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Abstract. This paper provides a new method of computing a least gen-
eralization of terms. Using the technique of combination of substitutions,
we introduce the notion of anti-combination which is the inverse substi-
tution of combination. We then show that anti-combination is used for
producing a least generalization of terms.

1 Introduction

For a definite program P and a goal G, a computed answer θ for P ∪ {G} is the
substitution obtained by restricting the composition θ1 · · · θn to the variables
of G, where θ1, . . . , θn is the sequence of mgu’s used in an SLD-refutation of
P ∪ {G} [5]. In an SLD-derivation, each θi is an mgu used for deriving a new
goal Gi from its preceding goal Gi−1 and a parent clause in P . Thus, θ1, . . . , θn
are computed sequentially and an answer substitution is computed by compos-
ing mgus one by one. Yamasaki and Yoshida [10, 11] introduce new resolution
methods based on combination of mgus. The methods have the unique feature
that resolution is performed by manipulation of substitutions, and mgus used
in combination are computed independently of one another. Compared with
composition of substitutions, however, combination of substitutions is of rela-
tively little use in automated reasoning and logic programming. The notion is
introduced by Prawitz [8] and is studied by Chang and Lee [1]. Mathematically,
combination is obtained as the greatest lower bound of mgus [3].

In this paper we show that the combination operation is also used for com-
puting least generalization (lg) of a set of terms. Plotkin [7] and Reynolds [9]
introduce algorithms for anti-unification of two terms. Plotkin argue that it is it-
eratively applied to computing lg of a set of terms: for a set of terms {t1, . . . , tn},
its lg is computed as lg(t1, lg(t2, . . . , lg(tn−1, tn) · · ·) ) where lg(ti, tj) computes
lg of ti and tj . We show that lg of a set of terms is computed by an inverse
substitution of combination, which we call anti-combination. In Section 2 we
review basic notions and algebraic properties of substitutions. In Section 3 we
introduce a method of computing least generalization by anti-combination.



2 Preliminaries

A first-order language consists of an alphabet and all formulas defined over it.
The definition is the standard one in the literature [1, 5]. Variables are repre-
sented by letters x, y, z, . . .; constants are represented by letters a, b, c, . . .; and
function symbols (of arities > 0) are represented by letters f, g, h, . . . A term is
either (i) a constant, (ii) a variable, or (iii) the expression f(t1, . . . , tn) where
f is an n-ary (n > 0) function symbol and t1, . . . , tn are terms. Two terms t1
and t2 are compatible if t1 = f(t1, . . . , tk) for some f then t2 = f(t′1, . . . , t

′
k).

The set of all variables (resp. terms) in the language is denoted by V ar (resp.
Term). The set of variables occurring in a term t is denoted by V(t). Given a
set E = {t1, . . . , tn} with ti ∈ Term (1 ≤ i ≤ n), we assume V(ti) ∩ V(tj) = ∅
for any ti �= tj (1 ≤ i, j ≤ n). The following definitions of substitutions and their
properties are due to [1, 3, 4, 11].

Definition 2.1 (substitution). A substitution is a mapping σ from V ar into
Term such that the set Σ = { 〈x, σ(x) 〉 | x �= σ(x) and x ∈ V ar} is finite.
When σ(xi) = ti for i = 1, . . . , n, it is also written as σ = { t1/x1, ..., tn/xn }.3
The set of all substitutions in the language is denoted by Sub. The set D(σ) =
{x | 〈x, t 〉 ∈ Σ } is the domain of σ. The identity mapping ε over V ar is the
empty substitution. A bijection from V ar to V ar is a renaming of variables. The
set of all renamings is denoted by Ren (where Ren ⊂ Sub).

Definition 2.2 (instance, gci). For σ ∈ Sub and t ∈ Term, an instance tσ of
t is defined as follows:

tσ =

⎧⎨
⎩

σ(x) if t = x for x ∈ V ar,
a if t = a for a constant a,
f(t1σ, ..., tnσ) if t = f(t1, ..., tn) ∈ Term.

For a set E = {t1, . . . , tn} with ti ∈ Term (1 ≤ i ≤ n), a term t is a greatest
common instance (gci) of E if (i) for any ti ∈ E there is σi ∈ Sub such that
t = tiσi, and (ii) for any s ∈ Term satisfying (i) it holds that s = tλ for some
λ ∈ Sub.

Definition 2.3 (composition, idempotent). For σ, λ ∈ Sub, the composition
of σ and λ (denoted by σλ) is a function from V ar to Term such that

σλ(x) = (xσ)λ for any x ∈ V ar.

A substitution σ is idempotent if σσ = σ. The set of all idempotent substitutions
is denoted by ISub. For any t ∈ Term, t(σλ) = (tσ)λ. Also for any σ, λ, μ ∈ Sub,
it holds that (σλ)μ = σ(λμ) and σε = εσ = σ.

Definition 2.4 (unifier, mgu, mgsu). A substitution σ ∈ Sub is a unifier for
a set E = {t1, . . . , tn} with ti ∈ Term (1 ≤ i ≤ n) if t1σ = · · · = tnσ holds. A

3 It is often written as {x1/t1, ..., xn/tn } [2, 5].



unifier σ for a set E is a most general unifier (mgu) (written σ = mgu(E)) if for
each unifier θ for the set E, there is a substitution λ ∈ Sub such that θ = σλ.
For a finite set E of finite sets of terms, σ ∈ Sub is a most general simultaneous
unifier (mgsu) of E (written mgsu(E)) if σ = mgu(E) for any E ∈ E.

Definition 2.5 (order on Term). For any s, t ∈ Term, s ≤ t if s = tθ for
some θ ∈ Sub. In particular, we write s ∼ t if s ≤ t and t ≤ s.

The relation ≤ is reflexive and transitive over the set Term. It holds that s ∼ t
iff s = tλ for some λ ∈ Ren. Let T be the quotient set Term/∼, completed with
the bottom element. Then the ordered set (T ,≤) constitutes a complete lattice
[9].

Definition 2.6 (order on Sub). For any σ, θ ∈ Sub, σ ≤ θ if σ = θλ for some
λ ∈ Sub. In particular, we write σ ∼ θ if σ ≤ θ and θ ≤ σ.

The relation ≤ is reflexive and transitive over the set Sub.4 It holds that σ ∼ θ
iff σ = θλ for some λ ∈ Ren.

Proposition 2.1. [3, Prop.4.5] For any finite set E ⊆ Term, σ = mgu(E) for
some σ ∈ Sub iff there is λ ∈ ISub such that λ = mgu(E) and λ ∼ σ.

By Proposition 2.1 mgus are assumed to be idempotent in this paper without
loss of generality. Let IS be the quotient set ISub/∼, completed with the bottom
element. Then the ordered set (IS,≤) constitutes a complete lattice [3].

Definition 2.7 (combination). For Θ ⊆ ISub, the glb of (Θ,≤) is called a
combination. When Θ = {θ1, ..., θn}, it is written as θ1 + · · ·+ θn.

The operation ‘+’ is commutative and associative. For any σ ∈ ISub, σ +
σ ∼ σ and σ + ε ∼ σ. Chang and Lee [1] provide another definition of com-
bination. Given θ1, ..., θn ∈ ISub where θi = {ti1/xi

1, ..., t
i
ki
/xi

ki
} (1 ≤ i ≤

n), the combination θ1 + · · · + θn is defined as the mgu of two terms: E1 =
f(t11, . . . , t

1
k1
, . . . , tn1 , . . . , t

n
kn
) and E2 = f(x1

1, . . . , x
1
k1
, . . . , xn

1 , . . . , x
n
kn
) where f

is a function symbol. These two definitions are proved to be equivalent [11].

Proposition 2.2. For any σ, θ ∈ ISub, if D(σ)∩D(θ) = ∅, σθ = σ∪ θ = σ+ θ.

Proposition 2.3. [3, 11] Let E = {E1, . . . , En} be a set of finite sets of terms.
(i) mgsu(E) ∼ σ1 · · ·σn where σ1 = mgu(E1), . . . , σn = mgu(Enσ1 · · ·σn−1),
and (ii) mgsu(E) ∼ mgu(E1) + · · ·+mgu(En).

Proposition 2.3 presents two different ways of computing mgsu(E). The one
(i) presents that computing σ1, . . . , σn in a sequential manner and composing
them to get mgsu(E). This method is usually employed in binary resolution. The
other one (ii) presents that computing mgu(Ei) for each Ei and combining them
to get mgsu(E). Comparing two methods, computation of σi uses the results of
σ1, . . . , σi−1 in (i). By contrast, in (ii) each mgu(Ei) is computed independently,
so that combination has potential usage in parallel computation of gci.
4 We use the same symbol ≤ as the relation over Term, but the meaning is clear from
the context.
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Fig. 1: composition and combination

Example 2.1. Let E1 = { f(x, g(y)), f(z, g(b)) } and E2 = { f(z, g(b)), f(c, w) }.
Then σ = mgu(E1) = {b/y, x/z} and θ = mgu(E2σ) = {c/x, g(b)/w}. The mgsu
of {E1, E2} is then obtained by the composition σθ = {c/x, b/y, c/z, g(b)/w},
and the gci of E1∪E2 is f(c, g(b)) (Fig. 1(a)). Similar computation is done by first
computing λ = mgu(E2) = {c/z, g(b)/w} and then computing μ = mgu(E1λ) =
{c/x, b/y}, which produces the same mgsu and the gci (Fig. 1(b)). On the other
hand, the mgsu is computed by the combination σ+ λ = {c/x, b/y, c/z, g(b)/w}
which produces the gci (Fig. 1(c)).

3 Computing Least Generalization by Anti-combination

For a set E ⊆ Term, its least generalization (lg) (written lg(E)) is defined as
the least upper bound of the set (E,≤) [2]. We first provide the anti-unification
algorithm [2, Algorithm 13.1] for computing a least generalization of two terms
which is originally introduced in [9]. For two terms t1 and t2, let s = lg({t1, t2}).
Then there is a substitution θi ∈ ISub such that ti = sθi (i = 1, 2). We call θi a
substitution for lg of {t1, t2} (wrt ti) and write slg(ti, {t1, t2}) = θi.

Definition 3.1 (anti-unification algorithm). [2, 9]
Input: two compatible terms t1 and t2
Output: s = lg({t1, t2}) and θi = slg(ti, {t1, t2}) (i = 1, 2)

1. Set t′1 = t1 and t′2 = t2, θ1 = θ2 = ε, and i = 0.
Let z1, z2, . . . be a sequence of variables not appearing in t1 or t2.

2. If t′1 = t′2, then output t′1, θ1, θ2 and stop.
3. Let p be the leftmost symbol position where t′1 and t′2 differ. Let s1 and s2

be the terms occurring at this position in t′1 and t′2, respectively.
4. If, for some j with 1 ≤ j ≤ i, zjθ1 = s1 and zjθ2 = s2, then replace s1 at the

position p in t′1 by zj , replace s2 at the position p in t′2 by zj , and go to 2.
5. Otherwise set i to i+ 1, replace s1 at the position p in t′1 by zi, and replace

s2 at the position p in t′2 by zi. Set θ1 to θ1∪{s1/zi}, θ2 to θ2∪{s2/zi}, and
go to 2.

Since the lub of (E,≤) is associative, the above anti-unification algorithm is
iteratively applied for computing a least generalization of a set E of terms. In
this case, each slg(ti, E) (ti ∈ E) is computed by a composition of substitutions.



Example 3.1. Let E = {t1, t2, t3}, s1 = lg({t1, t2}) and s2 = lg({t1, t2, t3}) =
lg({s1, t3}). Then t1 = s1θ1, t2 = s1θ2, s1 = s2σ1, and t3 = s2σ2 for some θ1,
θ2, σ1, σ2 ∈ Sub. Then t1 = s2σ1θ1, t2 = s2σ1θ2, and t3 = s2σ2. So slg(t1, E) =
σ1θ1, slg(t2, E) = σ1θ2, and slg(t3, E) = σ2ε.

The above algorithm computes a substitution θi such that ti = sθi (i = 1, 2)
for s = lg({t1, t2}). Then an lg s is also computed by s = tiθ

−1
i where θ−1

i is
an inverse substitution of θi. An inverse substitution θ−1 is well-defined if θ is
injective.

Definition 3.2 (inverse substitution). [6] Let θ ∈ Sub be injective and t ∈
Term. If V(D(θ)) ∩ V(t) = ∅, then an inverse substitution θ−1 : Term → V ar
is defined as follows.

tθ−1= x if (t/x) ∈ θ,

f(t1, . . . , tn)θ
−1= f(t1θ

−1, . . . , tnθ
−1) if (f(t1, . . . , tn)/x) �∈ θ for some x ∈ V ar,

yθ−1= y if (y/x) �∈ θ for some x ∈ V ar.

If V(D(θ)) ∩ V(t) �= ∅, a renaming substitution λ ∈ Ren is applied to t
in such a way that V(D(θ)) ∩ V(tλ) = ∅. Then we can apply θ−1 to tλ if θ
is injective. If a substitution θ is not injective, we use the technique of [2] to
constitute θ−1. We do not have much space to present details and just give
an example. When t = f(x, y) and θ = {a/x, a/y}, it becomes tθ = f(a, a).
The inverse substitution θ−1 = {x/a, y/a} is ill-defined, then it is modified as
θ−1 = {(x/a, 〈 1 〉), (y/a, 〈 2 〉)} meaning that a at position 〈 1 〉 is mapped to x
and a at position 〈 2 〉 is mapped to y. With this mechanism, f(a, a)θ−1 = f(x, y).
For any non-injective θ ∈ Sub, we constitute θ−1 in this way.

Definition 3.3 (anti-combination). Let σ = θ1 + · · · + θn be a combination
of {θ1, . . . , θn} ⊆ ISub. Then the inverse substitution σ−1 is called an anti-
combination of θ1, . . . , θn.

Combining injective substitutions may produce a non-injective substitution.
For instance, θ1 = {a/x} and θ2 = {a/y} produce θ1 + θ2 = {a/x, a/y}. To
compute its inverse substitution, we incorporate information of substitutions
from which each binding comes from: (θ1 + θ2)

−1 = {(x/a, 〈 θ1 〉), (y/a, 〈 θ2 〉)}
which means that a from θ1 is mapped to x and a from θ2 is mapped to y. With
this technique, anti-combination is well-defined for non-injective combination.

Proposition 3.1. Let E = {t1, t2, t3} be a set of terms, θ = slg(t2, {t1, t2}) and
μ = slg(t2, {t2, t3}). Then lg(E) = t2σ

−1 where σ ∼ (θ + μ).

Proof. Let s1 = lg({t1, t2}) and s2 = lg({t2, t3}). Then lg(E) = lg({s1, s2}),
and s1θ = t2 and s2μ = t2. By D(θ) ∩ D(μ) = ∅, s1θ = s1(θ + μ) = t2 and
s2μ = s2(θ + μ) = t2. Then lg(E) = lg({s1, s2}) = lg({t2(θ + μ)−1, t2(θ +
μ)−1}) = t2(θ + μ)−1. Hence, the result holds. ��

Since combination is associative, the result of Proposition 3.1 is extended to
a set of terms containing n-terms (n ≥ 3).
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Fig. 2: anti-unification and anti-combination

Example 3.2. Suppose the set E = { f(x, g(y)), f(z, g(b)), f(c, w) } of terms.
Then lg({ f(x, g(y)), f(z, g(b)) }) = f(u, g(v)) with σ = {x/u, y/v} and θ =
{z/u, b/v} where f(u, g(v))σ = f(x, g(y)) and f(u, g(v))θ = f(z, g(b)). Next
lg({f(u, g(v)), f(c, w)}) = f(x′, y′) with λ = {u/x′, g(v)/y′} and τ = {c/x′, w/y′}
where f(x′, y′)λ = f(u, g(v)) and f(x′, y′)τ = f(c, w). Then, lg(E) = f(x′, y′)
where f(x′, y′)λσ = f(x, g(y)) with λσ = {x/x′, g(y)/y′} and f(x′, y′)λθ =
f(z, g(b)) with λθ = {z/x′, g(b)/y′} (Fig. 2(a)). Similar computation is done by
first computing an lg of two terms f(z, g(b)) and f(c, w) (Fig. 2(b)).

On the other hand, θ + μ = {z/u, b/v, z/u′, g(b)/v′}. Then (θ + μ)−1 =
{ (u/z, 〈 θ 〉), (v/b, 〈 θ 〉), (u′/z, 〈μ 〉), (v′/g(b), 〈μ 〉) }. Applying it to f(z, g(b)),
lg(E) = f(u, v′) (∼ f(x′, y′)) is obtained (Fig. 2(c)). (Note: by the second con-
dition of Def. 3.2, (v/b, 〈 θ 〉) is not applied to b in f(z, g(b)).)
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