisfying notAj with the highest priority
becomes the p-answer set of (Π′,Φ′). In this case, minimal explanations
containing no Aj are selected as the best explanations.

In Example 3.2 suppose that a reasoner does not use the sprinkler, hence
a good reason exists to prefer not sprinkler-on to not rained. In this case,
(Π ∪ {← notO },Φ ∪ {not rained � not sprinkler-on }) has the unique
p-answer set which implies the preferred minimal explanation { rained }.

7

3.2 Default Reasoning

Default reasoning is a basic mechanism in commonsense reasoning. Poole
[Poo88] proposed a simple framework for default reasoning, which is refor-
mulated by Inoue [Ino94] in the context of logic programming as follows.

A knowledge system is defined as a pair K = (P,Δ) where P and Δ are
EDPs representing facts and defaults, respectively. Given K = (P,Δ), its
extension base is defined as an answer set of P ∪D where D is a maximal
subset of the ground instances of Δ such that P ∪D is consistent.

Example 3.3 Let K = (P,Δ) be a knowledge system such that

P : ¬flies(x)← penguin(x),

bird(x)← penguin(x),

bird(polly)←,

penguin(tweety)←,

Δ : flies(x)← bird(x).

Then K has the unique extension base S = { bird(polly), penguin(tweety),
bird(tweety), f lies(polly), ¬flies(tweety) }. Note that the default rule is
applied for x = polly but not for x = tweety, since P ∪ {flies(tweety)} is
inconsistent.

In abduction, minimal hypotheses are preferred to explain a given obser-
vation. By contrast, in default reasoning hypotheses are assumed as many
as possible unless they cause contradiction.

To realize such default reasoning in PLP, we define the PLP expression
of a knowledge system.

Definition 3.2 Given a knowledge system K = (P,Δ), its PLP expression
(Π,Φ) is defined as follows.

1. Any rule in P is included in Π.

2. Any rule Head← Body in Δ is transformed to the rules

Head← δ(x), Body, (3)

δ(x) | not δ(x)← (4)

in Π, where x represents variables appearing in the rule, and δ(x) is
uniquely associated with each rule from Δ.

3. For any δ(x) introduced above, the relation not δ(x) � δ(x) is in Φ.

In the above transformation, the rule (4) says that the corresponding
default rule (3) is effective or not, and the priority relations in Φ express
that default rules normally hold. In this way, PLP can represent a knowledge
system in a single program Π together with priority relations Φ.

8

Let D be the set of every atom δ(x) in Π.2 An answer set S is called
D-maximal if there is no answer set S′ such that S ∩ D ⊂ S′ ∩ D. Let LK
be the set of all ground literals in the language of K. Then we have the
following results.

Lemma 3.4 [Ino94] Let K = (P,Δ) be a knowledge system and Π the
transformed program as above. Then, S is a D-maximal answer set of Π iff
S ∩ LK is an extension base of K. �

Theorem 3.5 Let K = (P,Δ) be a knowledge system and (Π,Φ) its PLP
expression. Then, S is a p-answer set of (Π,Φ) iff S ∩ LK is an extension
base of K.

Proof: Using Lemma 3.4, the proof is similar to that of Theorem 3.2. �

Example 3.4 The knowledge system in Example 3.3 is expressed in PLP as

Π : ¬flies(x)← penguin(x),

bird(x)← penguin(x),

bird(polly)←,

penguin(tweety)←,

f lies(x)← δ(x), bird(x),

δ(x) | not δ(x)←,

with Φ = {not δ(x) � δ(x) }. Then (Π,Φ) has the unique p-answer set
{ bird(p), penguin(t), bird(t), f lies(p), ¬flies(t), δ(p) }, which corresponds
to the extension base S.

Next let us consider a default theory containing conflicting default rules.

Example 3.5 Let K ′ be the same knowledge system as K in Example 3.3
except that the first rule ¬flies(x) ← penguin(x) in P is placed in Δ as a
default rule. Then, in addition to S, K ′ has the alternative extension base
S′ = { bird(p), penguin(t), bird(t), f lies(p), f lies(t) }.

In the above situation, the knowledge system has two alternative exten-
sion bases, but S is preferred to S′ as the more specific extension. To select
the right extension, the default rule for penguin must be preferred to that
for bird. PLP is also used to specify such priorities between default rules.

Theorem 3.6 Let (Π,Φ) be a PLP representing a knowledge system. Also,
let Ψ be a set of priority relations of the form δi � δj where δi and δj are
atoms in Φ, and Φ′ = Φ ∪Ψ. Then, S is a p-answer set of (Π,Φ′) iff S is a
p-answer set of (Π,Φ) such that for any p-answer set T of (Π,Φ), δi ∈ S \ T
and δj ∈ T \ S imply δi �≺ δj in Φ′.

2 Here, δ(x) is identified with its ground instances.

9

Proof: Similar to the proof of Theorem 3.3. �

The above theorem presents that when any default preference δi � δj is
introduced to Φ, the p-answer set S of (Π,Φ) containing the default δj with
the highest priority is selected as the p-answer set of (Π,Φ′). Thus, priorities
between default rules are specified in PLP and the extensions generated by
the most preferred defaults are obtained as p-answer sets.

Back to the above example, the knowledge system K ′ is expressed in
PLP as (Π′,Φ′) where Π′ contains rules

¬flies(x)← δ′(x), penguin(x),
δ′(x) | not δ′(x)←,

instead of the first rule in Π, and Φ′ = Φ∪{not δ′(x) � δ′(x), δ(x) � δ′(x) }
where a higher priority is given to the more specific default δ′(x). In this case,
(Π′,Φ′) has the unique p-answer set { bird(p), penguin(t), bird(t), f lies(p),
¬flies(t), δ(p), δ′(p), δ′(t) }, which corresponds to S.
Thus, PLP can realize a prioritized default reasoning system like [Bre94].

3.3 Prioritized Circumscription

Prioritized circumscription is a representative formalism of prioritized non-
monotonic reasoning in AI. This section considers realizing prioritized cir-
cumscription in PLP. We first review the framework of prioritized circum-
scription [Lif86].

Let P be a tuple of predicates from a first-order theory T , which is split
into disjoint parts P1, . . . , Pk. Then prioritized circumscription Circ(T ;P1 >
. . . > Pk;Z) minimizes extensions of Pi with a priority higher than those of
Pj (i < j) with Z varied. The set of all predicates other than P and Z from T
are fixed and denoted as Q. For any two structures M1 and M2, M1 � M2

iff (i) |M1| = |M2|; (ii) M1[[Q]] = M2[[Q]]; (iii) for every j = 1, . . . , k, if
[[M1]](P1, . . . , Pj−1) = [[M2]](P1, . . . , Pj−1) then [[M1]](Pj) ⊂ [[M2]](Pj). A
model M of T is a model of Circ(T ;P1 > . . . > Pk;Z) iff there is no model
N of T such that N �M .

To realize prioritized circumscription in the context of logic program-
ming, we assume a first-order theory T as a set of clauses C : A1∨ . . .∨Al∨
¬B1∨. . .∨¬Bm where each Ai (1 ≤ i ≤ l; l ≥ 0) and Bj (1 ≤ j ≤ m; m ≥ 0)
are atoms. Also, we consider the Herbrand model of T , which has the effect
of introducing both the domain closure assumption and the unique name
assumption into T . Now the PLP expression of prioritized circumscription
is defined as follows.

Definition 3.3 Given a prioritized circumscription Circ(T ;P1 > . . . >
Pk;Z), its PLP expression (Π,Φ) is defined as follows.

1. For any clause C in T , Π has the rule

A1 | . . . | Al ← B1, . . . , Bm.

10

2. For any fixed or variable predicate λ in T , Π has the rule

λ(x) | not λ(x)← .

3. Priority relations are given as

Φ = { pi(x) � not pi(x) : pi ∈ Pi (i = 1, . . . , k) }
∪ {not pi+1(x) � not pi(y) : pi ∈ Pi (i = 1, . . . , k − 1) }
∪ { q(x) � not q(x), not q(x) � q(x) : q ∈ Q }.

In the transformation, minimizing extensions of predicates from P is ex-
pressed by the relation pi(x) � not pi(x) in Φ. Also, the predicate hierarchy
P1 > . . . > Pk is expressed in Φ as not pi+1(x) � not pi(y), which means that
extensions from pi is minimized at a higher priority than those from pi+1.
On the other hand, each atom with a fixed or variable predicate is either true
or not, and it is expressed by the second disjunctive rule [SI95]. In this case,
extensions of variable predicates can be varied, while those of fixed predi-
cates are not affected by the preference over minimized predicates. Such a
situation is expressed by the symmetric priority relations q(x) � not q(x)
and not q(x) � q(x) in Φ.

With this setting, prioritized circumscription is expressed in terms of
PLP. In the following, p (or pi) is also used to represent an atom with a
minimized predicate from P (or Pi), and q an atom with a fixed predicate.
Also, P , Z, Q are used to represent the sets of atoms with the corresponding
predicates.

Lemma 3.7 Let Circ(T ;P ;Z) be a (parallel) circumscription and (Π,Φ)
its PLP expression. Then, M is an Herbrand model of Circ(T ;P ;Z) iff M
is a p-answer set of (Π,Φ).

Proof: M is a model of Circ(T ;P ;Z) iff there is no model N of T such
that N � M . For any two models M and N such that M ∩ Q = N ∩ Q,
N �M iff ∃p ∈ P (p ∈M \N) ∧ ¬∃p′ ∈ P (p′ ∈ N \M)
iff ∃p∈P (not p∈N \M ∧ p∈M \N) ∧ ¬∃p′∈P (not p′∈M \N∧p′∈N \M)
iff M � N and N ��M . Hence, for any M and N such that M ∩Q = N ∩Q,
N � M iff M � N and N �� M , thereby N �� M iff M � N implies
N � M . On the other hand, for any M and N such that M ∩Q �= N ∩Q,
if q ∈ (M \ N) ∩ Q then M � N holds by q � not q. In this case, N � M
also holds by not q � q. Thus, M � N iff N � M . As M ∩ Q �= N ∩ Q,
N ��M and M �� N hold. Therefore, for any M and N , N ��M iff M � N
implies N � M (∗). Let M ∩ (Q ∪ Z) = Γ. If M is an Herbrand model of
Circ(T ;P ;Z), then M is a minimal model of T ∪ Γ. In this case, M is a
minimal model of T ∪ {λ | not λ ←∈ Π}M iff M is a minimal model of ΠM

iff M is an answer set of Π. Conversely, if M is an answer set of Π, M is an
Herbrand model of T . Thus, the relation (∗) holds for answer sets M and N
of Π. Hence, M is an Herbrand model of Circ(T ;P ;Z) iff M is a p-answer
set of (Π,Φ). �

11

Theorem 3.8 Let Circ(T ;P1 > . . . > Pk;Z) be a prioritized circumscrip-
tion and (Π,Φ) its PLP expression. Then, M is an Herbrand model of
Circ(T ;P1 > . . . > Pk;Z) iff M is a p-answer set of (Π,Φ).

Proof: First, any model M of Circ(T ;P1 > . . . > Pk;Z) is a model of
Circ(T ;P1, . . . , Pk;Z). Then, M is an Herbrand model of Circ(T ;P1 >
. . . > Pk;Z) iff there is no Herbrand model N of Circ(T ;P1, . . . , Pk;Z) such
that N � M . For any M and N such that M ∩ Q = N ∩ Q, N � M iff

∃i ∃pi ∈ Pi (pi ∈M \N) ∧ ¬∃p′i ∈ Pi (p
′
i ∈ N \M)

∧∀pj ∈ Pj (j < i) (pj ∈M ⇔ pj ∈ N). (∗)
Since M is minimal wrt the extensions of P , (∗) implies ∃k (i < k) ∃pk ∈
Pk (pk ∈ N \M). Hence, (∗) iff

∃i ∃pi ∈ Pi (pi ∈M \N) ∧ ∃k (i < k) ∃pk ∈ Pk (pk ∈ N \M)
∧¬∃p′i ∈ Pi (p

′
i ∈ N \M) ∧ ∀pj ∈ Pj (j < i) (pj ∈M ⇔ pj ∈ N)

iff ∃i ∃pi ∈ Pi (not pi ∈ N \M) ∧ ∃k (i < k) ∃pk ∈ Pk (not pk ∈M \N)
∧¬∃p′i ∈ Pi (not p

′
i ∈M \N) ∧ ¬∃pj ∈ Pj (j < i) (not pj ∈M \N)

∧¬∃p′j ∈ Pj (j < i) (not p′j ∈ N \M)
iff ∃i ∃pi ∈ Pi (not pi ∈ N \M) ∧ ∃k (i < k) ∃pk ∈ Pk (not pk ∈M \N)
∧¬∃pj∈Pj (j ≤ i) (not pj∈M \N) ∧ ¬∃p′j∈Pj (j<i) (not p′j∈ N \M). (†)

Here,
∃i ∃pi ∈ Pi (not pi ∈ N \M) ∧ ∃k (i < k) ∃pk ∈ Pk (not pk ∈M \N)

∧¬∃pj ∈ Pj (j ≤ i) (not pj ∈M \N) (‡)
implies M � N and N �� M , so (†) implies M � N and N �� M . Con-
versely, M � N and N �� M imply (‡). In this case, there is a minimal i
which satisfies (‡). Consider the minimal i′ which satisfies the first conjunct
∃pi′ ∈Pi′ (not pi′ ∈N\M) of (‡). Then, the second conjunct ∃k (i′ < k) ∃pk∈
Pk (not pk ∈M \N) is also satisfied. If the third conjunct is not satisfied,
i.e., ∃pj ∈Pj (j ≤ i′) (not pj ∈M \N), then M � N implies N � M , which
contradicts the assumption. Hence, ¬∃pj ∈ Pj (j ≤ i′) (not pj ∈M \N) also
holds. Since i′ is minimal satisfying ∃pi′ ∈Pi′ (not pi′ ∈N\M), ¬∃p′j∈Pj (j<
i′) (not p′j∈ N\M). Then, by putting i = i′, (‡) implies (†), thereby M � N
and N ��M imply (†). Hence, for any M and N such that M ∩Q = N ∩Q,
N � M iff M � N and N �� M , thereby N �� M iff M � N implies
N � M . On the other hand, for any M and N such that M ∩Q �= N ∩Q,
M � N iff N � M by the same argument as in Lemma 3.7. Therefore, for
any M and N , N ��M iff M � N implies N �M . Since Herbrand models
M and N of Circ(T ;P1, . . . , Pk;Z) are (p-)answer sets of Π by Lemma 3.7,
M is an Herbrand model of Circ(T ;P1 > . . . > Pk;Z) iff M is a p-answer
set of (Π,Φ). �

Example 3.6 Let T be a first-order theory such that

flies(x) ∨ ab2(x) ∨ ¬bird(x),
¬flies(x) ∨ ab1(x) ∨ ¬penguin(x),
bird(x) ∨ ¬penguin(x),

12

bird(polly),

penguin(tweety),

where P1 = { ab1 } and P2 = { ab2 } with P1 > P2, and Z = { flies } and
Q = { penguin, bird }. In this case, its PLP expression becomes

Π : flies(x) | ab2(x)← bird(x),

ab1(x)← penguin(x), f lies(x),

bird(x)← penguin(x),

bird(polly)←,

penguin(tweety)←,

λ(x) | not λ(x)←,

where λ = flies, bird, penguin, and Φ = { ab1(x) � not ab1(x), ab2(x) �
not ab2(x), not ab2(x) � not ab1(y), bird(x) � not bird(x), not bird(x) �
bird(x), penguin(x) � not penguin(x), not penguin(x) � penguin(x) }.
Then, (Π,Φ) has two p-answer sets { bird(p), f lies(p), penguin(t), bird(t),
ab2(t) } and { bird(p), penguin(p), ab2(p), penguin(t), bird(t), ab2(t) }, which
correspond to the Herbrand models of Circ(T ;P1 > P2;Z).

Gelfond and Lifschitz [GL88] provide a method of compiling prioritized
circumscription into stratified logic programs. In their framework, however,
every clause is assumed to contain at most one variable predicate and no
fixed predicates. By contrast, the PLP characterization presented above has
no such restriction.

In the absence of fixed and variable predicates, prioritized circumscrip-
tion is also expressed by the perfect models [Prz88] of a stratified disjunctive
program. When a stratified disjunctive program P contains no integrity con-
straints, the perfect models of P coincide with the answer sets of P , thereby
also coincide with the p-answer sets of (P, ∅).3 Perfect models of a stratified
disjunctive program are also characterized by PLP in the following manner.
Given a stratified disjunctive program Π, define the positive disjunctive pro-
gram Pos(Π) which is obtained from Π by shifting notA in the body of any
rule to A in the head.

Corollary 3.9 Let Π be a stratified disjunctive program including no in-
tegrity constraints, with the stratification P1 > . . . > Pk. Then, M is
a perfect model of Π iff M is a p-answer set of (pos(Π),Φ) where Φ =
{not pi+1(x) � not pi(y) : pi ∈ Pi (i = 1, . . . , k − 1)}.
Proof: In the absence of fixed and variable predicates, any p-answer set
of Pos(Π) is minimal wrt extensions of P . Hence, we can drop priority

3 The perfect models do not coincide with the answer sets in a stratified program with in-
tegrity constraints in general. For example, consider the program P = { b← not a, ← b }
with the stratification {a}>{b}. Then P has the perfect model {a}, while no answer set
exists.

13

relations pi(x) � not pi(x) (i = 1, . . . , k) from Φ. Then the result follows
from [Prz88, Theorem 5] and Theorem 3.8. �

The above corollary presents that any stratification is equivalently spec-
ified in PLP without using negation as failure in a program.4

4 Discussion

Priorities in logic programming are conventionally expressed in terms of
stratified negation. In contrast to stratification, priorities in PLP are speci-
fied separately from the program. Hence, different programmers can specify
different priorities in the same program without changing the program itself,
while any change in a program does not affect the priority relations. More-
over, priorities in PLP generalize those in stratified programs in the following
sense. First, any stratification of a program can be expressed in terms of
priority relations in PLP (Corollary 3.9), but the converse transformation,
i.e., representing arbitrary priority relations Φ in a single stratification, is
not possible in general. Secondly, in a stratified program every atom must
be ranked according to the syntax of the program, while no such restriction
exists in PLP and priority relations are freely specified on any subset of L∗P .
Thirdly, PLP can express priorities between not only atoms but also literals
and negation-as-failure formulas in GEDP.

Priorities in PLP are used to specify preference between default rules.
Dimopoulos and Kakas [DK95] provide a method of specifying priorities over
conflicting default rules in extended logic programs. Brewka [Bre96] extends
the well-founded semantics to handling prioritized reasoning in extended
logic programs. Comparing these work with ours, PLP is defined for a
wider class of programs and used for not only default reasoning but other
prioritized commonsense reasoning. Brewka also introduces a method of
encoding preference in a program and using them to reason about priorities.
The PLP framework would be also extended in this direction but it is not
addressed in this paper.

The expressive power of PLP is analyzed from the computational aspect
as follows. In Theorem 3.2 it was shown that minimal explanations can be
expressed in terms of p-answer sets of PLP. On the other hand, Eiter et
al. [EGL95] argue that reasoning tasks for minimal explanations in (propo-
sitional) abductive disjunctive programs are in general at the third level
ΣP
3 /Π

P
3 of the polynomial hierarchy. Since it is known that the computa-

tional complexity of the standard answer sets lies at the second level of the
hierarchy, these results suggest that the p-answer sets are more expressive
than the standard answer sets unless the polynomial hierarchy collapses.

4 [DK95] presents a different method of replacing negation as failure with preference
over rules.

14

5 Summary

This paper introduced a novel framework of representing priorities in logic
programming. It was shown that PLP can encode preference over incom-
plete knowledge and reduce non-determinism in logic programming. More-
over, various forms of commonsense reasoning such as (prioritized) minimal
abduction, (prioritized) default reasoning, and prioritized circumscription
were realized in terms of PLP. Thus, PLP increases the expressive power of
logic programming and exploits new applications in knowledge representa-
tion. Note that we introduced PLP under the answer set semantics, while
the framework is also applicable to any semantics of logic programming. In
this paper we were concerned with the semantic aspects of PLP and future
work involves the procedural issue of PLP.

References

[Bre94] Brewka, G., Reasoning About Priorities in Default Logic, Proc.
AAAI-94, pp. 940–945, MIT Press.

[Bre96] Brewka, G., Well-Founded Semantics for Extended Logic Programs
with Dynamic Preferences, J. AI Research 4:19–36, 1996.

[DK95] Dimopoulos, Y. and Kakas, A. C., Logic Programming without
Negation as Failure, Proc. ILPS’95, pp. 369–383, MIT Press.

[EGL95] Eiter, T., Gottlob, G. and Leone, N., Complexity Results for Ab-
ductive Logic Programming, LPNMR’95, LNAI 928, pp. 1–14, Springer.

[GL88] Gelfond, M. and Lifschitz, V., Compiling Circumscriptive Theories
into Logic Programs, Proc. AAAI-88 , pp. 455–459, MIT Press.

[GL91] Gelfond, M. and Lifschitz, V., Classical Negation in Logic Programs
and Disjunctive Databases, New Generation Computing 9:365–385, 1991.

[IS94] Inoue, K. and Sakama, C., On Positive Occurrences of Negation as
Failure. Proc. KR’94 , pp. 293–304, Morgan Kaufmann.

[Ino94] Inoue, K., Hypothetical Reasoning in Logic Programs, J. Logic
Programming 18:191–227, 1994.

[Lif86] Lifschitz, V., On the Satisfiability of Circumscription, Artificial
Intelligence 28:17–27, 1986.

[LW92] Lifschitz, V. and Woo, T. Y. C., Answer Sets in General Nonmono-
tonic Reasoning, Proc. KR’92 , pp. 603–614, Morgan Kaufmann.

[Poo88] Poole, D., A Logical Framework for Default Reasoning, Artificial
Intelligence 36:27–47, 1988.

[Prz88] Przymusinski, T. C., On the Declarative Semantics of Deductive
Databases and Logic Programs, in: Foundations of Deductive Databases
and Logic Programming, pp. 193–216, Morgan Kaufmann, 1988.

[SI95] Sakama, C. and Inoue, K., Embedding Circumscriptive Theories in
General Disjunctive Programs, LPNMR’95, LNAI 928, 344–357, Springer.

15

