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Abstract. In this paper, we study a new semantics of logic programming and deductive databases. The possible 
model semantics is introduced as a declarative semantics of disjunctive logic programs. The possible model 
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procedure for the possible model semantics and show that the possible model semantics has an advantage from 
the computational complexity point of view. 
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1. Introduction 

Traditionally, the declarative semantics of  logic programming and deductive databases 
has been studied based on the notion o f  minimal models. For instance, the least Herbrand 
model semantics for Horn logic programs [40], the perfect model semantics for stratified 
logic programs [28], and the stable model semantics for normal logic programs [14] 
are all minimal  models.  The minimal models reflect the so-called Occam's  razor such 
that "only those objects should be assumed to exist which are minimally required by 

the context." Such a principle o f  minimality plays a fundamental role in the area of  not 
only logic programming but also nonmonotonic reasoning in artificial intell igence [23]. 
Therefore, it has been recognized that the principle of  minimali ty is one of  the most 
basic and indispensable criteria that each semantics for commonsense reasoning should 
obey [39]. 

This is also the case in the context of  disjunctive logic programs, logic programs 
containing indefinite information. Namely, the minimal model semantics for posit ive dis- 
junctive programs [24] and the disjunctive stable model semantics for normal disjunctive 
programs [29] are both minimal.  However, such a minimal ism is not always appropri-  
ate in a theory containing indefinite information. Ross and Topor [34] first noticed this 
problem in the context of  inferring negation in disjunctive logic programs. They argue 

* rlhis is a revised and extended version of the paper [36] which was presented at the Tenth International 
Conference on Logic Programming, Budapest, 21-25 June 1993. 
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that when one infers negation from a disjunctive logic program, one should be cautious 
to interpret disjunctions inclusively rather than exclusively. In fact, the minimal model 
semantics minimizes truth extensions of predicates as much as possible; then it usually 
interprets disjunctions exclusively and maximizes negative information inferred from a 
program. 

In logic programming and deductive databases, Reiter has introduced the closed worm 
assumption (CWA) [31] as a default rule for inferring negation from a program. Howev- 
er, Reiter has also pointed out that the CWA works well only for Horn logic programs 
and causes an inconsistency in the presence of indefinite information in a program. In 
positive disjunctive programs, Minker [24] has extended Reiter's CWA to the general- 
ized closed worm assumption (GCWA). On the other hand, Ross and Topor [34] have 
proposed an alternative rule called the disjunctive database rule (DDR), which turns out 
to be equivalent to the weak generalized closed worm assumption (WGCWA) that was 
independently proposed by Rajasekar et al. [32]. 

If  one compares these two rules, one sees that the GCWA is based on the minimal 
model semantics and usually interprets disjunctions exclusively, while the DDR and the 
WGCWA are weaker than the GCWA and interpret disjunctions inclusively. Thus, both 
the GCWA and the WGCWA (or DDR) fairly extend the CWA, but the problem is 
that they are inherently different from each other. In fact, in the absence of a single 
uniform framework, one has to use these separate rules in order to treat both exclusive 
and inclusive disjunctions in the same program. Such a situation actually happens in our 
real-life situations. For instance, consider the program 

land-animal V aquatic ~ animal, 

biped V quadruped ~- land-animal, 

amphibian ~ land-animal A aquatic, 

in which the disjunction in the first clause is inclusive, while the disjunction in the second 
clause is exclusive. As another example, a disjunctive clause possibly contains hybrid 
disjunctions such as: 

Sunday V national-holiday V weekday ~-- calendar-days, 

in which Sunday V weekday is exclusive, while Sunday V national-holiday is inclusive. 
To treat such kinds of  programs, we need a single framework that can distinguish 

two kinds of disjunctions. Another point is that Ross and Topor and Rajasekar et al. 
have provided a rule for inferring negation in inclusive disjunctive programs; however, 
they concern only negative information in a program and do not provide any model 
theoretical meaning for inclusive disjunctive programs as a counterpart of the minimal 
model semantics. 

In this paper, we present an alternative approach to the declarative semantics of  
disjunctive logic programs and deductive databases. We introduce a new semantics called 
the possible model semantics for disjunctive logic programs. In contrast to the classical 
minimal model semantics, the possible model semantics considers not only minimal 
models but also certain kinds of  nonminimal models in a program. We show that the 
possible model semantics enjoys several interesting properties. Especially by treating 
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both inclusive and exclusive disjunctions uniformly in a program, it can provide a flexible 
mechanism for inferring negation in a program. Next we develop an algorithm to compute 
the possible model semantics in normal disjunctive programs which is based on a bottom- 
up model generation proof  procedure. We also discuss the computational complexity 
of  the possible model semantics and show that the possible model semantics has a 
computational advantage compared with other minimal model based semantics. 

The rest of  this paper is organized as follows. In Section 2, we introduce the possible 
model semantics for positive disjunctive programs and present its properties. The possible 
model semantics is also extended to normal disjunctive programs in Section 3. In Section 
4, we provide a proof  procedure to compute the possible model semantics in normal 
disjunctive programs. In Section 5, we discuss the computational aspect of  the possible 
model semantics. Section 6 presents detailed comparisons with related work, and Section 
7 concludes this paper. Some proofs are contained in Appendix. 

2. Possible Model Semantics for Positive Disjunctive Prog rams  

In this section, we first consider positive disjunctive programs, that is, disjunctive pro- 
grams containing no negation-as-failure formulas. 

2.1. POSITIVE DISJUNCTIVE PROGRAMS 

A positive disjunctive program is a finite set of  clauses of  the form: 

A 1 V " ' V A z ~ ' - B 1 A ' " A B m  (l,m>~O), (1) 

where Ai's and B j ' s  are atoms. The left-hand side of  the clause is called the head, while 
the right-hand side of  the clause is called the body. A clause is called disjunctive (resp. 
definite) if its head contains more than one atom (resp. exactly one atom). A clause 
with the empty head and a nonempty body is called an integrity constraint. A program 
containing no disjunctive clauses is called a Horn logic program, and especially a Horn 
logic program containing no integrity constraint is called a definite logic program. A 
program is semantically identified with its ground program, which is the possibly infinite 
set of  all ground clauses from the program. 

An interpretation of  a program P is a subset of  the Herbrand base "HBp of  the 
program. An interpretation I satisfies the clause (1) if { B 1 , . . . ,  Bin} C I implies Ai E I 
for some i (1 <~ i ~< l). In particular, I satisfies the integrity constraint (1) with l = 0 if 
Bj  ~ I for some j (1 ~< j ~ m) .  An interpretation satisfying every clause in a program 
is a model of  the program. A model / is called supported if for each atom A in I ,  there 
is a clause (1) such that A = Ai (1 ~< i ~< l) and { B 1 , . . . , B m }  _C I .* A model I is a 
minimal model if there is no model smaller than I .  If  a program has a unique minimal 
model, it is called the least Herbrand model. A positive disjunctive program is consistent 
if it has a minimal model; otherwise it is inconsistent. 

* '/'his is a direct extension of the notion introduced in [1] for normal logic programs. 
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2.2. NEGATION IN POSITIVE DISJUNCTIVE PROGRAMS 

In logic programming, Reiter's CWA [31] is formally stated as follows: Given a program 
P ,  

C W A ( P )  = {--,A [ A e 7-tBp and P ~ A}. 

However, Reiter's CWA causes an inconsistency in the presence of disjunctive infor- 
mation in a program; for instance, the program P = {a V b ~ }  is inconsistent with 
C W A ( P )  = {~a,-~b}. Then, for inferring negation in positive disjunctive programs, 
Reiter's CWA is mainly extended in two ways: one is Minker's generalized closed world 
assumption (GCWA) and the other is Ross and Topor's disjunctive database rule (DDR) 
or Rajasekar et al.'s weak generalized closed world assumption (WGCWA)*. We first 
review definitions and properties of those two frameworks. 

Given a positive disjunctive program P ,  let us denote by .A4.Mp the set of all minimal 
models of  P .  Then the GCWA is defined as follows. 

DEFINITION 2.1. [24]. Let P be a consistent positive disjunctive program. Then 
G C W A ( P )  is defined as 

G C W A ( P )  = {--,A I A 6 "HBp and A ¢ I for any I 6 A4Adp}. 

On the other hand, the WGCWA provides a weaker fornl of closed world reasoning 
in positive disjunctive programs as follows. 

The Horn transformation [34] of a positive disjunctive program P is defined as 

Horn(P)  = {Ai *--- B1 A . .. A Bm [ Aa V . .. V Az #-" B1 A . .. A Bra 6 P and 

l <. i<. l, />~1}. 

Note here that Horn(P)  is always consistent, since it does not contain integrity con- 
straints. 

DEFINITION 2.2. [34, 32]. Let P be a consistent positive disjunctive program and 
Horn(P)  be its Horn transformation. Let Mnorn(P) be the least Herbrand model of 
Horn(P).  Then W G C W A ( P )  is defined as 

W G C W A ( P )  = {--,A I A 6 7-lBp and A • MHor,(p)}. 

Properties of the GCWA and the WGCWA are as follows. 

THEOREM 2.1. [24, 34, 32]. Let P be a consistent positive disjunctive program and A 
be a ground atom. Then, 

O) P t_J G C W A ( P )  is consistent. 

P t3 W G C W A ( P )  is consistent. 

* According to [32, 21], the DDR and the WGCWA are equivalent. Hence, we use the term WGCWA 
hereafter. 
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(ii) P ~ A iff P U GCWA(P) ~ A. 

P ~ A iff P U WGCWA(P)  ~ A. 

(iii) P C P' does not imply GCWA(P') C GCWA(P). 

P C P' implies WGCWA(P')  C_ WGCWA(P).  

(iv) WGCWA(P)  C GCWA(P). 

(v) For a definite logic program P, GCWA(P) = WGCWA(P)  = CWA(P). 

That is, (i) both GCWA(P) and WGCWA(P)  are consistent with P,  (ii) positive 
facts proven from P are invariant, (iii) the GCWA (resp. WGCWA) is nondecreasing 
(resp. decreasing), (iv) the GCWA is stronger than the WGCWA, and (v) for definite 
logic programs each rule reduces to the CWA. 

EXAMPLE 2.1. Let P be the program 

{ a V b V c ~ - - ,  d*--aAb, e * - - b A c ,  ~ b A c } ,  

where .A4A4p = {{a}, {b}, {c}) and MHorn(P) = {a, b, c, d, e}. Then GCWA(P) = 
{--d,-~e}, while WGCWA(P)  = 0. 

In the above example, the GCWA interprets each disjunction exclusively, while the 
WGCWA interprets them inclusively. Then, GCWA(P) excludes the inclusive interpre- 
tation of a V b and infers -~d from the program. On the other hand, the integrity constraint 

b A e inhibits an inclusive interpretation of b V e; nevertheless, WGCWA(P)  cannot 
infer -,e. This is because the WGCWA does not consider the model theoretical meaning 
of a given program, and ignores the effect of integrity constraints in a program. In fact, 
Mttorn(l') is no longer a model of P.  Generally speaking, the GCWA is too strong to 
interpret inclusive disjunctions, while the WGCWA is too weak to treat exclusive dis- 
junctions. Then, to treat both types of disjunctions in a program, one has to use two 
different rules in the same program. 

To improve such a situation, Sakama [35] has proposed a new semantics called the 
possible model semantics, which can distinguish both types of disjunctions uniformly 
in a program. In the next subsection, we present the possible model semantics and its 
properties. 

2.3. POSSIBLE MODEL SEMANTICS 

A disjunctive program is considered to represent a set of possible facts that might have 
been true in the actual world. The possible model semantics is intended to formulate this 
situation. 

Given a positive disjunctive program P,  a split program is defined as a ground 
Horn logic program obtained from P by replacing each ground disjunctive clause of the 
form (1): 

A1 V . . . V A ~  ~- Ba A . . . A  Bm 
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with the following ground definite clauses (called split clauses): 

Ai ~ B1 A .. • A Bm for every Ai E S, 

where S is some nonempty subset of {A1, . . . ,  At) .  Note that every ground Horn clause 
from P is included in any split program of P.  Then, a possible model of P is defined 
as the least Herbrand model of  any split program of P.  The set of all possible models 
of P is denoted by ~o.M_p. 

EXAMPLE 2.2. Let P be the program 

{aVb*-.-,  bVe*---, (--.-bAc). 

Then the split programs of P are 

{a,---, b,---, *--b^e}, 

{a *--, e +---, *--- bAc},  

{b~,  ,--bAc), 

{b,--, e,---, ,--b^e), 

{ a ~ ,  b*---, c~ ,  ~b^c} .  

Since the last two split programs are inconsistent, the set of  all possible models of P is 
7~.h,4p = ({a, b), {a, c), {b)).  

Possible models have the following properties. 

PROPOSITION 2.2. A consistent positive disjunctive program has at least one possible 
model. 

Proof. Since a consistent positive disjunctive program has a consistent split program, 
the result immediately follows. [] 

PROPOSITION 2.3. A possible model of a positive disjunctive program P is a model 
of P. 

Proof. Let M be a possible model of P such that M is the least Herbrand model 
of  a consistent split program P~. Then, for each clause C': Ai *--- B1 A . . .  A Bm in 
Ps, there is a corresponding clause C: A1 V . . .  V Az *-- B1 A . . .  A Bm in P, where 
1 ~< i ~< i. Since M satisfies each C', it also satisfies C. Also each integrity constraint 
in P is included in Ps and is satisfied in M.  Hence M is a model of P .  [] 

The notion of possible models is different from minimal models. In fact, in Example 
2.2, {a, b} is a possible model, but not a minimal model. The intuitive meaning of the 
possible model is that each atom included in a possible model has its possible justifica- 
tion in a program. Thus, both inclusive and exclusive interpretations of disjunctions are 
considered whenever there is no integrity constraint to inhibit inclusive interpretations. 
The following property directly follows from the definition. 
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PROPOSITION 2.4. A possible model is a supported model. 

The converse of the above proposition does not hold in general. For example, {a) is 
a supported model of the program {a V b *--- a) ,  but not a possible model. The following 
relationship holds between possible models and minimal models of a program. 

PROPOSITION 2.5. Let P be a consistent positive disjunctive program. Then the set of 
all minimal elements from 7~.hd p coincides with Ad.M p. 

Proof. Let M be a minimal model of  P .  Then, for each clause A1 V . . .  V Az ~-- 
B1 A . . .  A Bm in P, { B 1 , . . . , B m }  C M implies Ai E M for some i (1 ~< i ~< l). In 
this case, there is a split program Ps of P that contains Ai *--- B1 A • • • A Bin. Since M 
satisfies each integrity constraint in P, M is the least Herbrand model of the consistent 
Horn logic program Ps, hence a possible model of P .  Thus, .MA4p is included in 79.Mp. 
On the other hand, since each possible model is a model of P by Proposition 2.3, the 
set of all minimal elements from ~o.Adp coincides with .Adfl4p. [] 

Thus the set of minimal models are included by the set of possible models. In partic- 
ular, a definite logic program has a unique possible model which is the least Herbrand 
model of the program. The above proposition implies that as for the inference of positive 
facts, the possible model semantics coincides with the minimal model semantics. 

THEOREM 2.6. Let P be a consistent positive disjunctive program. An atom A is true 
in P iff A is included in every possible model of P. 

Note that possible models depend on the syntax of a program. For instance, two 
programs {a V b *--, a ~---} and {a ~---} are equivalent under first-order logic, while 
the first program has the possible model {a, b} which is not a possible model of the 
second program. This is because the first program is intended to specify some indefinite 
information about b, while it is not the case in the second program. Such a distinction is 
in fact meaningful in knowledge representation. Suppose a situation like that: 

There is a visitor at my house whom I do not know. I am living with my parents 
so that I guess either my mother or farther must know him: know(mother, visitor) 
V know(father, visitor). After a while, mother comes back and she actually knows 
him: know(mother, visitor), and at this moment the possibility is open my father's 
knowing him too. However, if we replace the previous belief know(mother, visitor) 
Vknow(f  ather, visitor) with know(mother, visitor), the negation -~know(f ather, 
visitor) is assumed under the closed world assumption. 

Thus, logically equivalent sentences do not necessarily have the same meaning from 
the viewpoint of  knowledge representation. Generally speaking, the syntax of a program 
plays an important role in logic programming and deductive databases to specify our 
intended knowledge, then it appears natural that the possible model semantics also shares 
such syntax-dependent properties. 

Next we consider the inference of negative facts under the possible model semantics. 
Under the possible model semantics, negation is defined as follows. 

DEFINITION 2.3. Let P be a consistent positive disjunctive program. Then the possible 
world assumption (PWA)  of P is defined as: 

P W A ( P )  = {-~A ] A 6 7"IEp and A ~ I for any I 6 ~::~"fp}. [] 
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THEOREM 2.7. Let P be a consistent positive disjunctive program and A be a ground 
atom. Then, 

O) P U PWA(P) is consistent. 
(ii) P ~ A iff P O PWA(P) ~ A. 
(iii) P C_ P' does not imply PWA(P') C_ PWA(P). 
(iv) For a definite logic program P, PWA(P) = CWA(P). 

Proof. (i) Since P is consistent, it has a minimal model M which is also a possible 
model of  P .  Then, by definition, M is also a model of P LI PWA(P); hence the result 
follows. (ii) The result directly follows from Theorem 2.6. (iii) Let P = {a V b ~---, e ~-- 
a A b} and pt = p U {*- a A b}. Then PWA(P) = O, while PWA(P') = {~c}. (iv) 
For a definite logic program P, ~O.A4p contains the unique least Herbrand model of P;  
hence the result follows. [] 

The next theorem presents that the PWA is stronger than the WGCWA and weaker 
than the GCWA. 

THEOREM 2.8. Let P be a consistent positive disjunctive program. Then the following 
relationship holds: 

WGCWA(P) C PWA(P) C_ GCWA(P). 

In particular, WGCWA(P) = PWA(P) if P tA Horn(P) is consistent. 
Proof. The relationship PWA(P) C GCWA(P) immediately follows from the fact 

that .M.h4p C 7~.Mp. Since the least Herbrand model MHorn(p) of Horn(P) is a 
superset of any possible model in 7~.h4p, the relationship WGCWA(P) C PWA(P) 
also holds. In particular, Horn(P) is the set of all definite clauses included in the maximal 
split program of P .  Then, when P LI Horn(P) is consistent, MHorn(P) coincides with 
the maximal element in 79.A4p; hence the result follows. [] 

EXAMPLE 2.3. (cont. from Example 2.1). Let P be the program 

{aVbVe~---, d4---aAb, e~---bAe, *-- bAe},  

where 7~A,4p = {{a}, {b}, {e}, {a, b, d}, {a, e}}. Then, PWA(P) implies ~e, but not 
~d. 

Note that in the above example P U Horn(P) is inconsistent and WGCWA(P) fails 
to capture the intended meaning of P.  By contrast, the possible model semantics can infer 
proper negation by distinguishing two kinds of disjunctions using integrity constraints. 

The possible model semantics was independently discovered by Chan [4] under the 
name of the possible worm semantics. In [4], both notions are proven to be equivalent 
in positive disjunctive programs. 

3. Possible Model Semantics for Normal Disjunctive Programs 

In this section, we extend the possible model semantics of positive disjunctive programs 
to normal disjunctive programs. 
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3.1. NORMAL DISJUNCTIVE PROGRAMS 

A normal disjunctive program is a finite set of  clauses of  the form: 

A1 V . . . V At  ~-- BI  A . . . A Bm A n o t B m + l  A . . . A no tBn  (2) 

( 1 > / 0 ,  n > ~ m > ~ O ) ,  

where A i ' s  a n d / 3 / ' s  are atoms and not is the negation-as-failure operator [5]. A clause 
is called disjunctive (resp. normal) if its head contains more than one atom (resp. exactly 
one atom). A clause with the empty head and a nonempty body is called an integrity 

constraint. A program containing no disjunctive clause is called a normal logic program. 

A normal disjunctive program reduces to a positive disjunctive program when every 
clause contains no not. Every normal disjunctive program is also identified with its 
ground program. 

An interpretation I satisfies the clause (2) if {B1, • • . ,  Bin} C_ I and {Bin+l,  • • . ,  Bn }fq 
I = 0 implies Ai  E I for some i (1 ~< i ~< l). In particular, [ satisfies the integrity con- 
straint (2) with l = 0 if B j  • I for some j (1 ~< j ~< m) or Bk E I for some k 
( m  + 1 ~< k ~< n).  An interpretation satisfying every clause in a program is a model of  
the program. A model I is called supported if for each atom A in I ,  there is a clause 
(2) such that A = Ai  (1 ~< i ~< l), { B 1 , . . . , B m }  C_ I and { B m + I , . . . , B , ~ )  N I = 0. A 
model I of  a program P is called a stable model if it coincides with a minimal model 
of  the positive disjunctive program p I  defined as 

p r = {Ax V . . .  V Aa *--" B1 A - . .  A Bm I there is a ground clause 

of  the form (2) from P such that { B i n + l , . . . ,  Bn}  fq I = 0} .  

The disjunctive stable model semantics [29] of  a normal disjunctive program P is 
defined as the set of  all stable models of  P (denoted by S T p ) .  In particular, the disjunctive 
stable model semantics coincides with the stable model semantics of  [14] in normal logic 
programs, and the minimal model semantics in positive disjunctive programs. Stable 
models are minimal and supported models, but not vice versa [29, 25]. 

A normal disjunctive program is consistent if it has a model; otherwise it is inconsis- 

tent. A normal disjunctive program having at least one stable model is called coherent; 

otherwise it is called incoherent. Note that a consistent program is not always coherent. 
For instance, the program {a *-- not a)  has a model {a} that is not stable. 

3.2. POSSIBLE MODEL SEMANTICS AND NEGATION 

We first introduce possible models in normal disjunctive programs. The notion of  split 
programs is defined in the same manner as positive disjunctive programs. 

Given a normal disjunctive program P ,  its split program is defined as a ground normal 
logic program obtained from P by replacing each ground disjunctive clause of  the form 
(2): 

A1 V "" • V Al  *-- B1 A • • • A Bm A no tBm+l  A • • • A no tBn  

with the following ground normal clauses (called split clauses): 

Ai  ~ B1 A . . .  A Bm A no tBm+l  A • . .  A Bn for every Ai E S, 
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where S' is some nonempty subset of {A1, . . .  ,Al ) .  Then, a possible model of P is 
defined as a stable model of  any split program of P.  The set of all possible models of P 
is denoted by PAd/ , .  A normal disjunctive program having at least one possible model 
is called p-coherent, otherwise it is called p-incoherent. 

The possible models defined above reduce to those presented in the previous section 
in a positive disjunctive program. Also, possible models coincide with stable models in 
normal logic programs. The following properties hold. 

PROPOSITION 3.1. A possible model of a normal disjunctive program P is a model 
of P. 

PROPOSITION 3.2. A possible model is a supported model, but not vice versa. 

PROPOSITION 3.3. Let P be a consistent normal disjunctive program. Then the set of 
all minimal elements from 7~ A4 ~, contains S~Tp. 

Proof. By definition, a stable model M of P is also a stable model of some split 
program of P.  Then M is also a possible model of P .  Since M is minimal, it is also a 
minimal element in TLMp. [] 

The above proposition implies that a coherent normal disjunctive program is also 
p-coherent (but not vice versa; see Example 3.6). The converse of the above proposition 
does not hold in general. That is, minimal possible models are not always stable models. 

EXAMPLE 3.1. Let P be the program 

{ a V b ~ ,  b*--a, c ~ n o t a } .  

Then TLMp = {{a, b}, (b, e}} and {a, b} is a minimal element in P A J p  but not a stable 
model of  P .  

In the above example, {b, c} is the unique stable model of P;  hence c is true under 
the disjunctive stable model semantics. However, this is not the case under the possible 
model semantics, since there is an inclusive interpretation of the disjunction {a, b} in 
which c is not true. Thus, in contrast to the case of positive disjunctive programs, positive 
facts true under the possible model semantics (viz. positive facts true in every possible 
model) differ from those ones under the disjunctive stable model semantics. At the end 
of this section, we will also show the case that the possible model semantics implies 
more positive facts than the disjunctive stable model semantics. 

Now we consider negative inference in normal disjunctive programs. We first define 
an extension of the GCWA as negation under the disjunctive stable model semantics. 

DEFINITION 3.1. Let P be a coherent normal disjunctive program. Then G C W A ~ ( P )  
is defined as 

G C W A "  (P) = {~A ] A E 7-lBp and A ~ I for any I E STy) .  
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Next, to define a suitable extension of the WGCWA, we introduce a transformation from 
a normal disjunctive program to a normal logic program. 

The NLP-transformation of a normal disjunctive program P is defined as 

N L P ( P )  = {Ai ~ B1 A . . . A  Bm A not Bm+l A . . . A not B~ I A1 V . .. 

VAt ~ B1 A .. • A Bm A not Bm+l A • • • A not Bn E P and 

1 ~ i < ~  I, 1>~1}. 

The N L P ( P )  is a direct extension of Horn(P) ,  and N L P ( P )  = Horn(P)  holes for 
a positive disjunctive program P.  For a coherent normal disjunctive program P, N L P ( P )  
is not always coherent. 

EXAMPLE 3.2. Let P be the program 

{a V b ~ not a}. 

Then its NLP-transformation becomes 

N L P ( P )  = {a *--- not a, b ~- not a}. 

Here 87"p = {{b)),  w h i l e  S~TNLp(p) = O. 

Conversely, there is an incoherent program whose NLP-transformation has a stable 
model. 

EXAMPLE 3.3. Let P be the program 

{aVb#- - ,  b ~ a ,  ~ n o t a } .  

Then STp  = 0, while STNLt,(p) = {{a, b)).  

We say that a normal disjunctive program P is weakly coherent if either P or N L P ( P )  
has a stable model. Clearly, a coherent program is also weakly coherent, but not vice 
versa. 

DEFINITION 3.2. Let P be a weakly coherent normal disjunctive program. Then 
W G C W A ~ ( P )  is defined as 

W G C W A ' ( P )  = {-~A [ A E 7-lBp and A ~ I for any I E ST"p U STNLp(p)}.  

This definition is natural in the sense that W G C W A "  (P) restricts its negative infer- 
e n ~  like the WGCWA by taking into account the stable models of N L P ( P ) .  A similar 
extension is also given in [8] in a different context. Note that in the above definition, 
one may consider that by analogy with the WGCWA, considering ST"NLp(p) is enough 
instead of ~q"1"p U 8"l"NLP(p). But this is not the case. For instance, let P = {a V b *---, 
c ~-- not a, e *-- not b}. Then 8Tp  = {{a, c}, {b, c}); hence G C W A - ' ( P )  does not 
imply --,c. On the other hand, N L P ( P )  = {a #--, b ~ ,  c *-- not a, c *-- not b}; then 
S~TNLP(p) = {{a, b}), which implies ~c. Thus, without STp,  the W G C W A  TM is not 
weaker than the G C W A  ~ anymore. 

The PWA is also extended in normal disjunctive programs as follows. 
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DEFINITION 3.3. Let P be a p-coherent normal disjunctive program. Then P W A  ~ (P) 
is defined as 

P W A " ( P )  = {-,A [ A E 7-lBp and A 9~ I for any I E p .h jp) .  

Now we investigate the properties of each rule. In the following, we write P ~ST A 
(resp. P ~PM A) if A E I for any I E 8Tp (resp. I E ~o.A4p). 

THEOREM 3.4. Let P be a normal disjunctive program and A be a ground atom. Then 
the following properties hold. 

1. O) I f  P is coherent, P O G C W A " ( P )  is coherent. 

(ii) P ~ST A iff P U G C W A " ( P )  ~ST A. 
(iii) P C_ P' does not imply GCWA-'(P')  C_ GCWA"(P) .  

(iv) For a positive disjunctive program P, G C W A "  ( P) = GCWA(  P ). 

2. (i) I f  P is weakly coherent, P U W G C W A " (  P) is weakly coherent. 

(ii) P ~ST A iff P U W G C W A " ( P )  ~ST A. 
(iii) P C P' does not imply W G C W A " ( P ' )  C W G C W A " ( P ) .  

(iv) For a positive disjunctiveprogram P, W G C W A ' ( P )  = W G C W A ( P ) .  

3. (i) l f  P is p-coherent, P U P W A ~ ( P )  is p-coherent. 

(ii) P ~PM A i f fP  U PWA'~(P) ~VM A. 
(iii) P C P' does not imply P W A ' ( P  ') C P W A ' ( P ) .  

(iv) For a positive disjunctive program P, P W A ' (  P) = P W A (  P). 

Proof. 1. (i) Since P is coherent, it has at least one stable model and every negated 
atom in G C W A " ( P )  is not in any stable model of P;  hence P t3 GCWA'~(P) is 
coherent. (ii) Any negated fact included in GCWA~(P)  is not included in any stable 
model. Then adding such negative facts to P does not affect the construction of stable 
models. Hence the result follows. (iii) The G C W A  ~ is nondecreasing since the G C W A  ~ 
includes the GCWA (by (iv)) which is nondecreasing. (iv) Since stable models reduce to 
minimal models in a positive disjunctive program, the result immediately follows. 

2. 0) When P is weakly coherent, every negated atom in W G C W A ~ ( P )  is not 
included in any stable model of P and NLP(P).  Hence P 12 W G C W A ' ( P )  is also 
weakly coherent. (ii) The result also follows from (i). (iii) For nondecreasing property 
of W G C W A ' ( P ) ,  see Example 3.4. (iv) Since STy U STNLp(p) reduces to M A 4 p  [A 
{MHorn(V)) in a positive disjunctive program P,  and each minimal model in .M./k4v is 
a subset of MHorn(P), the result also holds. 

3. (i) and (ii) follow directly from the definition. (iii) The P W A  ~ is nondecreasing 
since the P W A "  includes the PWA (by (iv)), which is nondecreasing. (iv) Since possible 
models in a normal disjunctive program reduce to those presented in the preceding section 
in a positive disjunctive program, the result immediately follows. [] 

Notice that in contrast to the WGCWA, the WGCWA" is nondecreasing. 
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EXAMPLE 3.4. Let P be the program 

{ a V b ~--- not e, e*--d} 

and Pt = P LI {d *--}. Then, S'/'p 1,3 ST"NLp(p) = {{a}, {b}, {a, b)} and STp; U 
ST"NLp(p,) = {{C, d}). Hence, WGCWA'(P)  = {",c,-~d), while WGCWA' (P  ') = 
{-~a, ~b}. 

Thus, in the presence of negation as failure in a program, the monotonic decreasing 
property of the WGCWA does not hold anymore. 

For coherent normal logic programs, the three rules coincide. 

PROPOSITION 3.5. Let P be a coherent normal logic program. Then, GCWA~( P) = 
WGCWA"(P) = PWA"(P). 

Proof. For a coherent normal logic program P, STp tO 3" fNLP(p )  = S"l 'p. Then 
the relation GCWA"(P) = WGCWA"(P) holds by each definition. The relation 
GCWA'(P)  = PWA' (P)  also holds since STp = 79A4p holds for a coherent normal 
logic program P.  [] 

The next theorem presents the relationship among three rules in normal disjunctive pro- 
grams. 

THEOREM 3.6. Let P be a coherent normal disjunctive program. Then, 

O) WGCWA-'(P) C_ GCWA~(P). 
(it) PWA~(P) C_ GCWA~(P). 

Proof. Since ST-p C_ ST"p I..JS~rNLP(p) , (i) follows from definitions. The part (ii) also 
follows from the fact that ST"p C_ 7~.hctp. [] 

As for the WGCWA" and the PWA", there is no inclusion relationship. 

EXAMPLE 3.5. Consider the program 

P =  {aVbVe*--notd,  e*--aAbAnote}.  

Then ST"p = {{a), {b}, {c)},ST/'NLP(p)- ({a, b, c)} and WGCWA~(P)= {-~d, "~e), 
while 7~.Mp = {{a), {b), {c), {a, b, e), {b, c), {e, a}, {a, b, c}) and PWA~(P) = {-~d}. 
Hence, WGCWA~(P) q£ PWA~(P). The converse inclusion relation does not hold 
by Theorem 2.8 either, since each rule reduces to the WGCWA or the PWA in positive 
disjunctive programs. 

In the above example, WGCWA"(P) treats the disjunction a V b V c inclusively; then 
it infers ~e. This is also the case for GCWA'(P),  which treats it exclusively. On the 
other hand, there is the possible model {a, b, e} in which a and b are inclusively true 
and c is exclusively false at the same time; then ~e is not inferred by PWA~(P). 
This example illustrates that the possible model semantics also properly treats both types 
of disjunctions in normal disjunctive programs and provides the most careful negative 
inference compared with the other two. 

Moreover, the PWA" can often infer proper negation even in an incoherent program. 
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EXAMPLE 3.6. Let P be the program 

{aVb,,---, b~---a, ~ - n o t a ,  e~---notb). 

Then ST"p = @, S ' T N L P ( p )  "- {{a, b)} and ~o A/[p = {{a, b));  hence G C W A - ' ( P )  is 
not well defined, while P W A " ( P )  and W G C W A " ( P )  imply -~c. 

The above program is incoherent, but p-coherent, since {a, b} is a possible model of 
P which is not a stable model. Observing the above program, the third clause asserts 
that a should be true, which possibly holds by the first disjunctive clause. Also the truth 
of a implies the truth of b in the second clause, then it seems natural to assert the falsity 
of e by the last clause. 

As shown in the above example, the disjunctive stable model semantics often fails to 
capture the intended meaning of a program because of its minimal feature. By contrast, 
the possible model semantics is well defined whenever a stable model exists, and is often 
useful than the disjunctive stable model semantics thanks to its nonminimal nature. 

4. C o m p u t i n g  Poss ible  Models  

4.1. BOTIOM-UP MODEL GENERATION PROCEDURE 

The algorithm we use to compute possible models in disjunctive programs is based on 
a bottom-up model generation proof procedure. We assume here and in the subsequent 
subsections that a program is function-free and range-restricted, that is, any variable in 
a clause has an occurrence in a positive atom in the body. Such conditions are usually 
imposed on a program in the context of deductive databases. 

The following algorithm computes a set of interpretations of a positive disjunctive 
program from a given set of interpretations. Let P be a positive disjunctive program and 
2"~, be a set of  interpretations of P.  Let 2"o = {@). For i/> 0, do the following: 

1. For any I E 2"~, for every clause C'k in P of the form: 

Ck: A 1 V  " " V A~ ~ B1A  " " A Bm (1>11) 

such that I # (B1A" .ABe) o- for some ground substitution e, put I tAUck{Aj tr  } 

into 2"/,0 +1 for every j = 1 , . . . ,  I. 

2. For any I E 2-/p+a, if there is an integrity constraint in P of the form: 

*-- B 1 A ' " A B m  

such that I ~ (B1 A . .  • A Bin) tr for some ground substitution tr, then remove I 
from 2"j~ +1. 

3. Iterate the above two steps until it reaches the fixpoint Z~ +1 = Z~, which is closed 
under the above two operations. 
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In Step 1, the above procedure generates the new set of interpretations 27j+1 f rom 
the given interpretations 27~ by performing forward reasoning based on hyperresolution 
and case-splitting on nonunit derived clauses. In Step 2, interpretations which do not 
satisfy integrity constraints in the program are pruned. Note here that since a program 
is range-restricted, each disjunct Aye generated in Step 1 is always ground. Hence, the 
soundness for unsatisfiability by case-splitting is guaranteed [22]. Moreover, since we 
consider a finite function-free program, the above procedure always terminates in a finite 
step. 

EXAMPLE 4.1. Let P be the program 

{aVb*--c ,  d*---c, c*---, e*--b, ~ b A e } .  

Then,  

270 = (0} ,  

= ( ( c } ) ,  
= 

27~-- {{c,d,a},{c,d,a,b}},  

= d, a} ,  a, b}} ,  

where 27~ (= 27~) is the fixpoint. 

In the above example, {c, d, a} and {c, d, a, b} in 27 3 and 27~ are generated from {c, d, a} 
by the first clause. On the other hand, {c, d, b, e} is generated from {c, d, b} in 27~ but is 
pruned by the integrity constraint *--- b A e. 

Now we characterize the possible model semantics using the algorithm presented 
above. Let 27ag be the fixpoint closure obtained by the above procedure and 7- be the 
function such that  27~+1 = 7-(27~). 

LEMMA 4.1. Let P be a positive disjunctive program. Then I is a model of P iff 
I 6 7-({I}). 

Proof. I is a model of P iff for each disjunctive clause Aa V. • .VAI ~ B1A. • oA Bm 
in P, I ~ ( B 1 A . . .  A Brn)~' implies I ~ Aia for some Ai (1 ~< i ~< l) and a ground 
substitution a, and for any integrity constraint ~ B1A.. "ABm in P, I ~ (B1A...ABm)cr 
iff 1 6 7 - ( { I } ) .  o 

Now let #(27g) = { I I I  6 27~, and I E 7-({I})}. 

THEOREM 4.2. Let P be a positive disjunctive program. Then, 

P M p  = ~(Z~). 

Proof. I is in #(Z~,) 

iff I is included in Z~ and is a model of P (by Lemma 4.1) 
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iffeach Ai in I is obtained from a ground disjunctive clause AIV. • .VAt ~ B1A. • "ABm 
(1 x< i x< l) from P by hyperresolution and case-splitting, and I satisfies every 
integrity constraint in P 

iff I is the least Herbrand model of  a consistent split Horn logic program P, of P and 
each Ai in I is derived by the split clause Ai *-- B1 A . . .  A Bm in P,  

iff I is in ~O h~p. [] 

COROLLARY 4.3. A positive disjunctive program P is inconsistent iff #(Z~) = 0. 

EXAMPLE 4.2 (cont. from Example 4.1). Z~ = {{c, d, a}, {e, d, a, b)} and #(Z~) = 
((c, d, a)}.  Thus, ~ 'Mv = ({c, a, ~}}. 

By Proposition 2.5, the following result directly follows. 

COROLLARY 4.4. Let P be a positive disjunctive program. Then, 

M M v  = ~ n  0 , (Z~)) ,  

where min(#(Z~)) = { I  E #(I~,) l]]J E #(Z~) such that J C I}. 

For each negative inference rule, the following results hold. 

THEOREM 4.5. For a consistent positive disjunctive program P and a ground atom A, 

O) GCWA(P)  ~ "~A iff A ¢ I for any I e min(#(Z~)).  

(ii) W G C W A ( P )  ~ "~A iff A • I for I e Z~orn(p ). 

(iii) P W A ( P )  ~ - A  iff A qL I for any I E #(Z~,). 

Proof. (i) and (iii) directly follow from each definition and Theorem 4.2 and Corol- 
lary 4.4. Since ~'~--Iorn(P) contains a unique element that is the least Herbrand model of 

Horn(P), (ii) also follows from the definition of the WGCWA. [] 

4.2. PROGRAM TRANSFORMATION 

In this subsection, we present a method of computing possible models in normal disjunc- 
tive programs. To this end, we first introduce a program transformation that translates a 
normal disjunctive program into a semantically equivalent positive disjunctive program.* 

DEFINITION 4.1. Let P be a normal disjunctive program. Then its epistemic transfor- 
mation is defined as the positive disjunctive program PS obtained from P by transforming 
each clause of the form (2) in P containing not: 

A1V .. .  V At ~- B1A . . .  A Bm A not Bm+l A • .. A not Bn (m ~ n) 

* A similar transformation is also presented in [17, 18] in different contexts. 



ALTERNATIVE SEMANTICS OF DIS~YNCIIVE LOGIC PROGRAMS 161 

into the fol lowing not-free clauses in P~ :  

.~IV . . . V . ~ I  V K B m + I  V " " V  KBn * - - B 1 A ' " A B m ,  

Ai~- ' )q  f o r i =  1 , . . . , 1 ,  

~ - A i A B j  f o r i = l , . . . , l a n d j = m + l , . . . , n ,  

h i ~ - - A i A A k  f o r i =  1 , . . . , l a n d  k =  1 , . . . , 1 .  

In particular, each integrity constraint containing not is transformed into 

KBm+I  V • " V K-Bn ~'- B1 A • • • A Bin. 

Note here that each not-free clause in P is included in P~  as it is. 

(3) 
(4) 
(5) 
(6) 

In the epistemic transformation, the newly introduced atom K_Bj means that Bj is 
believed. With this epistemic reading, each negation-as-failure formula not Bj in the 
body o f  a clause is rewritten in -~KBj and shifted to the head of  the clause. In the 
transformed clause, ,Xi is a newly introduced atom not appearing elsewhere in P and is 
uniquely associated with each ground instance of  a clause (2) from P.* 

An  intuit ive reading of  the transformed clauses is that if  B1, • • . ,  Bm are true, then 
some Ai (1 ~< i ~< l) becomes true via Ai when Bin+l , . . . ,Bn  are not true; otherwise, 
some Bj  (m + 1 ~< j .<, n) is believed. The clause (6) has an effect to associate Ai 
with Ai whenever  Ai is true and another disjunct Ak is derived from (3) via Ak.** In 
this way, every normal disjunctive program P is transformed into a posit ive disjunctive 
program p x .  Then its model  generation procedure has already been defined. 

Let I X be an interpretation o f  p x .  Then I x is called canonical if K A  E I X implies 
A E I X for any atom A in 7"/Bp. That is, in a canonical interpretation each believed 
a tom has a justification. Given a set o f  interpretations Zp, ,  let 

objc(Zp~) = { I  x AT-[13p I I ~ E Zp~ and I ~ is canonical}. 

For the disjunctive stable model semantics, the fol lowing results hold. 

THEOREM 4.6. Let P be a normal disjunctive program and px  be its epistemic trans- 
formation. Then, 

STp = obj¢( min (#(Z~,. )) ). 

In particular, P is incoherent iff objc(min(p(Z~)) ) = 0. 
Proof. See Appendix.  

COROLLARY 4.7. Let P be a normal logic program. Then, 

s -p = )). 

* If a clause contains n distinct free variables x = Xl , . . . ,  Xn, then a new atom Ai(x) can be associated 
with each Ai, where hi is an n-ary predicate symbol appearing nowhere in P :  

In case of l = i, the clause (6) becomes a tautological clause A ~-- A A A, and hereafter we will omit 
such a clause in P'*. 
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Proof. See Appendix. [] 

The next theorem states that the possible model semantics of a normal disjunctive 
program can be computed by the fixpoint closure of the transformed program. 

THEOREM 4.8. Let P be a normal disjunctive program. Then, 

7 'M~ = objo (p(Z~,)). 

In particular, P is p-incoherent iff obje(p(Z~,, )) = 0. 
Proof. Let I be a possible model of P.  Then I is a stable model of some coherent 

split normal logic program Ps of P.  By Corollary 4.7, for the transformed program P~ 
of Ps, I is in obje(laCT.~,, )). Since Ps is a program obtained by splitting each disjunctive 
clause in P,  every interpretation included in Z~, is also obtained by case-splitting during 
the computation of Z~. .  Moreover, since I satisfies each integrity constraint in P~, it 
also satisfies the same integrity constraints in P~. Hence I is also in obje(#(Z~,~)). The 
converse is also shown in the same manner. [] 

For each negative inference rule, the following results hold. 

THEOREM 4.9. Let P be a normal disjunctive program and A be a ground atom. 

O) For a coherent program P, GCWA~(P) ~ -,A iff A ¢ I for any 
I E objc(min(y(Z~,,))). 

(ii) For a weakly coherent program P, WGCWA"(P)  ~ -~A iff A ¢ I for any I E 
obj~(min(p(Z~,. ) ) ) U objc(l~(Z~ze(p). )). 

(iii) For a p-coherent program P, P W  A"( P) ~ -~A iff A • I for any I e obj¢(#(Z~,. )). 
Proof. (i) and (iii) directly follow from Theorems 4.6 and 4.8. (ii) also follows from 

Corollary 4.7 and the definition of the WGCWA". [] 

EXAMPLE 4.3. (cont. from Example 3.1) The program 

P =  { a V b ~ ,  b*--a, c ~ n o t a }  

is transformed into the epistemic form 

P ~ = { a V b ~ ,  b~--a, A V K a ~ ,  e ~ A ,  ~ A A a } .  

Then it becomes 

#CT.~,.) = { {a,b, Ka}, {b, Ka}, {b,c,A}, {b,c,A, Ka)}. 

Thus, 

obj,(p(Z~,,)) = {{a,b), {b,c}}, 

which contains the possible models of P .  On the other hand, 

{{b, Ka}, {b, c, 
hence, 

obj~(min(p(:T.~,~))) = {{b,c)},  

which coincides with the stable model of P.  
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As noticed in the preceding section, stable models are not necessarily minimal possible 
models. However, the above example shows that we can compute stable models exactly 
by computing the minimal set of the closure #(2"~, ) before applying the operation objc(.). 

4.3.  QUERY ANSWERING 

In this subsection, we address an application of the previously presented algorithm to 
query answering under the possible model semantics in normal disjunctive programs. 

A query we consider here is the following form: 

Q(x)  ~ B1 A . . . A  Bm A notBm+l A . . . A  not Bn, (7) 

where (7) is a function-free range-restricted normal clause and x represents variables 
appearing in the body of the clause. An answer to the query is a ground substitution tr 
for variables in Q(x).  In particular, if Q contains no variable, cr is the empty substitution. 

For a given normal disjunctive program P,  let PQ be a program obtained from P by 
adding a query of the form (7). Then, the query is true in P under the possible model 
semantics if  for every possible model I of PQ there is an answer ~r such that Q(x)~  is 
included in I .  Else if for some possible model I of PQ there is an answer tr such that 
Q(x)tr is included in I ,  a query is possibly true. Otherwise, if there is no such answer, 
a query is false. By Theorem 4.8, the following results hold. 

THEOREM 4.10. Let P be a normal disjunctive program and Q be a query. Then, 

(i) Q is true in P ifffor any I E obje(l~(Z~,~)), Q(x)cr E I for some cr. 

(ii) Q ispossibly true in P iff for some I E objc(#(Z~)) ,  Q(x)~ E [ fo r  some ~. 

(iii) Q is false in P ifffor any I E objc(#(Z~ )), Q(x)cr q~ I for any ~. 

EXAMPLE 4.4. Let P be the program 

{v(a) V p(b) }. 

Then, ql(X) ~-- p (X)  is true, q2 *-- p(a) is possibly true, and q3 ~ p(c) is false. 

By using Theorem 4.6 instead, the above result is also applicable to query answering 
under the disjunctive stable model semantics. 

5. Computational Complexity 

In a propositional positive disjunctive program, a minimal model exists whenever the 
program is satisfiable. Then the complexity of deciding the existence of a minimal mod- 
el is NP-complete. Also, an atom is a logical consequence of a propositional positive 
disjunctive program whenever its negation is unsatisfiable in the program, so deciding 
whether a given atom is included in every minimal model is coNP-complete. Since 
the possible model semantics coincides with the minimal model semantics for positive 
inference, those complexity results also hold for the possible model semantics in propo- 
sitional positive disjunctive programs. On the other hand, it is known that the complexity 
of deciding whether a given atom is included in some minimal model is ~ -comple te ,  
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and thus inferring negation under the GCWA is II~-complete [10]. By contrast, Chan 
[4] has shown that, in a propositional positive disjunctive program, inferring negation 
under the WGCWA or the PWA is still coNP-complete. In particular, in the absence of 
integrity constraints both the WGCWA and the PWA are tractable. 

These observations tell us that the possible model semantics has the computational 
advantage over the minimal model semantics for inferring negation, since it does not 
increase the complexity more than the classical propositional entailment. Moreover, as 
shown in Section 2, since the PWA is more intuitive than the WGCWA, it is concluded 
that the possible model semantics is the best choice among others from both the reasoning 
and computational points of  view. 

In this section, we prove that the complexity results for the possible model semantics 
is still within (co)NP, even in normal disjunctive programs. We show this fact by trans- 
forming possible models in a normal disjunctive program into stable models in a normal 
logic program. 

DEFINITION 5.1. Let P be a normal disjunctive program. Then the pm-transformation 
transforms P into the normal logic program p ( P )  which is obtained from P by replacing 
each disjunctive clause 

A1 V . . . V A I  *- I '  

in P with the following normal clauses and an integrity constraint: 

A i * - F A n o t A ~  for i =  1 , . . . , l ,  

A ~ - - F A n o t A i  for i = l , . . . , l ,  

in p (P ) ,  
atom not 

(8) 

(9) 
(10) 
(11) 

where I'  denotes a conjunction in the body of the clause and each A~ is a new 
appearing in P and is uniquely introduced for each Ai in 7"/B/,. 

The intuitive meaning of the pm-transfonnation is that when Ai becomes true by the 
disjunctive clause (8), we can make it true also by the corresponding normal clause (9) 
in ~o(P) by assuming that its complementary atom A~ is not true. Else when Ai does 
not become true by (8), we will make A~ true by assuming that Ai is not true in the 
corresponding normal clause (10) in p (P) .  The condition (11) states that when F is 
true, every A~ cannot become true at the same time, that is, at least one Ai should be 
true. Thus, the transformed clauses represent every possible selection of disjuncts from 
the disjunctive head of the clause, which exactly characterizes every set of split clauses 
of (8). 

Now we show that there is a one-to-one correspondence between the possible models 
of P and the stable models of  p (P) .  We first present a preliminary lemma. 

LEMMA 5.1. Let P be a normal disjunctive program. Then M is a possible model of 
P iff M is a possible model of pM. 

Proof. M is a possible model of P 

iff M is a stable model of some split normal logic program Ps of P 
iff M is the least Herbrand model of  p M  
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iff M is the least Herbrand model of some split Horn logic program p M  of pM 
iff M is a possible model of  pM. [] 

THEOREM 5.2. Let P be a normal disjunctive program and p( P) be its pro-transfor- 
mation. Then ~ . M p  = Sq-~(p) M T"lBp holds, where ST~(p) M ~Bp = {I M ~13p ] I 

Proof. (i) First we show that P.h4/, - 8Tp(p) M~B/,  holds for a positive disjunctive 
program P.  Let M be a possible model of a positive disjunctive program P.  Then M 
is the least Herbrand model of a split program Ps of P.  In this case, M is also the 
least Herbrand model of  a program in which each disjunctive clause (8) in P is replaced 
with its split clauses {Ai *--- I" I Ai E M fl { A I , . . . , A t ) ) .  Now let us consider a Horn 
logic program Psi which is obtained from P by replacing each disjunctive clause (8) with 
clauses of {Ai ~ r I A, e M M {A1, . . . ,  At)) U {A~ - -  P I Aj E {A1 , . . . ,  At) \ M ) .  
Let M t be the least Herbrand model of Pst. Then clearly M = M ~ M ~ B p  holds. Here 
such a program P~ together with the integrity constraint (11) coincides with the program 
p(p)M'. Since M ~ F implies at least one Ai E M, M t satisfies the condition (11). 
Then M' is also the least Herbrand model of p ( p ) M ' ,  hence a stable model of ~(P) .  

Conversely, let M be a stable model of o (P) .  Since M satisfies the condition (11), 
M ~ F implies that at least one of the clauses (9) becomes Ai ~- F in p (p )M,  
and for each such clause M ~ I' implies Ai E M. In this case, there is a split pro- 
gram Ps of P in which each disjunctive clause (8) is replaced with its split claus- 
es {Ai ~ F [ Ai E M M { A I , . . . , A ~ ) } .  Since M is the least Herbrand model of 
p ( p ) M ,  M n 7-/Bp is also the least Herbrand model of P, ,  hence a possible model of 
P .  

(ii) Next we show that 79.Mp = STt~(p ) M 7"(Bp holds for a normal disjunctive pro- 
gram P.  Let M be a possible model of a normal disjunctive program P.  By Lemma 5.1, 
M is also a possible model of  a positive disjunctive program pM. Then, by (i), there 

t M is a stable model M of p ( P  ) such that M = M ~MT/BP, which is also the least 
Herbrand model of p(pM)M'. Since o(pM)M' p(pM')m' = p ( p ) M ' ,  M '  is also a 
stable model of ~o(P). 

Conversely, let M be a stable model of p (P) .  Then M is the least Herbrand model of 
p(p)M. Since ~o(P) M = p(pM)M, M is also the least Herbrand model of p(pM)M, 
and a stable model of p(pM). Then, by (i), M f'lT-/Bp is a possible model of pM. Since 
pM = pMnT-lt3p, M n 7tBp is a possible model of P by Lemma 5.1. [] 

The above theorem presents that the possible models of any normal disjunctive pro- 
gram are expressed by the stable models of the corresponding transformed normal logic 
program. 

For the stable model semantics in propositional normal logic programs, it is known 
that the problem of existence of a stable model and the problem of membership of an 
atom in some stable model are both NP-complete, while the problem of membership of 
an atom in every stable model is coNP-complete [26, 27].* We use this fact to show the 
computational complexity of the possible model semantics. 

* In [26, 27], integrity constraints are not included in a program. However, a program containing integrity 
constraints is easily reducible to the one without them by rewriting each integrity constraint *--- G by the 
normal clause false *-- G. 
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TABLE I. Complexity results for disjunctive programs 

Program Semantics Complexity 

Positive DLP minimal model (GCWA) Fl2P-complete 
WC_rCWA coNP-complete 
possible model (PWA) eoNP-eomplete 

Normal DLP disjunctive stable model (CrCWA") I-IV-complete 
WGCWA" rI2P -complete 
possible model (PWA "~ ) eoNP-complete 

THEOREM 5.3. Let P be a propositional normal disjunctive program. Then, 

O) Deciding the existence of a possible model of P is NP-complete. 
(ii) Deciding whether an atom is true in some possible model of P is NP-complete. 

Off) Deciding whether an atom is true in every possible model of P is coNP-complete. 

Proof. Since possible models coincide with stable models in normal logic programs, 
each decision problem under the possible models semantics is (co)NP-hard. To see that it 
is in (co)NP, note that the pro-transformation efficiently translates each decision problem 
for possible models into the corresponding problem for stable models, which is in (co)NP; 
then the membership in (co)NP follows. [] 

COROLLARY 5.4. Inferring negation under tile PWA" /s coNP-complete. 

It is known that the decision problems for the disjunctive stable model semantics is X] P- 
complete for the existence problem and the membership problem for some stable model, 
and UP-complete for the membership problem for every stable model [10]. Then the 
following result also follows from the definition. 

COROLLARY 5.5. Inferring negation under the G C W A "  or the W G C W A "  is both 
II V2 -complete. 

The complexity results for disjunctive programs are summarized in Table I. 
These results show that the frameworks based on the minimal/disjunctive stable model 

semantics introduce an additional source of complexity for minimality-checking, while 
this is not the case for computation of possible models due to its nonminimal feature. 

We have already seen in the preceding sections that the possible model semantics can 
provide flexible reasoning mechanisms compared with the minimal/disjunctive stable 
model semantics thanks to its nonminimal nature. The results of this section present that 
this unique feature of the possible model semantics also brings a computational advantage 
over those minimal model-based semantics. 

6. Related Work 

6.1. DECLARATIVE SEMANTICS 

The minimal model semantics of positive disjunctive programs was first introduced by 
Minker [24] and extended by Przymusinski [28] to the perfect model semantics for 
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(locally) stratified disjunctive programs. Further extensions to normal disjunctive pro- 
grams have been done in the context of the stable model semantics [29] and the well- 
founded semantics [33, 30, 2]. As nonminimai model approaches, Ross and Topor [34], 
and Rajasekar et al. [32] have proposed the DDR and the WGCWA as a counterpart 
of the GCWA. However, they present only negative inference in inclusive disjunctive 
programs and do not provide any model theoretical meaning for such programs. Ross 
and Topor also suggest in their paper the usage of integrity constraints to distinguish 
exclusive disjunctions from inclusive ones, but they give no semantics for such pro- 
grams. To characterize the meaning of inclusive disjunctive programs, Dix [8] presents 
the weak perfect/stationary model semantics for normal disjunctive programs without 
integrity constraints. However, these weak semantics have some drawbacks compared 
with the possible model semantics. First, the weak semantics cannot represent exclusive 
disjunctive programs. Second, the weak semantics do not work well in the presence of 
integrity constraints. For example, in Example 2.1 the weak semantics of the program 
is given by A4A4p t_J {MHo~n(P)} = {{a}, {b}, {c}, {a, b, c, d, e}), but as noted there, 
{a, b, c, d, e} is not a model of P. Then, if we choose models satisfying the constraint and 
give the meaning of P by {{a}, {b}, {c)}, it cannot represent the inclusive disjunction 
a V b anymore. 

To treat both exclusive and inclusive disjunctions, Ross [33] has proposed the opti- 
mal well-founded semantics, which can distinguish two types of disjunctions in normal 
disjunctive programs. However, his semantics requires each rule to be clarified whether 
it is exclusive or inclusive, and it cannot treat a disjunctive clause containing hybrid 
disjunctions as presented in the introductory example. Dung [9] has also presented a 
completion theory of negation, which can distinguish two types of disjunctions in a pro- 
gram. However, it is defined for only positive disjunctive programs and also cannot treat 
hybrid disjunctions in a program. Przymusinski [30] suggests that his stationary seman- 
tics can also treat two types of disjunctions by altering the GCWA and the WGCWA 
during the construction of completions of disjunctions, while it seems impossible to treat 
disjunctive clauses containing hybrid disjunctions. Gelfond [16] has developed an epis- 
temic theory for disjunctive programs and provided a flexible mechanism for inferring 
dosed world negation. However, his approach is based on modal logic and is different 
from our object-level approach. 

Recently, Eiter et al. [11] have introduced a circmnscriptive approach for inclusive 
disjunctions in a first-order theory. Their good models provide a model theoretical coun- 
terpart of inclusive interpretation of disjunctions. However, in contrast to our approach, 
their Curb theory is defined for a first-order theory and is classical in its nature. For 
instance, {a, b} is a possible model of the program {a V b *--, a ~---) as presented in 
Section 2, while they identify the above program with {a ~---} and {a) is the unique 
good model. In this sense, their approach is syntax-independent and different from our 
syntax-dependent logic programming approach. Moreover, their Curb theory is defined 
for a first-order theory and its application to logic programming is limited to positive 
disjunctive programs. 

The possible model semantics was also independently discovered by Chan [4] under 
the name of the possible world semantics. It was also discovered by Decker [6] under 
the name of the sustained model semantics. Decker and Casamayor [7] have also shown 
that their sustained world assumption, which corresponds to the PWA, satisfies the prop- 
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erties such as cautious monotonicity, cumulativity and rationality in the sense of  [20]. 
These works have characterized the possible model semantics from different viewpoints, 
while they consider only positive disjunctive programs; extensions to normal disjunctive 
programs are not studied in the literature. 

To distinguish two types of  disjunctions, one may consider that instead of inserting 
integrity constraints, inserting cyclic clauses under the usual minimal model semantics is 
enough to interpret inclusive disjunctions. But this is not the case. Consider interpreting 
the disjunction a V b inclusively by adding cyclic clauses a *--- b and b ~-- a to it. The 
resultant program now implies the equivalence a ¢=~ b. Applying it to the introductory 
example, we obtain land-animal ¢==~ aquatic, which is of course not our intention. 

We have used integrity constraints to distinguish exclusive disjunctions from inclusive 
ones. Then if one wishes to simulate the GCWA under the PWA, it is enough to insert 
integrity constraints for each exclusive disjunction. Such a simulation is discussed in [4]. 

6.2. PROOF PROCEDURE 

Fernandez et al. [13] develop a model generation procedure for computing minimal and 
stable models of dicjunctive logic programs using a similar program transformation to 
ours. Compared with their approach, our algorithm is designed for computing not only 
minimal/stable models but also possible models and is easily realizable in a nondeter- 
ministic or-parallel environment like [17]. The model generation procedure presented in 
this paper might be considered as a variant of  SATCHMO [22] or MGTP [17], but these 
procedures are designed to compute minimal/stable models and are different from ours. 
For computing possible models, Chan [4] presents a different procedure that, given a 
positive disjunctive program P and its model M, finds a subset of M that is also a 
possible model of  P .  

We have also presented a method of using a bottom-up procedure to evaluate queries 
under the possible model semantics. However, this method is somewhat naive in the sense 
of [3] and might need some compilation technique in the presence of huge databases. 
As an alternative approach, in the preceding section we have presented that possible 
models of  a normal disjunctive program can be expressed in terms of stable models 
of  a normal logic program by using the pro-transformation. This means that, using the 
pm-transformation, a top-down proof procedure for the stable model semantics of normal 
logic programs can also be used as a procedure for the possible model semantics of normal 
disjunctive programs. For instance, Eshghi and Kowaiski's abductive proof procedure [ 12] 
is known to be correct with respect to call-consistent normal logic programs.* Since the 
pro-transformation preserves the call-consistency, the abductive procedure is also used as 
a proof procedure for the possible model semantics. For positive disjunctive programs, 
yet other top-down procedures are developed in [35, 6, 7]. 

7. Conclusion 

In this paper, we have introduced the possible model semantics for positive and nor- 
real disjunctive programs, which is an alternative nonminimal model approach to the 

'~ Informally speaking, a normal logic program is call-consistent if it contains no self-recursive predicate 
through an odd number of negation. For a more precise definition, see [38] for instance. 
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declarative semantics of logic programming and deductive databases. The possible mod- 
el semantics gives a uniform framework to treat both inclusive and exclusive disjunctions 
in a program, and provides a flexible negative inference mechanism compared with the 
previously proposed closed world assumptions. 

For computing possible models, we have presented a bottom-up model generation 
proof procedure for positive and normal disjunctive programs. The procedure is sound 
and complete with respect to the possible model semantics as well as the minimal/stable 
model semantics in function-free range-restricted programs. We have also shown that the 
possible model semantics has a computational advantage over the minimal/stable model 
semantics. 

In normal disjunctive programs, we have defined the possible model semantics based 
on the stable model semantics. However, since its definition is given through the set of 
split normal logic programs, it is easy to construct another version of the possible model 
semantics based on any semantics of normal logic programs other than the stable model 
semantics. In this sense, the possible model semantics presented in this paper provides 
a fairly general framework independent of any specific semantics. In other words, it 
establishes the principle of possibilism as a semantical counterpart of the traditional 
minimalism, which contributes to enriching our perspectives for commonsense reasoning 
in logic programming and artificial intelligence. 

The possible model semantics presented in this paper is also directly extensible to 
disjunctive logic programs with classical negation [15]. Moreover, recent studies have 
revealed that the possible model semantics is also useful for abductive reasoning in logic 
programming [37] and has a close relation to autoepistemic logic [19]. 

Appendix 

Here we present the proofs of Theorem 4.6 and Corollary 4.7. 

THEOREM 4.6. Let P be a normal disjunctive program and P~ be its epistemic trans- 
formation. Then, 

S ~  = obj.( rain (~(Z~.)) ). 

In particular, P is incoherent iff obje(min(#(Z~,. ))) = O. 
Proof. Suppose that I is in objc(min(#(Z~,.))). Let I x be a canonical interpretation 

in min(p(2[~,)) such that I x n 7-(Bp = I. Then, for each ground clause of the form (2) 
from P, { B 1 , . . . , B m )  C I x implies either (i) 3Ai E U (1 <. i ~ l), Ai E I x, and 
{Bin+l , . . . ,  Bn)  71U = 0 or (ii) 3KBj E I x (m + 1 <. j <. n) by (3), (4), and (5).* 

In case of (i), {Bin+l, • • •, Bn) M U = 0 implies {Bin+l , . . .  Bn ) M I = 0- Then there 
is a clause of the form 

A1 V...VAI ~-- B1 A...A Bm (*) 

in pI .  Since { B 1 , . . . , B i n )  C I x and Ai E I x implies {B1 , . . . ,B in}  C I and A i e  I, 
I satisfies the clause (*) in pI .  In case of (ii), since I x is canonical, 3KBj E I x implies 
Bj E I x, and thus Bj E I. In this case, the clause (*) is not included in p l .  Thus, in 
both cases, I satisfies every clause in p l .  

'~ When (2) contains no not, {B1 . . . . .  Bin) C_ I ~ implies Ai E I ~ (I ~ i ~ l) as a special case of (i). 
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Suppose that there is an interpretation J such that (a) d C I and (b) J satisfies 
each clause from p I .  Then, two conditions (a) and Co) are satisfied only if there is a 
clause (*) such that {B1 , . . . ,B-n}  C d and for some two atoms Ai, and Ai2 (1 ~< 
it, i2 <~ l; it # i2), Air E J but A;2 E I \ J .  Without loss of generality, we can assume 
that just one such clause exists in p I .  Since I does not contain atoms B m + l , . . . , B n ,  
the corresponding canonical interpretation I ~ does not contain K B m + t , . . . ,  KBn either. 
Thus, { B 1 , . . . , B i n }  C_ I implies 3h/~ E I"  for some 1 ~< k ~< I. Since Ait,Aiz E I 
implies Ait,Ai2 E I ~, hk E I ~ implies hit,hi2 E I ~ by (6). Let d~ = I ~ \ {Ai2,hi2}. 
Then, the interpretation J~ satisfies all the clauses (3), (4), (5), (6) in P~. This contradicts 
the fact that I ~ is a minimal model of P~. Then I is also a minimal model of pI ,  hence 
a stable model of P .  

Conversely, suppose that I is a stable model of P.  Let I = 1 ~ M 7-/Bp for some 
interpretation I ~ of P~. Then, for each atom Ai in I, there is a ground clause of the 
form (*) in PI  such that 1 ~ i ~< i and { B t , . . . , B m }  c_C_ I ~. In this case, there 
are corresponding clauses (3), (4), and (5) in P~ such that hi E I ~, Ai E I '~, and 
{Bin+l , - . . ,  Bn} fq I  ~ = ~. Hence I ~ ~ #(Z~,) .  Also we can choose/~ to be a minimal 
set such that { K B m + I , . . . ,  K-Bn} n I  ~ = 0, then I ~ E min(#(Z~))  and I ~ is canonical 
with respect to Bin+l, • . . ,  Bn. On the other hand, for such I ~ assume that KB/ E I ~ 
for some j (ra + 1 ~< j ~< n). Then there exists a clause of the form (3) in P~ such 
that { B t , . . . ,  Bin} C_ I ~. Since I ~ is minimal, hi ~ I ~ for any i (1 ~< i ~< l). Then Ai 
is not derived from (3), so the clause (*) is not in p l .  In this case, there exists some k 
(m + 1 ~< k ~< n) such that Bk E I, and we can choose k as k = j so that Bj is in I r.  
Therefore, I ~ is canonical, and thus I E obje(min(#(Z~,, ))). [] 

COROLLARY 4.7. Let P be a normal logic program. Then, 

Proof. By Theorem 4.6, objc(min(t~($~,,))) is the set of all  stable models of P.  
Since I E obj , (min(/~($~)))  implies I E obj,(#($~,,,)), we show that the converse is 
also true. Assume that the converse does not hold. That is, there is a nonminimal set 
I E objc(#($~,,)) and 3 J  E obje(min(#(/~,)))  such that J C I.  In this case, there 
exists an atom A such that A E I and A ¢ d .  Let I = I ~ n 7~Bp and d = J~ M 7"IBp 
for some canonical interpretations I ~ and j r .  Then, corresponding to (3), (4), and (5), 

there exist clauses 

h V KBm+t V ." " V K-Bn *" B1 A • • • A Bin, 

A*- -h ,  

+--AABj ( j = m + l , . . . , n )  

in PS,  where I 'c, d~ ~ B t , . . . , B n ,  A E l ~, and 3KBj E ds (m + 1 ~< j ~< n). Note 
here that the clause (6) becomes A *-- A A A and is neglected. Since j r  is canonical, 
Bj E J~, hence B/ E I ~. But this is impossible from the third clause above. [] 
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A c k n o w l e d g e m e n t  

W e  are gra te fu l  to  a n o n y m o u s  referees  for  useful  c o m m e n t s  o n  the  p r e v i o u s  draf t  o f  th is  

paper .  
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