
A New Algorithm for Computing Least Generalization
of a Set of Atoms

Hien D. Nguyen1 and Chiaki Sakama2

1 University of Information Technology, VNU-HCM, Vietnam
hiennd@uit.edu.vn

2 Wakayama University, Japan
sakama@wakayama-u.ac.jp

Abstract. This paper provides a new algorithm of computing a least generaliza-
tion of a set of atoms. Our algorithm is based on the notion of anti-combination
that is the inverse substitution of a combined substitution. In contrast to an anti-
unification algorithm that computes a least generalization of two atoms, anti-
combination can compute a least generalization of (more than two) atoms in
parallel. We evaluate the proposed algorithm using randomly generated data and
show that anti-combination outperforms the iterative application of an anti-unification
algorithm in general.

Keywords: anti-unification · anti-combination · least generalization

1 Introduction

For a definite program P and a goal G, a computed answer θ for P ∪ {G} is the sub-
stitution obtained by restricting the composition θ1 · · · θn to the variables of G, where
θ1, . . . , θn is the sequence of mgu’s used in an SLD-refutation of P ∪ {G} [10]. In an
SLD-derivation, each θi is an mgu used for deriving a new goal Gi from its preceding
goal Gi−1 and a parent clause in P . Thus, θ1, . . . , θn are computed sequentially and an
answer substitution is computed by composing mgus one by one. As such, the composi-
tion operation is not very efficient, and furthermore, it is often unintuitive or inadequate
[13]. Yamasaki et al. [17] introduce a new resolution method based on combination
of mgus. The method has the unique feature that resolution is performed by manip-
ulation of substitutions, and mgus used in combination are computed independently
of one another. Palamidessi [13] introduces a compositional operational semantics of
definite logic programs based on combination of mgus and addresses its application
to concurrent logic programming. Compared with the composition operation, however,
the combination operation is not well-known and is of relatively little use in automated
reasoning and logic programming, although the original idea is date back to [1, 15].
Eder [4] formulates algebraic properties of substitutions and shows that combination is
obtained as the greatest lower bound of mgus. In contrast to composition that is only
associative, combination is commutative, associative and idempotent, so that it has po-
tential for parallel computation of symbolic reasoning.

In this paper we use the combination operation for computing a least generaliza-
tion (lg) of a set of atoms. Plotkin [14] and Reynolds [16] introduce algorithms for

2 Hien D. Nguyen and Chiaki Sakama

anti-unification of two atoms. Plotkin argues that the algorithm is iteratively applied to
computing a least generalization of a set of atoms: for a set of atoms {A1, . . . , An},
its least generalization is computed as lg(A1, lg(A2, . . . , lg(An−1, An) · · ·)) where
lg(Ai, Aj) computes a least generalization of Ai and Aj . Such serial computation is
inefficient when the number of atoms increases. We show that it is computed in parallel
using combination of substitutions.

This paper is an extension of the preliminary report [18], which sketches the idea
while implementation and evaluation are left. The current paper develops an algorithm
and provides experimental evaluation. The rest of this paper is organized as follows.
Section 2 reviews basic notions and formal properties of substitutions. Section 3 intro-
duces a method of computing a least generalization by combination of substitutions, and
presents an algorithm based on it. Section 4 provides experimental evaluation. Section 5
discusses related issues and Section 6 summarizes the paper.

2 Preliminaries

A first-order language consists of an alphabet and all formulas defined over it. The
definition is the standard one in the literature [1, 10]. Variables are represented by letters
x, y, z, . . .; constants are represented by letters a, b, c, . . .; function symbols (of arities
> 0) are represented by letters f, g, h, . . .; and predicate symbols are represented by
letters P,Q,R, A term is either (i) a constant, (ii) a variable, or (iii) f(t1, . . . , tm)
where f is an m-ary (m ≥ 1) function symbol and t1, . . . , tm are terms. An atom is
a formula P (t1, . . . , tn) (n ≥ 1) where P is an n-ary predicate and ti’s are terms. An
expression is either a term or an atom. Two atoms are compatible if they have the same
n-ary predicate. The set of all variables (resp. terms, atoms) in the language is denoted
by V ar (resp. Term, Atom). The set Atom also contains the special elements ⊤ and
⊥. The set of all expressions is defined as Exp = Term ∪ Atom. The set of variables
occurring in an expression e (resp. a set E of expressions) is denoted by V(e) (resp.
V(E)). The following definitions and results are due to [1, 4, 9, 13, 16].

Definition 1 (substitution). A substitution is a mapping σ from V ar into Term such
that the set Γ = { ⟨x, σ(x) ⟩ | x ̸= σ(x) and x ∈ V ar} is finite. When σ(xi) = ti for
i = 1, . . . , n, it is also written as σ = { t1/x1, ..., tn/xn }.3 The set of all substitutions
in the language is denoted by Sub. The set D(σ) = {x | ⟨x, t ⟩ ∈ Γ } is the domain of
σ and the set R(σ) = { t | ⟨x, t ⟩ ∈ Γ } is the range of σ. The set V(R(σ)) represents
the set of all variables occurring in R(σ). The identity mapping ε over V ar is the empty
substitution. A bijection ρ from V ar to V ar is a renaming of variables. The set of all
renamings is denoted by Ren (where Ren ⊂ Sub).

Definition 2 (Eσ). Let σ ∈ Sub and E ∈ Exp. Then Eσ is defined as follows:

Eσ =


σ(x) if E = x for x ∈ V ar,
a if E = a for a constant a,
f(t1σ, ..., tmσ) if E = f(t1, ..., tm) ∈ Term,
P (t1σ, ..., tnσ) if E = P (t1, ..., tn) ∈ Atom.

3 It is often written as {x1/t1, ..., xn/tn } [3, 10, 13].

A New Algorithm for Computing Least Generalization of a Set of Atoms 3

Definition 3 (composition). For σ, λ ∈ Sub, the composition of σ and λ (denoted by
σλ) is a function from V ar to Term such that

σλ(x) = (xσ)λ for any x ∈ V ar.

For any e ∈ Exp, it holds that e(σλ) = (eσ)λ. The composition operation has
the properties: (σλ)µ = σ(λµ) and σε = εσ = σ for any σ, λ, µ ∈ Sub. Note that
σλ ̸= λσ in general.

Definition 4 (idempotent). A substitution σ is idempotent if σσ = σ. The set of all
idempotent substitutions is denoted by ISub.

Proposition 1. ([4, 9]) A substitution σ is idempotent iff D(σ) ∩ V(R(σ)) = ∅.

Definition 5 (order on Atom). Let A,B ∈ Atom. A preorder relation ≤ over Atom
is defined as follows:

• A ≤ ⊤,
• ⊥ ≤ A,
• A ≤ B if A = Bθ for some θ ∈ Sub.

We write A ∼ B if A ≤ B and B ≤ A.

When A ≤ B, we say that A is an instance of B (or B is a generalization of A). It
holds that A ∼ B iff A = Bρ for some ρ ∈ Ren. Let Q be the quotient set Atom/∼.
Then the ordered set (Q,≤) constitutes a complete lattice [16].

Definition 6 (gci, lcg). Let Σ ⊆ Atom. An atom A ∈ Atom is a common instance of
Σ if A ≤ B for any B ∈ Σ. In particular, A is a greatest common instance (gci) of Σ
if A is a common instance of Σ and A′ ≤ A for any common instance A′ of Σ.

An atom A ∈ Atom is a common generalization of Σ if B ≤ A for any B ∈
Σ. In particular, A is a least common generalization (lcg) of Σ if A is a common
generalization of Σ and A ≤ A′ for any common generalization A′ of Σ.

Least common generalization is simply called least generalization hereafter.

Definition 7 (order on Sub). Let σ, θ ∈ Sub. A preorder relation ≤ over Sub is de-
fined as:4

σ ≤ θ if σ = θλ for some λ ∈ Sub.

We write σ ∼ θ if σ ≤ θ and θ ≤ σ.

By definition, σ ≤ ρ for any σ ∈ Sub and ρ ∈ Ren. It holds that σ ∼ θ iff σ = θρ for
some ρ ∈ Ren.

Definition 8 (unifier, mgu, mgsu). Let Σ = {A1, . . . , An} be a set of atoms. A sub-
stitution σ ∈ Sub is a unifier for Σ if A1σ = · · · = Anσ holds. A unifier σ for a set Σ
is a most general unifier (mgu) (written σ = mgu(Σ)) if θ ≤ σ for any unifier θ for the
set Σ. For a finite set S of finite sets of atoms, σ ∈ Sub is a most general simultaneous
unifier (mgsu) of S (written mgsu(S)) if σ = mgu(Σ) for any Σ ∈ S .

4 We use the same symbol ≤ over Atom, but the meaning is clear from the context. Note that
the relation is often used reversely in the literature, e.g. σ ≥ θ if σ = θλ [4].

4 Hien D. Nguyen and Chiaki Sakama

Proposition 2. ([4, Prop.4.5]) For any finite set Σ ⊆ Atom, σ = mgu(Σ) for some
σ ∈ Sub iff there is λ ∈ ISub such that λ = mgu(Σ) and λ ∼ σ.

By Proposition 2 mgus are assumed to be idempotent in this paper without loss of
generality. Let IS be the quotient set ISub/ ∼, completed with the bottom element
⊥. Denote the relation ≤/∼ simply by ≤. Then the ordered set (IS,≤) constitutes a
complete lattice [4].

Definition 9 (combination). For Θ ⊆ IS , the glb of (Θ,≤) is called a combination.
When Θ = {θ1, . . . , θn}, it is written as θ1 + · · ·+ θn.

For any σ, λ, µ ∈ ISub, it holds that (i) (σ+ σ) ∼ σ, (ii) (σ+ λ) ∼ (λ+ σ), (iii)
((σ + λ) + µ) ∼ (σ + (λ+ µ)), and (iv) (σ + ε) ∼ σ.

Chang and Lee [1] provide another definition of combination. Given θ1, ..., θn ∈
ISub where θi = {ti1/xi

1, ..., t
i
ki
/xi

ki
} (1 ≤ i ≤ n), the combination θ1 + · · · + θn

is defined as the mgu of two atoms: A1 = P (x1
1, . . . , x

1
k1
, . . . , xn

1 , . . . , x
n
kn
) and A2 =

P (t11, . . . , t
1
k1
, . . . , tn1 , . . . , t

n
kn
). These two definitions are proved to be equivalent [17].5

Example 1. ([1, p. 188]) Given θ1 = { f(g(x1))/x3, f(x2)/x4 } and θ2 = {x4/x3, g(x1)/x2 },
define A1 = P (x3, x4, x3, x2) and A2 = P (f(g(x1)), f(x2), x4, g(x1)). The mgu of
A1 and A2 is {f(g(x1))/x3, f(g(x1))/x4, g(x1)/x2 }, which is the combination of θ1
and θ2. Note that θ1+θ2 = θ1θ2 but θ1+θ2 ̸= θ2θ1 = { f(x2)/x3, g(x1)/x2, f(x2)/x4 }.

The next proposition immediately holds by definition.

Proposition 3. For σ, λ ∈ ISub, σ + λ = σ ∪ λ if D(σ) ∩ D(λ) = ∅.

Proposition 4. ([4, 17]) Let E = {Σ1, . . . , Σn} be a set of finite sets of atoms.

(i) mgsu(E) ∼ σ1 · · ·σn where σ1 = mgu(Σ1) and σi = mgu(Σiσ1 · · ·σi−1) (2 ≤
i ≤ n).

(ii) mgsu(E) ∼ mgu(Σ1) + · · ·+mgu(Σn).

Proposition 4 presents two different ways of computing mgsu(E). The one (i)
presents that computing σ1, . . . , σn in a sequential manner and composing them to get
mgsu(E). This method is usually employed in binary resolution. The other one (ii)
presents that computing mgu(Σi) for each Σi and combining them to get mgsu(E).
Comparing two methods, computation of σi uses the results of σ1, . . . , σi−1 in (i). By
contrast, in (ii) each mgu(Σi) is computed independently, so that combination has po-
tential for computing gci in parallel.

Example 2. Consider the set of atoms Σ = {P (x, f(y)), P (z, f(b)), P (c, w) }. Let
Σ1 = {P (x, f(y)), P (z, f(b)) } and Σ2 = {P (z, f(b)), f(c, w) }. Then σ1 =
mgu(Σ1) = {b/y, x/z} and σ2 = mgu(Σ2σ1) = {c/x, f(b)/w}. The mgsu of
{Σ1, Σ2} is then obtained by the composition σ1σ2 = {c/x, b/y, c/z, f(b)/w}, and
the gci of Σ1 ∪Σ2 is P (c, f(b)) (Fig. 1(a)). Similar computation is done by first com-
puting λ1 = mgu(Σ2) = {c/z, f(b)/w} and then computing λ2 = mgu(Σ1λ1) =
{c/x, b/y}, which produces the same mgsu and the gci (Fig. 1(b)). On the other hand,
the mgsu is computed by the combination σ1 + λ1 = {c/x, b/y, c/z, f(b)/w} which
produces the gci (Fig. 1(c)).

5 Combination is called parallel composition in [13].

A New Algorithm for Computing Least Generalization of a Set of Atoms 5

Z
ZZ

�
��

Z
ZZ

�
�

�
�

�

P (x, f(y)) P (z, f(b)) P (c, w)

P (x, f(b))

P (c, f(b))

σ1

σ2

(a) composition

Z
ZZ

�
��

�
��

@
@

@
@
@

P (x, f(y)) P (z, f(b)) P (c, w)

P (c, f(b))

P (c, f(b))

λ1

λ2

(b) composition

Z
ZZ

�
��

Z
ZZ

�
��

Z
ZZ

�
��

P (x, f(y)) P (z, f(b)) P (c, w)

P (c, f(b))

σ1 λ1

σ1+λ1

(c) combination

Fig. 1: composition and combination

3 Computing Least Generalization by Anti-combination

3.1 Anti-unification algorithm

For a set Σ ⊆ Atom, its least (common) generalization (written lg(Σ)) is defined as
the least upper bound of the set (Σ,≤) (Def. 6). lg(Σ) is obtained from Σ by anti-
unification, that is a dual of unification.

Definition 10 (anti-unifier, msau). ([11]) Let Σ = {A1, . . . , Ak} be a set of atoms.
Then, a tuple of substitutions τ = (σ1, . . . , σk) where σi ∈ Sub (1 ≤ i ≤ k) is an
anti-unifier of Σ if Ai = lg(Σ)σi for i = 1, . . . , k. An anti-unifier τ of Σ is a most
specific anti-unifier (msau) if for each anti-unifier (θ1, . . . , θk) there is a substitution
λi ∈ Sub such that σi = λiθi (1 ≤ i ≤ k). We define D(τ) = D(σ1) ∪ · · · ∪ D(σk).

An anti-unifier always exists, but is not necessarily unique. There is a unique most
specific anti-unifier that produces the least generalization, which is unique up to renam-
ing of variables [11]. Like an mgu, an msau is also assumed to be idempotent.

Proposition 5. Let Σ be a set of atoms. Then (σ1, . . . , σk) such that σi ∈ Sub (1 ≤
i ≤ k) is an msau of Σ iff there is an msau (λ1, . . . , λk) such that λi ∈ ISub and
λi ∼ σi for i = 1, . . . , k.

Proof. When D(σi) ∩ V(R(σi)) ̸= ∅, let λi = σiρi where ρi ∈ Ren and D(λi) ∩
V(R(λi)) = ∅. In this case, Ai = lg(Σ)σi implies Ai ∼ lg(Σ)λi, and vice-versa. ⊓⊔

Now we recall the anti-unification algorithm [3, Algorithm 13.1] for computing a
least generalization of two atoms which is originally introduced in [14, 16]. Given an
atom A = P (t1, . . . , tn), a term ti (1 ≤ i ≤ n) has position ⟨ i ⟩ in A. If a term
f(s1, . . . , sm) has position ⟨ p1, . . . , pk ⟩ in A, then sj within this term has position
⟨ p1, . . . , pk, j ⟩ in A. The algorithm is described in Figure 2.

Since the lub of (Σ,≤) is associative, the anti-unification algorithm is iteratively
applied for computing a least generalization of a set Σ of atoms. In this case, an anti-
unifier is computed by a composition of substitutions.

Example 3. Let Σ = {A1, A2, A3}, G1 = lg({A1, A2}) and G2 = lg({A1, A2, A3}) =
lg({G1, A3}). Then A1 = G1θ1, A2 = G1θ2, G1 = G2σ1, and A3 = G2σ2 for some
θ1, θ2, σ1, σ2 ∈ Sub. Then A1 = G2σ1θ1, A2 = G2σ1θ2, and A3 = G2σ2. So
(σ1θ1, σ1θ2, σ2) is an anti-unifier of (A1, A2, A3).

6 Hien D. Nguyen and Chiaki Sakama

Input : Two compatible atoms A1 and A2

Output : G = lg({A1, A2}) and an msau τ = (θ1, θ2)

1. Set A′
1 = A1 and A′

2 = A2, θ1 = θ2 = ε, and i = 0.
Let z1, z2, . . . be a sequence of variables not appearing in A1 or A2.

2. If A′
1 = A′

2, then output G := A′
1, τ := (θ1, θ2) and stop.

3. Let p be the leftmost symbol position where A′
1 and A′

2 differ. Let s and t be the terms
occurring at this position in A′

1 and A′
2, respectively.

4. If, for some j with 1 ≤ j ≤ i, zjθ1 = s and zjθ2 = t, then replace s at the position p in A′
1

by zj , replace t at the position p in A′
2 by zj , and go to 2.

5. Otherwise set i to i+ 1, replace s at the position p in A′
1 by zi, and replace t at the position

p in A′
2 by zi. Set θ1 to θ1 ∪ {s/zi}, θ2 to θ2 ∪ {t/zi}, and go to 2.

Fig. 2: Anti-unification Algorithm [3]

The above algorithm computes a substitution θi such that Ai = Gθi (i = 1, 2) for
G = lg({A1, A2}). Then an lg G is also computed by G = Aiθ

−1
i where θ−1

i is an
inverse substitution of θi. An inverse substitution θ−1 is well-defined if θ is injective.

Definition 11 (inverse substitution). ([12]) Let θ ∈ Sub be injective and t ∈ Term.
If D(θ) ∩ V(t) = ∅, then an inverse substitution θ−1 : Term → V ar is defined as
follows.

tθ−1= x if (t/x) ∈ θ,

f(t1, . . . , tn)θ
−1= f(t1θ

−1, . . . , tnθ
−1) if (f(t1, . . . , tn)/x) ̸∈ θ for any x ∈ V ar,

yθ−1= y if (y/x) ̸∈ θ for any x ∈ V ar.

If D(θ) ∩ V(t) ̸= ∅, a renaming substitution ρ ∈ Ren is applied to t in such a way
that D(θ) ∩ V(tρ) = ∅. Then we can apply θ−1 to tρ if θ is injective. If a substitution
θ is not injective, we use the technique of [3] to constitute θ−1. For instance, when
t = f(x, y) and θ = {a/x, a/y}, it becomes tθ = f(a, a). The inverse substitution
θ−1 = {x/a, y/a} is ill-defined, then it is modified as θ−1 = {(x/a, ⟨ 1 ⟩), (y/a, ⟨ 2 ⟩)}
meaning that a at position ⟨ 1 ⟩ is mapped to x and a at position ⟨ 2 ⟩ is mapped to y. With
this mechanism, f(a, a)θ−1 = f(x, y). For any non-injective θ ∈ Sub, we constitute
θ−1 in this way.

Definition 12 (anti-combination). Let σ = θ1 + · · · + θn be a combination of θi ∈
ISub (1 ≤ i ≤ n). Then the inverse substitution σ−1 is called an anti-combination of
θ1, . . . , θn.

Combining injective substitutions may produce a non-injective substitution. For in-
stance, θ1 = {a/x} and θ2 = {a/y} produce θ1 + θ2 = {a/x, a/y}. To compute its
inverse substitution, we incorporate information of substitutions from which each bind-
ing comes from: (θ1 + θ2)

−1 = {(x/a, ⟨ θ1 ⟩), (y/a, ⟨ θ2 ⟩)} which means that a from

A New Algorithm for Computing Least Generalization of a Set of Atoms 7

�
��

Z
ZZ

�
��

@
@

@
@

@

P (x, f(y)) P (z, f(b))P (c, w)

P (u, f(v))

P (x′, y′)

σ θ

λ
δ

(a) anti-unification

�
��

Z
ZZ

Z
ZZ

�
�

�
�
�

P (x, f(y)) P (z, f(b)) P (c, w)

P (u′, v′)

P (x′, y′)

µ ν

ξ
η

(b) anti-unification

�
��

Z
ZZ

�
��

Z
ZZ

�
��

Z
ZZ

P (x, f(y)) P (z, f(b)) P (c, w)

P (u, v′)

θ µ

θ + µ

(c) anti-combination

Fig. 3: anti-unification and anti-combination

θ1 is mapped to x and a from θ2 is mapped to y. With this technique, anti-combination
is well-defined for non-injective combination.

Lemma 1. Let Σ = {A1, A2, A3} be a set of atoms, τ12 = (σ12, λ12) an msau of
{A1, A2}, and τ13 = (σ13, λ13) an msau of {A1, A3} such that D(τ12) ∩ D(τ13) = ∅.
Then lg(Σ) = A1θ

−1 where θ ∼ (σ12 + σ13).

Proof. Let G1 = lg({A1, A2}) and G2 = lg({A1, A3}). Then lg(Σ) = lg({G1, G2}),
and G1σ12 = A1 and G2σ13 = A1. By D(σ12) ∩ D(σ13) = ∅, G1σ12 = G1(σ12 +
σ13) = A1 and G2σ13 = G2(σ12 + σ13) = A1. Then lg(Σ) = lg({G1, G2}) =
lg({A1(σ12 + σ13)

−1, A1(σ12 + σ13)
−1}) = A1(σ12 + σ13)

−1. ⊓⊔

Since combination is associative, the result of Lemma 1 is extended to a set con-
taining n atoms (n ≥ 3).

Theorem 1. Let Σ = {A1, . . . , An} (n ≥ 3) be a set of atoms, τ1k = (σ1k, λ1k)
(2 ≤ k ≤ n) an msau of {A1, Ak} such that D(τ1i)∩D(τ1j) = ∅ (1 ≤ i, j ≤ n; i ̸= j).
Then, lg(Σ) = A1θ

−1 where θ ∼ (σ12 + · · ·+ σ1n).

Theorem 1 shows that a least generalization of atoms is computed by anti-combination
of substitutions.

Example 4. Consider the set Σ = {P (x, f(y)), P (z, f(b)), P (c, w) } of atoms.
Then lg({P (x, f(y)), P (z, f(b)) }) = P (u, f(v)) with the msau (σ, θ) where σ =
{x/u, y/v} and θ = {z/u, b/v}. In this case, P (u, f(v))σ = P (x, f(y)) and P (u, f(v))θ
= P (z, f(b)).

Next, lg({P (u, f(v)), P (c, w)}) = P (x′, y′) with the msau (λ, δ) where λ =
{u/x′, f(v)/y′} and δ = {c/x′, w/y′}. In this case, P (x′, y′)λ = P (u, f(v)) and
P (x′, y′)δ = P (c, w). Then, lg(Σ) = P (x′, y′) where P (x′, y′)λσ = P (x, f(y))
with λσ = {x/x′, f(y)/y′} and P (x′, y′)λθ = P (z, f(b)) with λθ = {z/x′, f(b)/y′}
(Fig. 3(a)). Similar computation is done by first computing lg({P (z, f(b)), P (c, w)})
with (µ, ν) = ({z/u′, f(b)/v′}, {c/u′, w/v′}), and then computing lg({P (x, f(y)),
lg({P (z, f(b)), P (c, w)}) }) with (η, ξ) = ({x/x′, f(y)/y′}, {u′/x′, v′/y′}). (Fig. 3(b)).

By contrast, θ + µ = {z/u, b/v, z/u′, f(b)/v′}. Then

(θ + µ)−1 = { (u/z, ⟨ θ ⟩), (v/b, ⟨ θ ⟩), (u′/z, ⟨µ ⟩), (v′/f(b), ⟨µ ⟩) }.

Applying it to P (z, f(b)), lg(Σ) = P (u, v′) (∼ P (x′, y′)) is obtained (Fig. 3(c)). Note
that by the second condition of Def. 11, (v/b, ⟨ θ ⟩) is not applied to b in P (z, f(b)).

8 Hien D. Nguyen and Chiaki Sakama

3.2 Algorithms for computing least generalization of a set of atoms

The algorithm for computing anti-unification (Fig. 2) is extended to computing a least
generalization of a set of atoms. Given a set Σ, Σ[i] means the i-th element of Σ.

Algorithm 1: AntiUnif

Input : A set Σ = {A1, . . . , An} (n ≥ 2) of compatible atoms
Output : a least generalization of Σ

1. Put G := Σ[1].
2. Put i := 2; while i ≤ n do:

Compute G := lg({G,Σ[i]}) by the anti-unification algorithm (Fig. 2).
Put i := i+ 1.

3. Return G.

The algorithm for computing a least generalization of a set of atoms by anti-combination
is described as follows.

Algorithm 2: AntiComb

Input : A set Σ = {A1, . . . , An} (n ≥ 2) of compatible atoms
Output : a least generalization of Σ

1. Put θ := ε (empty substitution).
2. Put i := 2; while i ≤ n do:

Compute Gi = lg({A1, Ai}) by the anti-unification algorithm.
Get a substitution θi such that A1 = Giθi, D(θi) ∩ D(θ) = ∅ and
D(θi) ∩ V(R(θi)) = ∅.
Put θ := θ + θi and i := i+ 1.

3. Compute the inverse substitution θ−1.
4. Compute G = A1θ

−1 and return G.

In θi we store information about the substitution and the position of each element as
[ti/zi, ⟨ p, q ⟩, θi], meaning that ti/zi in θi happens at the q-th position of the p-th arity.

When k (2 ≤ k < n) processors are available, the step 2 of Algorthm 2 is split
into k procedures. First, Σ is partitioned into k subsets Σ1 ∪ · · · ∪ Σk such that Σ1 =
{A1, . . . , Am1

}, Σ2 = {Am1
, Am1+1, . . . , Am2

}, . . ., Σk = {Amk−1
, Amk−1+1, . . . , Amk

}
where each Σi and Σi+1 share an element Ami

in common. After computing a combi-
nation θi for each Σi (1 ≤ i ≤ k) in parallel, they are combined into one substitution
θ = θ1 + · · · + θk. Then, its inverse substitution is computed at the step 3. Formally,
such a spliting is done by

Σj = {Σ[(j − 1)× ⌊n
k
⌋+ 1], . . . , Σ[j × ⌊n

k
⌋+ 1]} (1 ≤ j ≤ k − 1),

Σk = {Σ[(k − 1)× ⌊n
k
⌋+ 1], . . . , Σ[n]}

where ⌊ ⌋ is the floor function.

A New Algorithm for Computing Least Generalization of a Set of Atoms 9

According to [7] the complexity of the anti-unification algorithm of Fig. 2 is com-
puted in O(N logN) where N is the size of the lub of θ1 and θ2. Using the result,
the complexity of AntiUnif is O(n ×N logN) where n is the number of atoms in Σ.
Step 2 of AntiComb is also done in O(n×N logN), since combination of substitution
is computed by merging θ∪θi (Proposition 3). If k-processors (k ≥ 2) are available for
computing Step 2 in parallel, the lower bound of computation is given as O(n×N logN

k).

Example 5. Suppose the set Σ of atoms such that |Σ |= 5 and each atom has a ternary
predicate P .6

E := {
A1 = P (f9(x2, x2, x1), f10(x2, f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))), x1),

A2 = P (f9(x2, x2, x1), f10(f3(f4(f8(x2, x1), x2, f7(x2, x1))), f1(x1, x1, x1)), f3(x2)),

A3 = P (f9(x2, x2, x1), f10(f5(x1), f5(f5(f6(x2, x1)))), f3(f10(x2, x1))),

A4 = P (f9(f1(x1, x2, x2), x1, f2(x1, x1, x1)), f10(f7(f9(f6(x1, x1), f6(x1, x2), x1), x1), x1), x1),

A5 = P (f9(f4(x2, x2, x1), f4(x2, x1, x2), f10(x1, x1)),

f10(x2, f4(f5(f9(x1, x2, x1)), x2, f5(f5(x1)))), x2)

}.

Using AntiUnif :

G1 := lg(A1, A2) = P (f9(x2, x2, x1), f10(z1, z2), z3) %Compute lg(A1, A2)

G2 := lg(G1, A3) = P (f9(x2, x2, x1), f10(z4, z5), z6) %Compute lg(G1, A3)

G3 := lg(G2, A4) = P (f9(z7, z8, z9), f10(z10, z11), z12) %Compute lg(G2, A4)

G4 := lg(G3, A5) = P (f9(z13, z14, z15), f10(z16, z17), z18) %Compute lg(G3, A5)

Using AntiComb :

G1 := lg(A1, A2) = P (f9(x2, x2, x1), f10(z1, z2), z3) %Compute lg(A1, A2)

θ1 := { [x2/z1, ⟨ 2, 1 ⟩, θ1], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z2, ⟨ 2, 2 ⟩, θ1],
[x1/z3, ⟨ 3 ⟩, θ1] };

G2 := lg(A1, A3) = P (f9(x2, x2, x1), f10(z4, z5), z6) %Compute lg(A1, A3)

θ2 := { [x2/z4, ⟨ 2, 1 ⟩, θ2], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z5, ⟨ 2, 2 ⟩, θ2],
[x1/z6, ⟨ 3 ⟩, θ2] };

G3 := lg(A1, A4) = P (f9(z7, z8, z9), f10(z10, z11), x1) %Compute lg(A1, A4)

θ3 := { [x2/z7, ⟨ 1, 1 ⟩, θ3], [x2/z8, ⟨ 1, 2 ⟩, θ3], [x1/z9, ⟨ 1, 3 ⟩, θ3], [x2/z10, ⟨ 2, 1 ⟩, θ3],
[f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z11, ⟨ 2, 2 ⟩, θ3] };

G4 := lg(A1, A5) = P (f9(z12, z13, z14), f10(x2, z15), z16) %Compute lg(A1, A5)

θ4 := { [x2/z12, ⟨ 1, 1 ⟩, θ4], [x2/z13, ⟨ 1, 2 ⟩, θ4], [x1/z14, ⟨ 1, 3 ⟩, θ4],
[f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z15, ⟨ 2, 2 ⟩, θ4], [x1/z16, ⟨ 3 ⟩, θ4] };

6 Here we draw underlines to help distinguishing 3 terms in P .

10 Hien D. Nguyen and Chiaki Sakama

θ := θ1 + θ2 + θ3 + θ4 %Compute combination
= { [x2/z1, ⟨ 2, 1 ⟩, θ1], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z2, ⟨ 2, 2 ⟩, θ1],
[x1/z3, ⟨ 3 ⟩, θ1], [x2/z4, ⟨ 2, 1 ⟩, θ2], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z5, ⟨ 2, 2 ⟩, θ2],
[x1/z6, ⟨ 3 ⟩, θ2], [x2/z7, ⟨ 1, 1 ⟩, θ3], [x2/z8, ⟨ 1, 2 ⟩, θ3], [x1/z9, ⟨ 1, 3 ⟩, θ3],
[x2/z10, ⟨ 2, 1 ⟩, θ3], [f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z11, ⟨ 2, 2 ⟩, θ3],
[x2/z12, ⟨ 1, 1 ⟩, θ4], [x2/z13, ⟨ 1, 2 ⟩, θ4], [x1/z14, ⟨ 1, 3 ⟩, θ4],
[f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1)))/z15, ⟨ 2, 2 ⟩, θ4], [x1/z16, ⟨ 3 ⟩, θ4] };

θ−1 := %Compute anti-combination
{ [z1/x2, ⟨ 2, 1 ⟩, θ1], [z2/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), ⟨ 2, 2 ⟩, θ1],
[z3/x1, ⟨ 3 ⟩, θ1], [z4/x2, ⟨ 2, 1 ⟩, θ2], [z5/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), ⟨ 2, 2 ⟩, θ2],
[z6/x1, ⟨ 3 ⟩, θ2], [z7/x2, ⟨ 1, 1 ⟩, θ3], [z8/x2, ⟨ 1, 2 ⟩, θ3], [z9/x1, ⟨ 1, 3 ⟩, θ3],
[z10/x2, ⟨ 2, 1 ⟩, θ3], [z11/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), ⟨ 2, 2 ⟩, θ3],
[z12/x2, ⟨ 1, 1 ⟩, θ4], [z13/x2, ⟨ 1, 2 ⟩, θ4], [z14/x1, ⟨ 1, 3 ⟩, θ4],
[z15/f7(f5(f10(x1, x1)), f7(f2(x2, x2, x1), f3(x1))), ⟨ 2, 2 ⟩, θ4], [z16/x1, ⟨ 3 ⟩, θ4] };

A1θ
−1 := P (f9(z12, z13, z14), f10(z10, z15), z16). %Compute least generalization

When there are different replacements zi/ti from different θj’s at the same position
⟨m,n ⟩ in θ−1, for instance, [z7/x2, ⟨ 1, 1 ⟩, θ3] and [z12/x2, ⟨ 1, 1 ⟩, θ4], they are equiv-
alent modulo variable renaming and one of them is selected.

4 Experimental Evaluation

In this section, we compare runtime for computing least generalizations by two algo-
rithms AntiUnif and AntiComb.

4.1 Generating Test Data

We use randomly created data sets Prog satisfying the following conditions.

1. Each element in Prog is an atom of the form: P (t1, t2, t3) where P is a ternary
predicate and t1, t2, t3 are terms. Every atom in Prog has the same predicate.

2. Prog has two parameters: n is the number of elements in Prog, and m is the
number of function symbols appearing in Prog. The number of different variables
appearing in Prog is set to n

2 , while there is no constant in Prog.
3. For an atom A = P (t1, t2, t3), the depth of A is defined as d(A) = 1+max{d(t1),

d(t2), d(t3)} where d(ti) (1 ≤ i ≤ 3) is the number of function symbols appearing
in ti. For instance, the depth of P (x, y, z) is 1, the depth of P (f(x), y, g(h(z))) is
3, and so on. We set the depth of each atom A in Prog as d(A) ≤ 5.

4. For any atom P (t1, t2, t3) in Prog, if a function f appears in the outermost of the
term ti (1 ≤ i ≤ 3), then the outermost function appearing in the corresponding
term si of another atom P (s1, s2, s3) in Prog is set to the same function f .

A New Algorithm for Computing Least Generalization of a Set of Atoms 11

An explanation is in order for the above 4th condition on Prog. For instance, two
atoms: P (f(g(x)), y, g(z)) and P (f(h(x)), g(y), g(h(z))) have the same outermost
function f in terms appearing in the 1st arity of P and the same outermost function
g in the 3rd arity. This is because we randomly generate a set Prog then it is very
unlikely that the same function appears in the corresponding positions of more than two
elements. Without this assumption, computation of anti-unification will be simple and
the results are likely to contain no function. For instance, the result of anti-unification of
P (f1(g1(x)), y, g2(z)) and P (f2(h1(x)), g3(y), g4(h2(z))) becomes P (x, y, z). Note
that it may happen that no function appears in the i-th arity (1 ≤ i ≤ 3) of P as in the
2nd element of P (f(g(x)), y, g(z)).

4.2 Experimental Results

We compare runtime for computing a least generalization of Prog using AntiUnif and
AntiComb. We implement two algorithms by Maple 2018, 64 bit. The testing is done
on a computer with the following configuration: Intel(R) CoreTM i7-4750HQ CPU@
2.0 GHz, RAM 8.00GB, Operating system: Windows 10, 64-bit.

In the experiments, we set the parameters n and m as follows:

• The number of atoms in Prog is set to: n = 500, 1000, 3000, 5000, 10000.
• The number of functions appearing in Prog is set to: m = n/2; m = n; m = 2n.

Based on (n,m), generate the set of atoms Prog randomly. In AntiComb, the number
of processors k is set to k = 10; 30; 50. For each (n,m, k) we measure runtime at least
four times and pick average values.

In experiments, we do not have many computers for parallel computing. So we
compute the time for k-parallel processing by max{t1, . . . , tk} where ti (1 ≤ i ≤ k)
is the time for computing a combination θi for Σi. After computing each θi, they are
combined into θ = θ1 + · · · + θk. This process is denoted by Stage 1. After Stage 1,
produce the inverse θ−1 and compute A1θ

−1 that is the least generalization lg(Σ) of
the input set Σ. This process is denoted by Stage 2.

Table 1 shows the experimental results that are displayed in Figures 4 and 5.
By the results of testing, it is observed that AntiComb is faster than AntiUnif in

general. This is because AntiComb can compute least generalization in parallel. The
time of computing a least generalization by AntiComb decreases by increasing the
number of processors for parallel computing. Note that runtime TAC for AntiComb
is greater than the value TAU/k where TAU is runtime for AntiUnif. This is because
the relation TAU/k < TAC < TAU/k + T∞ holds by Brent’s law [6], where T∞ is
runtime using an idealized machine with an infinite number of processors. It is known
that parallel computing is effective when the number of processors is small, or when
the problem is perfectly parallel (Amdahl’s law) [5]. In AntiComb, Stage 1 is (partly)
computed in parallel while Stage 2 is serial. Hence, the speedup of the algorithm S =
TAU/TAC is limited by the time needed for the serial fraction of the problem. The
efficiency of parallel computing E = S/k also decreases by increasing k. Moreover,
we compute runtime for parallel processing by max{t1, . . . , tk}. These factors make
the speedup of AntiComb seemingly smaller than the number of processors used.

12 Hien D. Nguyen and Chiaki Sakama

Table 1: Experimental Results

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total
10 0.047 0.031 0.078

500 250 0.203 30 0.032 0.031 0.063
50 0.016 0.031 0.047
10 0.032 0.015 0.047

500 500 0.218 30 0.016 0.031 0.047
50 0.016 0.016 0.032
10 0.141 0.031 0.172

500 1000 0.406 30 0.031 0.047 0.078
50 0.016 0.047 0.063

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total
10 0.063 0.25 0.313

1000 500 0.406 30 0.032 0.062 0.094
50 0.032 0.047 0.079
10 0.266 0.078 0.344

1000 1000 0.422 30 0.016 0.078 0.094
50 0.016 0.062 0.078
10 0.063 0.063 0.126

1000 2000 0.61 30 0.032 0.062 0.094
50 0.016 0.047 0.063

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total
10 0.281 0.093 0.374

3000 1500 0.719 30 0.219 0.078 0.297
50 0.125 0.078 0.203
10 0.359 0.093 0.452

3000 3000 0.922 30 0.047 0.109 0.156
50 0.016 0.094 0.11
10 0.437 0.109 0.546

3000 6000 0.953 30 0.219 0.11 0.329
50 0.172 0.094 0.266

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total
10 0.547 0.125 0.672

5000 2500 1.218 30 0.297 0.141 0.438
50 0.276 0.125 0.401
10 0.829 0.204 1.033

5000 5000 2.125 30 0.5 0.234 0.734
50 0.328 0.219 0.547
10 1.109 0.234 1.343

5000 10000 2.891 30 0.641 0.25 0.891
50 0.453 0.234 0.687

n m
AntiUnif AntiComb (sec)

(sec) k Stage 1 Stage 2 Total Speedup † Efficiency ‡

10 1.313 0.141 1.454 1.13 0.11
10000 5000 1.641 30 0.515 0.125 0.64 2.56 0.09

50 0.359 0.125 0.484 3.39 0.07
10 1.047 0.187 1.234 1.91 0.19

10000 10000 2.359 30 0.547 0.188 0.735 3.21 0.11
50 0.485 0.203 0.688 3.43 0.07
10 1.406 0.266 1.672 1.77 0.18

10000 20000 2.953 30 0.579 0.297 0.876 3.37 0.11
50 0.422 0.282 0.704 4.19 0.08

† Speedup:= AntiUnif / AntiComb(Total)
‡ Efficiency:=Speedup / k

5 Discussion

Palamidessi [13] uses the least upper bound (that is called the glb in the context of
[13]) of substitutions for parallel factorization that corresponds to least generaliza-
tion. Given two substitutions θ and σ with different bindings for the same variable,
say t/x ∈ θ and u/x ∈ σ, she eliminates the difference by replacing t and u by x
in θ and σ respectively. For instance, given two substitutions θ = { a/x, f(a)/y } and
σ = {b/x, f(b)/y}, λ = {f(x)/y} is computed as the least upper bound of θ and
σ by replacing a and b by x. This corresponds to computing a least generalization of
two atoms A1 = P (a, f(a)) and A2 = P (b, f(b)) using the anti-unification algo-
rithm, which outputs lg({A1, A2}) = P (x, f(x)) and the msau ({a/x}, {b/x}). In the
anti-combination algorithm AntiComb, on the other hand, given the set of n atoms
{A1, . . . , An} such that A1 = P (a, f(a)) and A2 = P (b, f(b)), lg({A1, A2}) =
P (x, f(x)) and the substitution θ2 = {a/x} is computed. θ2 is then combined with
other substitution θi such that A1 = Giθi and Gi = lg({A1, Ai}) for 3 ≤ i ≤ n.
As such, anti-combination is different from parallel factorization. In fact, the parallel
factorization algorithm introduced in [13] outputs the lub of two substitutions, in other
words, it computes anti-unification of two terms by manipulating substitutions.

A New Algorithm for Computing Least Generalization of a Set of Atoms 13

Fig. 4: Comparison of runtime by AntiUnif and AntiComb (1)

Several algorithms for anti-unification are proposed in the literature. Kuper et al.
[8] show that anti-unification of two terms represented in the form of trees of size n
is carried out in time O(log2 n) using n processors (or n/log2 n processors in [2]).
Kostylev and Zakharov [7] represent two given terms by acyclic directed graphs, and
compute their most specific term (or lg) in time O(N logN) where N is the size of
the most specific term it computes. In contrast to the algorithm proposed in this pa-
per, those algorithms compute least generalization of two atoms (or terms). We use
the Plotkin/Reynolds’s algorithm in this paper, but AntiComb can use any algo-
rithm of anti-unification of two atoms in the step 2. Kuper et al. [8] also analyze
that anti-unification of m terms, each having at most O(n) symbols, is computed in
O(logmn+ log2 n) using mn processors. If we use their anti-unification algorithm of
two atoms in AntiComb, anti-unification of m atoms takes O(m × log2 n) using n
processors. Using mn processors, it is done in O(log2 n). Hence, AntiComb will be
faster than anti-unification of m terms in [8].

14 Hien D. Nguyen and Chiaki Sakama

Fig. 5: Comparison of runtime by AntiUnif and AntiComb (2)

A New Algorithm for Computing Least Generalization of a Set of Atoms 15

6 Conclusion

This paper introduced a new algorithm for computing a least generalization of a set of
atoms based on anti-combination. Experimental results show that the proposed algo-
rithm has potential to compute induction from big data in the form of relational facts
in parallel. Future study includes extending the framework to generalization of clauses
and exploiting other opportunities for parallelisation in practical ILP applications.

Acknowledgment
This research is funded by Vietnam National University – Ho Chi Minh city (VNU-
HCM) under grant number C2019-26-01. We thank Mikio Yoshida for useful discussion
on the subject of this paper.

References
1. Chang, C. L., Lee, R. T. C.: Symbolic Logic and Mechanical Theorem Proving, Academic

Press, New York (1973)
2. Delcher, A. L., Kasif, S.: Efficient parallel term matching and anti-unification. J. Automated

Reasoning 9, 391–406 (1992)
3. N-Cheng, S-H., De Wolf, R. Foundations of Inductive Logic Programming, LNAI, vol. 1228,

Springer, Berlin, Heidelberg (1997)
4. Eder, E.: Properties of substitutions and unifications. J. Symbolic Compt. 1, 31–46 (1985)
5. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to parallel computing (2nd edi-

tion), Addison Wesley (2003)
6. Gustafson, J. L.: Brent’s Theorem. Encyclopedia of Parallel Computing, pp. 182–185.

doi:10.1007/978-0-387-09766-4 80 (2011)
7. Kostylev, E. V., Zakharov, V. A.: On the complexity of the anti-unification problem. Discrete

Mathematics Application 18(1), 85–98 (2008)
8. Kuper, G. M., McAloon,K. W., Palem, K. V., Perry, K., J.: A note on the parallel complexity

of anti-unification. J. Automated Reasoning 9, 381–389 (1992)
9. Lassez, J.-L., Maher, M. J., Marriott, K.: Unification revisited. In: J. Mikner (ed.), Foundations

of Deductive Databases and Logic Programming, pp. 587–625, Morgan Kaufmann (1988)
10. Lloyd, J. W.: Foundations of Logic Programming (2nd edition), Springer (1987)
11. Oancea, C., So, C, Watt, S., M.: Generalization in Maple. Maple Conference, pp. 377–382

(2005)
12. Østvold, B. M.: A functional reconstruction of anti-unification. Technical Report

DART/04/04, Norwegian Computing (2004)
13. Palamidessi, C.: Algebraic properties of idempotent substitutions. In: Paterson M.S. (eds)

Automata, Languages and Programming. ICALP 1990. LNCS, vol. 443, Springer, Berlin, Hei-
delberg (1990)

14. Plotkin, G. D.: A note on inductive generalization. Machine Intelligence, vol. 5, Edinburgh
University Press, pp. 153–163 (1970)

15. Prawitz, D.: Advances and problems in mechanical proof procedures. Machine Intelligence,
vol. 4, Edinburgh Univ. Press, pp. 59–71 (1969)

16. Reynolds, J. C.: Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence, vol. 5, Edinburgh Univ. Press, pp. 135–151 (1970)

17. Yamasaki, S., Yoshida, M., Doshita, S.: A fixpoint semantics of Horn sentences based on
substitution sets. Theoretical Computer Science 51, 309–324 (1986)

18. Yoshida, M. and Sakama, C.: Computing least generalization by anti-combination (short
paper). Presented at ILP-14 (formally unpublished) (2014)

