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Abstract. This paper considers the following induction problem. Given
the background knowledge B and an observation O, find a hypothesis
H such that a consistent theory B ∧ H has a minimal model satisfy-
ing O. We call this type of induction brave induction. Brave induction
is different from explanatory induction in ILP, which requires that O is
satisfied in every model of B ∧ H. Brave induction is useful for learn-
ing disjunctive rules from observations, or learning from the background
knowledge containing indefinite or incomplete information. We develop
an algorithm for computing brave induction, and extend it to induction
in answer set programming.

1 Introduction

Logical foundations for induction is one of the central topics in machine learning,
and different theories of induction have been proposed in the literature [1–4,
13–15, 19, 21, 25]. A typical induction task constructs hypotheses to explain an
observation (or examples) using the background knowledge. More precisely, given
the background knowledge B and an observation O, a hypothesis H covers O

under B if

B ∧H |= O (1)

where B ∧ H is consistent. This style of induction is often called explanatory
induction [8] and is usually used in inductive logic programming (ILP) [20].

By the definition, explanatory induction requires that a possible solution H

together with B logically entails O. In other words, O is true in every model
of B ∧ H. This condition is often too strong for building possible hypotheses,
however. Suppose that there are 30 students in a class. Of which 20 are European,
7 are Asian, and 3 are American. The situation is represented by the background
knowledge B and the observation O:

B : student(1) ∧ · · · ∧ student(30),

O : euro(1) ∧ · · · ∧ euro(20) ∧ asia(21) ∧ · · · ∧ asia(27) ∧ usa(28) ∧ · · · ∧ usa(30),



where each number represents individual students. In this case, the following
clause, saying that every student is either European, Asian, or American, appears
a good hypothesis:

H : euro(x) ∨ asia(x) ∨ usa(x) ← student(x) . (2)

Unfortunately, however, H does not satisfy the relation B ∧ H |= O. In fact,
B ∧H has many models in which O is not true. An instance of such a model is:
{ student(1), . . . , student(30), euro(1), . . . , euro(30) }.
Explanatory induction in ILP has been mainly used for learning Horn theo-

ries. When the background knowledge B and a hypothesis H are Horn theories,
B ∧H has the unique minimal model (or the least model), and the relation (1)
represents that O is true in the least model. In this case, the relation (1) is
necessary and sufficient to make O an explanatory consequence of B ∧ H. On
the other hand, when B or H contains indefinite information, B ∧H becomes a
non-Horn theory which has multiple minimal models in general. An observation
O might be true in some minimal models of B ∧ H but not every one. In this
case, however, the relation (1) excludes a hypothesis H due to the existence of a
single minimal model in which O is not true. As a result, meaningful hypotheses
might be unqualified as presented above.
To cope with the problem, this paper introduces a weak form of induction

called brave induction. In contrast to explanatory induction, brave induction
defines that a hypothesis H covers O under B if O is true in some minimal
model of B ∧H. By the definition, brave induction is weaker than explanatory
induction, and the hypothesis (2) becomes a solution of brave induction.
This paper introduces a logical framework of brave induction and develops a

procedure for computing hypotheses in brave induction. The proposed framework
is further extended to induction from nonmonotonic logic programs in answer
set programming [16]. The rest of this paper is organized as follows. Section 2
introduces the framework of brave induction and develops its computational
method. Section 3 applies brave induction to nonmonotonic logic programming.
Section 4 discusses related issues, and Section 5 concludes the paper.

2 Brave Induction

2.1 Logical Framework

We first introduce a logical framework of induction considered in this paper. A
first-order language L consists of an alphabet and all formulas defined over it.
The definition is the standard one in the literature [20]. For induction we use a
clausal language which is a subset of L.
A clausal theory (or simply a theory) is a finite set of clauses of the form:

A1 ∨ · · · ∨Am ∨ ¬Am+1 ∨ · · · ∨ ¬An (n ≥ m ≥ 0)

where each Ai (1 ≤ i ≤ n) is an atom. Any variable in a clause is assumed to be
universally quantified at the front. A clause of the above form is also written as

A1 ∨ · · · ∨Am ← Am+1 ∧ · · · ∧An . (3)



A1 ∨ · · · ∨Am is the head of the clause, and Am+1 ∧ · · · ∧An is the body. Given
a clause C of the above form, head(C) represents the set {A1, . . . , Am } and
body(C) represents the set {Am+1, . . . , An }. A clause C is often identified with
the set of literals {A1, . . . , Am, ¬Am+1, . . . ,¬An }. A Horn clause is a clause
of the form (3) with m ≤ 1. A Horn theory is a finite set of Horn clauses. A
theory is identified with the conjunction of the clauses in it. A theory, a clause
or an atom is ground if it contains no variable. A ground substitution θ replaces
variables x1, . . . , xk occurring in a clause C (resp. an atom A) to ground terms
t1, . . . , tk in Cθ (resp. Aθ). A ground clause C is prime with respect to a theory
T if T |= C but T 6|= C ′ for any C ′ ⊂ C. A conjunctive normal form (CNF)
formula is a conjunction of disjunction of literals, and a disjunctive normal form
(DNF) formula is a disjunction of conjunction of literals. A CNF formula or a
DNF formula is ground if it contains no variable. A DNF formula F = c1∨· · ·∨ck

is irredundant if F 6≡ F ′ for any F ′ = c1 ∨ · · · ∨ ci−1 ∨ ci+1 ∨ · · · ∨ ck (1 ≤ i ≤ k).
The domain of a theory T is given as the Herbrand universe HU and an

interpretation of T is defined as a subset of the Herbrand base HB. An in-
terpretation I satisfies a ground clause (3) if {Am+1, . . . , An } ⊆ I implies
{A1, . . . , Am } ∩ I 6= ∅. An interpretation I satisfies a theory T if I satisfies
every clause in T . In this case, I is a model of T and Mod(T ) represents the
set of all models of T . A model M ∈ Mod(T ) is minimal if N ⊆ M implies
M ⊆ N for any N ∈ Mod(T ). The set of minimal models of T is written as
MM(T ). A theory T entails a formula F (written as T |= F ) if F is true in any
I ∈ Mod(T ). A theory T is consistent if Mod(T ) 6= ∅; otherwise, T is incon-
sistent . A conjunction C of ground atoms is identified with the set of ground
atoms in C.
Let B, O and H are all consistent theories, where B, O, and H are re-

spectively called a background knowledge, an observation, and a hypothesis. We
assume that B, O and H have the same HU and HB. The task of induction is to
construct H when B and O are given. Formally, given the background knowledge
B and an observation O, a hypothesis H covers O under B if

B ∧H |= O (4)

where B ∧ H is consistent. This type of induction is called explanatory induc-
tion [8] or learning from entailment [3], and is usually used in inductive logic
programming (ILP) [20]. As presented in the introduction, however, explanatory
induction is too strong for handling indefinite disjunctive information. To relax
the condition of explanatory induction, we introduce a weak form of induction.

Definition 2.1. (brave induction) Let B be the background knowledge and
O an observation. A hypothesis H covers O under B in brave induction if a
consistent theory B∧H has a minimal model satisfying O. H is called a solution
of brave induction.

The above definition requires that an observation is satisfied in some minimal
model of a consistent theory B ∧H. This is in contrast to the definition of ex-
planatory induction in which an observation must be satisfied in every minimal



model of B∧H. In this sense, explanatory induction of (4) is also called cautious
induction, hereafter. These names are taken from brave/cautious reasoning in
nonmonotonic logics [18] and disjunctive logic programs [6]. A formula F is a
consequence of cautious inference in a theory T if it is true in every minimal
model of T , while F is a consequence of brave inference in T if F is true in some
minimal model of T .3 When a theory contains indefinite or incomplete informa-
tion, brave inference infers more results than cautious inference in general. Brave
and cautious inferences have been used in different reasoning tasks of deduction
and abduction in artificial intelligence. Thus, it is natural to apply brave infer-
ence to induction from non-Horn theories containing indefinite or incomplete
information. The utility of brave induction has already been illustrated in the
introductory example. Some properties of brave induction are provided. In what
follows, B, O, and H represent the background knowledge, an observation, and
a hypothesis, respectively.

Proposition 2.1 Brave induction has a solution iff B ∧O is consistent.

Proposition 2.2 If H covers O under B in cautious induction, H is a solution
of brave induction. The converse implication also holds when B is a Horn theory.

Proposition 2.3 If H is a solution of brave induction, B∧H ∧O is consistent.

Proposition 2.4 For any theory H ′ |= H such that B ∧H ′ is consistent, if H
is a solution of brave induction, so does H ′.

Proof. The result holds by B ∧H ′ |= B ∧H. ut

Proposition 2.4 allows us to search the most specific solutions (under impli-
cation) rather than all theories. Brave induction is nonmonotonic, that is, two
solutions cannot be merged in general.

Proposition 2.5 The fact that both H1 and H2 are solutions of brave induction
does not imply that H1 ∧H2 is a solution.

Example 2.1. Let B = { p(a) ←} and O = { q(a) ∨ r(a) ←, ← q(a) ∧ r(a) }.
Then, both H1 = { q(x)← p(x) } and H2 = { r(x)← p(x) } cover O under B in
brave induction, but H1 ∧H2 is not.

In Example 2.1, H1 and H2 cover O under B in cautious induction, but
H1 ∧H2 is not. Thus, explanatory induction is also nonmonotonic.

Proposition 2.6 If H1 and H2 are solutions of brave induction, so is H1 ∨H2.

Cautious induction also satisfies Proposition 2.6.

Proposition 2.7 The fact that H covers both O1 and O2 under B does not
imply H covers O1 ∧O2 under B in brave induction.

3 Cautious/brave inference is also called skeptical/credulous inference.



Example 2.2. Let B = { p(x) ∨ q(x) ← r(x), s(a) ←}, O1 = { p(a) }, and
O2 = { q(a) }. Then, H = { r(x) ← s(x) } covers both O1 and O2 under B in
brave induction, but H does not cover O1 ∧O2 under B.

In cautious induction, on the other hand, if H covers both O1 and O2 under
B, so does O1∧O2. Thus, Proposition 2.7 provides a property that distinguishes
brave induction from cautious one.
When B has a minimal model satisfying O, O is inferred by brave inference

from B. In this case, H = true covers O, which is a trivial and uninteresting
solution. The problem of our interest is the case in which B has no minimal
model satisfying O. In other words, ¬O is derived from B under the general-
ized closed world assumption (GCWA) [17]. It is worth noting that explanatory
induction in Horn theories finds a hypothesis H when a Horn theory B has no
minimal model satisfying O. In this case, ¬O is derived from B under the closed
world assumption (CWA) [22]. Thus, brave induction in non-Horn theories is
considered a natural extension of explanatory induction in Horn theories.

2.2 Computation

In this section, we develop an algorithm for computing brave induction. Through-
out the section, we assume that (1) any observation O is a conjunction of ground
atoms,4 and (2) any hypothesis H is a finite clausal theory such that each clause
has the non-empty head. The first condition is assumed as the normal problem
setting in ILP [20]. The second condition is also natural because we are interested
in getting any clause which derives an observation together with the background
knowledge. The next proposition characterizes the brave induction problem.

Proposition 2.8 Let B be the background knowledge, H a hypothesis, and O

an observation. Then, B ∧ H has a minimal model satisfying O iff there is a
disjunction F of ground atoms such that B ∧H |= O ∨ F and B ∧H 6|= F .5

Proof. (→) Suppose that B ∧ H has a minimal model M such that M |= O.
Consider a disjunction F of ground atoms satisfying (i) M 6|= F and (ii) N |= F

for any N ∈ MM(B ∧H) such that N 6|= O. Such F is constructed by picking
up ground atoms from each N \M . Then, B ∧H |= O ∨ F holds. As M 6|= F ,
B ∧H 6|= F .
(←) Suppose that B ∧H |= O∨F holds for a disjunction F of ground atoms

and B ∧H 6|= F . If B ∧H has no minimal model satisfying O, B ∧H |= O ∨ F

implies B ∧H |= F . This contradicts the assumption that B ∧H 6|= F . ut

Step 1: Computing ground hypotheses

By Proposition 2.8, a solution of brave induction is obtained by computing
H satisfying

B ∧H |= O ∨ F (5)
4 A conjunction O is identified with the set of ground atoms in it.
5 Related results are shown in [9, Theorem 4.5] in the context of circumscription, and
in [12, Corollary 3.5] in terms of abduction.



and
B ∧H 6|= F . (6)

By (5), it holds that

B ∧ ¬O |= ¬H ∨ F. (7)

¬H∨F is thus obtained by deduction from B∧¬O. This technique is inverse en-
tailment that is originally proposed by Muggleton for induction in Horn theories
[19], and is later extended by Inoue to full clausal theories [13].
As H is a clausal theory, put

H = (Σ1 ← Γ1) ∧ · · · ∧ (Σk ← Γk) (8)

where Σi (i = 1, . . . , k) is a disjunction of atoms and Γi (i = 1, . . . , k) is a
conjunction of atoms. It then becomes

¬H = (¬Σ1 ∧ Γ1) ∨ · · · ∨ (¬Σk ∧ Γk). (9)

Since F is a disjunction of ground atoms, every formula ¬H ∨ F in (7) is a
disjunctive normal form. From B ∧ ¬O, a number of DNF formulas could be
deduced. Among them, we take DNF formulas obtained as follows. First, com-
pute prime CNF formulas with respect to B ∧ ¬O. A prime CNF formula is a
conjunction of prime clauses and is obtained by a system of consequence-finding .
For this purpose, SOL-resolution by Inoue [10] is used. Second, construct a DNF
formula as follows: given a prime CNF formula c1 ∧ · · · ∧ ck, produce an irre-
dundant DNF formula d1 ∨ · · · ∨ dl where di (1 ≤ i ≤ l) contains a literal from
each cj (1 ≤ j ≤ k). Then, B ∧ ¬O |= d1 ∨ · · · ∨ dl holds, and we identify the
DNF formula ¬H ∨F of (7) with d1 ∨ · · · ∨ dl. After deriving such ground DNF
formulas of the form ¬H ∨ F , the next problem is to extract ¬H from ¬H ∨ F .
This is simply done as follows. By the assumption, Σi in H is non-empty, so
that ¬H is a DNF formula in which each disjunct ¬Σi ∧ Γi of (9) contains at
least one negative literal. On the other hand, F is a disjunction of ground atoms.
Thus, from the DNF formula ¬H ∨ F , ¬H is extracted by selecting disjuncts
containing negative literals. As such, any ground DNF formula ¬H is obtained.
From this ¬H, we can obtain a clausal theory H such that B∧H has a minimal
model satisfying O (by Proposition 2.8).

Step 2: Generalization

H is a clausal theory containing no variable, so that H is generalized in the
next step. Two cases are considered: (a) O contains a single predicate, and (b)
O contains multiple different predicates. In case of (a), we apply Plotkin’s least
generalization under subsumption (LGS) [21] to H. The LGS of any finite set
of clauses exists and is computed by the LGS algorithm in [20, 21]. The result
of LGS is written as lgs(H). In case of (b), let n be the number of different
predicates appearing in O. Then, O is partitioned into disjoint subsets:

O = O1 ∧ · · · ∧On (10)



where Oi (1 ≤ i ≤ n) is a conjunction of ground atoms having the same predi-
cate. Correspondingly, H is partitioned as

H = H1 ∧ · · · ∧Hn (11)

where Hi (1 ≤ i ≤ n) is a conjunction of clauses whose heads contain the
predicate in Oi. The LGS of each Hi is then computed and collected as

lgs(H) = lgs(H1) ∧ · · · ∧ lgs(Hn) . (12)

Note that the equation (12) also represents the result of (a) when n = 1.

Step 3: Constructing a weak form of hypotheses

When an observation has some specific property, lgs(Hi) is combined into a
weaker formula.

Definition 2.2. (synchronous) Let pred(A) be the predicate of an atom A, and
const(A) the set of constants in A. Given a set S of atoms, suppose two atoms
A1 and A2 in S such that pred(A1) = p1, pred(A2) = p2, and p1 6= p2. Then, p1

and p2 are synchronous in S if const(A1)∩ const(A2) 6= ∅. Otherwise, p1 and p2

are asynchronous in S. A set S is asynchronous if p1 and p2 are asynchronous
in S for any different predicates p1 and p2 in S.

An observation O is asynchronous if O is an asynchronous set. Suppose that
O is partitioned into n disjoint sets as (10) and H is partitioned as (11). In
this case, take the greatest specialization under implication (GSI) [20] of clauses
lgs(H1), . . . , lgs(Hn). The GSI of any finite set of clauses exists and is computed
by simply taking a disjunction as

gsi(lgs(H1), . . . , lgs(Hn)) = lgs(H1) ∨ · · · ∨ lgs(Hn). (13)

By lgs(Hi) |= gsi(lgs(H1), . . . , lgs(Hn)) for i = 1, . . . , n, the GSI (13) provides
a formula which is weaker than each lgs(Hi).

Step 4: Optimization

Hypotheses computed in the above two steps generally contain clauses or
atoms that are useless or have no direct connection to explaining the observation
O. To extract useful information, a method for optimization is provided.

Definition 2.3. (isolated) Let term(A) be the set of terms appearing in an
atom A. Then, two atoms A1 and A2 are linked if term(A1) ∩ term(A2) 6= ∅.
Given a clause C, an atom A ∈ body(C) is isolated in C if there is no atom
A′(6= A) in C such that A′ and A are linked.

For any clause C in lgs(Hi) (1 ≤ i ≤ n),

1. remove any atom A from head(C) such that pred(A) is not included in O,
2. remove any atom A from body(C) such that A is isolated in C.



Procedure: Brain

Input : the background knowledge B and an observation O;
Output : hypotheses H∧ and H∨.

Step 1 : Compute ground and irredundant DNF formulas ¬H ∨F from B ∧¬O, and
extract ¬H from ¬H ∨ F .

Step 2 : Compute lgs(H).
Step 3 : If O is asynchronous and is partitioned into O = O1 ∧ · · · ∧On,

compute gsi(lgs(H1), . . . , lgs(Hn)).
Step 4 : If B ∧ lgs∗(Hi) is consistent, put H∧ = lgs∗(H1) ∧ · · · ∧ lgs∗(Hn) and

H∨ = lgs∗(H1) ∨ · · · ∨ lgs∗(Hn).

Fig. 1. An algorithm for brave induction

The first reduction eliminates atoms in the head which do not contribute to
the derivation of observations. The second reduction eliminates atoms in the
body which have no connection to the observation. Let lgs∗(Hi) be the result
of such reduction over lgs(Hi). When B ∧ lgs(Hi) is consistent, the reduction
is performed as far as B ∧ lgs∗(Hi) is consistent. The algorithm (called Brain)
for computing hypotheses is summarized in Figure 1.6

Now we show that Brain computes a solution for brave induction.

Lemma 2.9 Let B be the background knowledge and O an observation. Let H∧

be a clausal theory obtained by Brain. If B ∧H∧ is consistent, B ∧H∧ has a
minimal model satisfying O.

Proof. (i) Suppose first that O contains a single predicate. Then, for each clause
Ci = Σi ← Γi (1 ≤ i ≤ k) of (8), there is a ground substitution θi such that
lgs(H)θi ⊆ Ci for the lgs(H) of (12). Thus, lgs(H) |= H and B∧lgs(H) |= B∧H.
So lgs(H) satisfies the relation (5). By H∧ |= lgs(H), H∧ also satisfies (5).
Selecting a disjunction F of ground atoms such that B∧H∧ 6|= F ,H∧ satisfies the
relation (6). Hence, the result holds by Proposition 2.8. (ii) Next, suppose that
O contains multiple different predicates. Then, for each Hi of (11), lgs(Hi) |= H.
This implies lgs(H) |= H and lgs(H) satisfies the relation (5). The rest of the
proof is the same as (i). ut

Lemma 2.10 Let B be the background knowledge and O an asynchronous ob-
servation. Let H∨ be a clausal theory obtained by Brain. If B∧H∨ is consistent,
B ∧H∨ has a minimal model satisfying O.

Proof. Let O = O1∧· · ·∧On. By Lemma 2.9, B∧ lgs
∗(Hi) has a minimal model

Mi satisfying Oi (1 ≤ i ≤ n). Putting M =
⋃

1≤i≤n Mi, M satisfies O. As
B∧ lgs∗(Hi) |= B∧ lgs∗(H1)∨· · ·∨ lgs

∗(Hn),M is a model of B∧H∨ satisfying
O. Since the head of H∨ consists of atoms with different predicates, for any

6
Brain is named after BRAve INduction.



ground instance of H∨, we can select an atom A ∈ M from the head of each
clause whenever A ∈ O. Since O is an asynchronous set, two atoms A1 and A2

with different predicates are not selected from the same ground instance of H∨.
Hence, M is a minimal model of B ∧H∨. ut

By Lemmas 2.9 and 2.10, we have the next result.

Theorem 2.11. Any hypothesis computed by Brain becomes a solution of brave
induction.

Example 2.3. Consider the background knowledge B and the observation O:

B : teacher(0) ∧ student(1) ∧ · · · ∧ student(30),

O : euro(1) ∧ · · · ∧ euro(20) ∧ asia(21) ∧ · · · ∧ asia(27) ∧ usa(28) ∧ · · · ∧ usa(30).

Brain computes candidate hypotheses as follows. First, B∧¬O entails the prime
CNF formula B ∧ ¬O. From this, the ground and irredundant DNF formula
¬H1 ∨ ¬H2 ∨ ¬H3 is obtained where

H1 = (¬B ∨ euro(1)) ∧ · · · ∧ (¬B ∨ euro(20)),

H2 = (¬B ∨ asia(21)) ∧ · · · ∧ (¬B ∨ asia(27)),

H3 = (¬B ∨ usa(28)) ∧ · · · ∧ (¬B ∨ usa(30)).

The LGS of each Hi becomes

lgs(H1) = ¬teacher(0) ∨ ¬student(x) ∨ euro(x),

lgs(H2) = ¬teacher(0) ∨ ¬student(y) ∨ asia(y),

lgs(H3) = ¬teacher(0) ∨ ¬student(z) ∨ usa(z).

Then, lgs(H) = lgs(H1) ∧ lgs(H2) ∧ lgs(H3). On the other hand, as O is
asynchronous, the greatest specialization becomes gsi(lgs(H1), . . . , lgs(Hn)) =
lgs(H1) ∨ lgs(H2) ∨ lgs(H3).

Finally, the atom teacher(0) is isolated in each lgs(Hi) (i = 1, 2, 3), so that
it is remove from the body of each clause. As a result, H∧ becomes

(euro(x)← student(x)) ∧ (asia(x)← student(x)) ∧ (usa(x)← student(x)),

and H∨ becomes

euro(x) ∨ asia(x) ∨ usa(x)← student(x).

Thus, H∧ and H∨ become two solutions of brave induction.

In Example 2.3, H∧ also becomes a solution of cautious induction, but H∨

is a solution inherent to brave induction.



3 Brave Induction in Nonmonotonic Logic Programming

As presented in Section 2, brave induction is useful for learning theories with
indefinite or incomplete information. Incomplete information is also represented
as default rule in logic programming. In this section, we consider brave induction
in nonmonotonic logic programs.

3.1 Answer Set Programming

Answer set programming (ASP) [16] represents incomplete knowledge in a logic
program and realizes nonmonotonic default reasoning. In ASP a logic program
is described by an extended disjunctive program (EDP). An EDP (or simply a
program) is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln

(n ≥ m ≥ l ≥ 0) where each Li is a positive/negative literal, i.e., A or ¬A
for an atom A. not represents default negation or negation as failure (NAF).
notL is called an NAF-literal. Literals and NAF-literals are called LP-literals.
The symbol “;” represents disjunction and “,” represents conjunction. The above
rule is read “If all Ll+1, . . . , Lm are believed and all Lm+1, . . . , Ln are disbelieved,
then some of L1, . . . , Ll is believed”. The left-hand side of the rule is the head ,
and the right-hand side is the body. For each rule r of the above form, head(r),
body+(r) and body−(r) denote the sets of literals {L1, . . . , Ll}, {Ll+1, . . . , Lm},
and {Lm+1, . . . , Ln}, respectively. Also, not body−(r) denotes the set of NAF-
literals {notLm+1, . . . , not Ln}. A disjunction of literals and a conjunction of
(NAF-)literals in a rule are identified with its corresponding sets of literals. A rule
r is often written as head(r) ← body+(r), not body−(r) or head(r) ← body(r)
where body(r) = body+(r) ∪ not body−(r). A rule r is disjunctive if head(r)
contains more than one literal. A rule r is a constraint if head(r) = ∅; and r is
a fact if body(r) = ∅. A program is NAF-free if no rule contains NAF-literals.
A program, rule, or literal is ground if it contains no variable. A program P

with variables is a shorthand of its ground instantiation Ground(P ), the set of
ground rules obtained from P by substituting variables in P by elements of its
Herbrand universe in every possible way. Two literals L1 and L2 have the same
sign if both L1 and L2 are positive literals (or negative literals). A set S of
ground literal is consistent if L ∈ S implies ¬L 6∈ S for any literal L; otherwise,
S is inconsistent. Let L0 be a ground literal and S a set of ground literals. Then,
L1 ∈ S is relevant to L0 if either (i) const(L0) ∩ const(L1) 6= ∅, or (ii) for some
literal L2 ∈ S, const(L1) ∩ const(L2) 6= ∅ and L2 is relevant to L0. Otherwise,
L1 ∈ S is irrelevant to L0.
The semantics of an EDP is defined by the answer set semantics. Let Lit be

the set of all ground literals in the language of a program. Suppose a program
P and a set of literals S(⊆ Lit). Then, the reduct P S is the program which
contains the ground rule head(r)← body+(r) iff there is a rule r in Ground(P )
such that body−(r)∩S = ∅. Given an NAF-free EDP P , let S be a set of ground



literals that is (i) closed under P , i.e., for every ground rule r in Ground(P ),
body(r) ⊆ S implies head(r) ∩ S 6= ∅; and (ii) logically closed, i.e., it is either
consistent or equal to Lit. Given an EDP P and a set S of literals, S is an answer
set of P if S is an answer set of P S . A program has none, one, or multiple answer
sets in general. The set of all answer sets of P is written as AS(P ). An answer
set is consistent if it is not Lit. A program P is consistent if it has a consistent
answer set; otherwise, P is inconsistent.

Example 3.1. The program:

tea ; coffee ←,

milk ← tea, not lemon,

lemon← tea, not milk,

milk ← coffee,

has the three answer sets: S1 = { tea, milk }, S2 = { tea, lemon }, and S3 =
{ coffee, milk }, which represent possible options for drink.

3.2 Brave Induction in ASP

In this section, we consider the following problem setting:

– the background knowledge B is given as a consistent EDP,
– an observation O is given as a consistent set of ground literals,
– a hypothesis H is a consistent set of rules.

Then, brave induction in ASP is defined as follows.

Definition 3.1. (brave induction in ASP) Let B be the background knowledge
and O an observation. A hypothesis H covers O under B in brave induction if
B ∪H has a consistent answer set S such that O ⊆ S.7

Cautious induction, by contrast, requests that O ⊆ S holds for every consistent
answer set S of B ∪H. Brave induction in ASP has properties similar to those
of clausal theories. As the case of clausal theories, the problem of our interest is
the case when B has no answer set including O.
In case of brave induction from clausal theories, inverse entailment is used

for computing hypotheses. However, it is known that inverse entailment in clas-
sical logic is not applied to nonmonotonic logic programs [23]. We then consider
another method for computing possible hypotheses.

Step 1: Computing ground hypotheses

Given an observation O, let Θ = {L | L ∈ Lit and pred(L) appears in O }.
Suppose that the background knowledge B has an answer set S. Then, construct
a finite and consistent set R of ground rules satisfying the following conditions.
For any rule r ∈ R,
7 In nonmonotonic logic programming, logical connectives in classical logic are not
used. So we write B ∪H instead of B ∧H.



1. head(r) = {L} for any L ∈ O,

2. body+(r) = {L | L ∈ S and L is relevant to the literal in head(r) }.
3. body−(r) = {L | L ∈ Lit\(S∪Θ) and L is relevant to the literal in head(r)

and appears in Ground(P ) }.

The third condition requires that no rule contains default negation of liter-
als in S ∪ Θ. The reason is that if body−(r) contains literals from S, body(r)
may contain both L in body+(r) and notL in body−(r), which makes the rule
meaningless. Also, if body−(r) contains literals from Θ, r may contain a nega-
tive loop that would make a program inconsistent. By its construction, different
hypotheses are constructed by different answer sets in general.

Step 2: Generalization

The notion of LGS is extended to rules containing default negation. It is
done by syntactically viewing rules as “clauses”. That is, identify disjunction
“;” with the classical one “∨, and any NAF-literal “not p(t1, . . . , tn)” with a
new atom “not p(t1, . . . , tn)” with the predicate “not p”. ¬p is also considered a
predicate “¬ p” and is considered a predicate different from p. With this setting,
the LGS of a finite set of rules is defined in the same manner as the one in clausal
theories [24]. The generalization phase is similar to the case of clausal theories.
If O contains a single predicate, compute lgs(R). Else if O contains multiple
different predicates, O is partitioned into disjoint subsets O = O1 ∪ · · · ∪ On

where Oi (1 ≤ i ≤ n) is a set of ground literals having the same predicate.
Correspondingly, R is partitioned as R = R1 ∪ · · · ∪Rn where Ri (1 ≤ i ≤ n) is
a set of ground rules whose heads have the predicate in Oi. The LGS of each Ri

is then computed and collected as lgs(R) = lgs(R1) ∪ · · · ∪ lgs(Rn).

Step 3: Constructing a weak form of hypotheses

The GSI of two rules Head1 ← Body1 and Head2 ← Body2 is also defined
as Head1 ; Head2 ← Body1, Body2, by taking the disjunction/conjunction of
two heads/bodies. When an observation O is an asynchronous set, the GSI of
lgs(R1), . . . , lgs(Rn) is constructed as

gsi(lgs(R1), . . . , lgs(Rn))

= head(lgs(R1)) ; · · · ; head(lgs(Rn))← body(lgs(R1)), . . . , body(lgs(Rn)) .

Step 4: Optimization

The notion of “isolated literal” in a rule is defined by replacing a clause with
a rule, and an atom with a literal in Definition 2.3. Then, for any rule r in
lgs(Ri) (1 ≤ i ≤ n), remove any literal L from body(r) such that L is isolated in
r. Let lgs∗(Ri) be the result of such reduction over lgs(Ri). When B ∪ lgs(Ri)
is consistent, the reduction is performed as far as B ∪ lgs∗(Ri) is consistent.

The algorithm of brave induction in ASP (called Brain
not) is sketched in

Figure 2. In what follows, we show that Brain
not computes hypotheses for brave

induction in ASP. We say that O is independent of B if every predicate in O

appears nowhere in B.



Procedure: Brain
not

Input : the background knowledge B and an observation O;
Output : hypotheses H∧ and H∨.

Step 1 : Select an answer set S of B and construct a set R of rules.
Step 2 : Compute lgs(R).
Step 3 : If O is asynchronous and is partitioned into O = O1 ∪ · · · ∪On,

compute gsi(lgs(R1), . . . , lgs(Rn)).
Step 4 : If B ∪ lgs∗(Ri) is consistent, put H∧ = lgs∗(R1) ∪ · · · ∪ lgs∗(Rn) and H∨ =
{head(lgs∗(R1)) ; · · · ; head(lgs∗(Rn))← body(lgs∗(R1)), . . . , body(lgs∗(Rn)) }.

Fig. 2. An algorithm for brave induction in ASP

Proposition 3.1 Let P be a consistent program. Suppose a consistent set R of
rules such that for any r ∈ R, every predicate in head(r) appears nowhere in P .
Then, P ∪R is consistent.

Lemma 3.2 Let B be the background knowledge and O an observation. Let H∧

be a set of rules obtained by Brain
not. If O is independent of B, B ∪ H∧ has

an answer set U such that O ⊆ U .

Proof. Let S be an answer set of B. For any rule r in R, head(r) ← body+(r)
is in RS . Here, body+(r) ⊆ S, head(r) = {L}, and pred(L) appears nowhere in
B. Put T = S ∪ {L | L ∈ head(r) and r ∈ RS }. By BT ∪ RT = BS ∪ RT , T
becomes a minimal closed set of BT ∪ RT = (B ∪ R)T . Since O is independent
of B, every predicate in head(r) appears nowhere in P and B ∪ R is consistent
(Proposition 3.1). As R contains rules having every literal in O, T is a consistent
answer set of B ∪ R such that O ⊆ T . Next, we show that B ∪ lgs(R) has
an answer set such that O ⊆ U . Let R = R1 ∪ · · · ∪ Rn. By the definition,
lgs(Ri)θ ⊆ r for any r ∈ Ri (1 ≤ i ≤ n) with some ground substitution θ.
Then, for any rule r ∈ Ri, body

−(r) ∩ S = ∅ implies body−(lgs(Ri)θ) ∩ S = ∅.
So BS ∪ RS ⊆ BS ∪ lgs(R)S . Since O is independent of B, lgs(R)S \ RS is
a set of NAF-free rules whose heads have predicates appearing nowhere in B.
Put V = {L | r ∈ lgs(R)S \ RS , head(r) = {L} and body+(r) ⊆ S }. Then,
BS∪V ∪ lgs(R)S∪V = BS ∪ lgs(R)S has a minimal closed set U = S ∪ V . Since
O is independent of B, BS ∪ lgs(R)S is consistent (Proposition 3.1). As lgs(R)
contains rules having every literal in O, U is a consistent answer set of B∪lgs(R)
such that O ⊆ U . When B ∪ lgs∗(Ri) is consistent, U also becomes a consistent
answer set of B ∪H∧. Hence, the result follows. ut

Lemma 3.3 Let B be the background knowledge and O = O1 ∪ · · · ∪ On an
asynchronous observation. Let H∨ be a set of rules obtained by Brain

not. If O
is independent of B, B ∪H∨ has an answer set U such that O ⊆ U .

Proof. Let r = gsi(lgs(R1), . . . , lgs(Rn)). For some answer set S ofB, body
+(rθ) ⊆

S and body−(rθ) ⊆ Lit \ (S ∪ Θ) hold for any ground instance rθ of r. Since



head(r) consists of literals with different predicates, for any ground instance of
rθ, a set T of literals is constructed in a way that a literal L ∈ T is selected
from the head of each rθ whenever L ∈ O. Since O is an asynchronous set,
two literals L1 and L2 with different predicates are not selected from the same
ground instance of gsi(lgs(R1), . . . , lgs(Rn)). In this way, we can construct a
minimal closed set U = S ∪ T of BU ∪ {r}U . Since O is independent of B,
BU ∪{r}U is consistent (Proposition 3.1). Then, U becomes a consistent answer
set of B ∪ { gsi(lgs(R1), . . . , lgs(Rn)) } and O ⊆ U . When B ∪ lgs∗(Ri) is con-
sistent, U also becomes a consistent answer set of B ∪H∨. ut

By Lemmas 3.2 and 3.3, we have the next result.

Theorem 3.4. Any hypothesis computed by Brain
not becomes a solution of

brave induction.

Example 3.2. There are two couples, Adam and Nancy, and Bob and Jane. They
plan to go to either sea or mountain on this weekend. Each couple can select
one of them, but a husband and a wife go to the same place. The situation is
represented as the background knowledge B:

s(x)← not m(x),

m(x)← not s(x),

c(a, n)←, c(b, j)←,

← c(x, y), s(x),m(y),

← c(x, y), s(y),m(x)

where the predicates s, m and c mean sea, mountain and couple, respectively,
and the constants a, n, b and j mean Adam, Nancy, Bob and Jane, respec-
tively. B has four answer sets: S1 = { c(a, n), c(b, j), s(a), s(n), s(b), s(j) }, S2 =
{ c(a, n), c(b, j), s(a), s(n), m(b), m(j) }, S3 = { c(a, n), c(b, j), m(a), m(n), s(b), s(j) },
and S4 = { c(a, n), c(b, j), m(a), m(n), m(b), m(j) }.
Suppose the observation that Adam and Nancy are tanned, but Bob and

Jane are not. It is represented as:

O = { t(a), t(n), ¬t(b), ¬t(j) }

where the predicate t mean tanned.
Brain

not constructs candidate hypotheses as follows. First, an answer set of
B, for instance S2, is selected. A set R of rules is then constructed as:

t(a)← c(a, n), s(a), s(n), not m(a), not m(n),

t(n)← c(a, n), s(a), s(n), not m(a), not m(n),

¬t(b)← c(b, j), m(b), m(j), not s(b), not s(j),

¬t(j)← c(b, j), m(b), m(j), not s(b), not s(j).

Next, the lgs(R) is constructed as

t(x)← c(a, n), s(x), not m(x),

¬t(y)← c(b, j), m(y), not s(y).



Since O is an asynchronous set, gsi(lgs(R1), . . . , lgs(Rn)) is also constructed as

t(x) ; ¬ t(y)← c(a, n), c(b, j), s(x), m(y), not m(x), not s(y).

Finally, isolated literals c(a, n) and c(b, j) are removed, and H∧ and H∨ become
H∧ = { t(x)← s(x), not m(x), ¬t(y)← m(y), not s(y) } and
H∨ = { t(x) ; ¬ t(y)← s(x), m(y), not m(x), not s(y) }, respectively.

4 Discussion

There are some induction frameworks which relax explanatory induction in dif-
ferent ways. De Raedt and Dehaspe [3, 4] introduce the framework of learning
from satisfiability (LFS). Given the background knowledge B and an observation
O, a hypothesis H covers O under B in LFS if B ∧H ∧O is consistent. In other
words, H covers O under B in LFS if B ∧H has a model satisfying O. By the
definition, LFS is weaker than brave induction. That is, if a hypothesis H covers
O under B in brave induction, H covers O under B in LFS (cf. Proposition 2.3).
The converse implication does not hold in general. Compared with brave induc-
tion, LFS does not require the minimality of models. So any theory H becomes
a solution as far as it is consistent with B ∧ O. This implies that any hypoth-
esis which has no connection to B ∧ O may become a solution. For instance,
let B = { p(a) } and O = { q(a) }. Then, H1 = { r(b) }, H2 = { s(x) ← r(x) },
H3 = {¬ s(c) }, . . . are all solutions in LFS. Note that none of H1, H2, and H3

becomes a solution of brave induction. As seen in the above example, LFS ap-
pears too weak for building useful hypotheses. Since it generally produces tons of
useless hypotheses, additional conditions must be introduced to reduce the hy-
potheses space for practical usage. Brave induction is considered as a restricted
version of LFS, that is, we imposed the condition of minimality on models of
B ∧H satisfying O. Moreover, in [3] the authors say:

One open question for further research is how learning from satisfiability
(which employs a monotonic logic) could be used for inducing nonmono-
tonic logic programs.

This paper provides a solution in the context of brave induction.
Confirmatory induction or descriptive induction [15] provides a different

method for induction. Given the background knowledge B and an observation
O such that B ∧ O is consistent, a hypothesis H covers E under B in confir-
matory induction if Comp(B ∧ O) |= H where Comp represents Clark’s predi-
cate completion. When B is a set of definite clauses, any hypothesis H induced
in explanatory induction and the closed world assumption becomes a solution
of confirmatory induction [1]. For instance, given B = {human(Socrates) }
and O = {mortal(Socrates) }, both H1 = (mortal(x) ← human(x)) and
H2 = (human(x) ← mortal(x)) become solutions of confirmatory induction,
but only H1 is the solution of explanatory induction and brave induction. On the
other hand, explanatory induction and brave induction are not always stronger



than confirmatory induction. For instance, letB = { p(x)← q(x) } andO = p(a).
Then, H = q(a) ∧ q(b) becomes a solution of explanatory induction and brave
induction, while H is not a solution of confirmatory induction. Thus, there is no
relation between brave induction and confirmatory induction in general. Gener-
ally speaking, confirmatory induction does not explain why particular individuals
are observed under the background knowledge, and the aim is to learn relation-
ships between any of the concepts [8]. For induction in full clausal theories, Inoue
[13] introduces CF-induction which extends Muggleton’s inverse entailment to
full clausal theories. However, CF-induction is cautious induction and is often
too strong for learning indefinite theories. Induction in answer set programming
is introduced by Sakama [25], but it is also cautious induction.
Brave induction guarantees the existence of a minimal model of B ∧ H in

which an observation O is satisfied. In this case,H covers the positive observation
O under B. In ILP, on the other hand, negative observations as well as positive
ones are also handled. Given a negative observation N , it is required that H

uncovers N under B. This condition is logically represented as B ∧ H 6|= N .
Definition 2.1 is extended to handle negative observations as follows.

Definition 4.1. Let B be the background knowledge, P a positive observation,
and N a negative observation. A hypothesis H is a solution of brave induction
if B ∧H has a minimal model M such that M |= P and M 6|= N .

By putting O = P ∧ ¬N , the above definition reduces to Definition 2.1 and
negative observations are handled within the framework of this paper.8

In this paper, we introduced induction algorithms which produce clauses or
rules that define more than one predicate. The problem is known as multiple
predicate learning (MPL) [2]. In MPL the order of learning different clauses
affects the results of the learning tasks and even the existence of solutions, es-
pecially in the presence of negative observations [1]. We do not discuss details
of the problem in this paper, and just impose the condition of consistency on
B ∧ lgs∗(Hi) in the first-order case. In case of ASP, independence of O with re-
spect to B guarantees the consistency of B∪{ lgs∗(R) } as far as B is consistent.
Further discussion for MPL is left for future study.
We finally remark the computational complexity issue. First, in case of clausal

theories (CT), brave induction has a solution H iff B ∧O is consistent (Propo-
sition 2.1). Then, given a ground clausal theory B and a ground observation
O, deciding the existence of solutions in brave induction is NP-complete. In
case of ASP, brave induction has a solution H if B ∪ O has a consistent an-
swer set. The decision problem is ΣP

2 -complete [6]. Next, we consider the task
of identifying whether a theory H is a solution of brave induction. To this end,
we consider a complementary problem: a ground clausal theory B ∧ H has no
minimal model satisfying a conjunction O of ground atoms. This is a task of
the extended GCWA and is known ΠP

2 -complete [6], so that the identification
problem is ΣP

2 -complete. Deciding whether the ground program B ∪ H has a

8 Strictly speaking, ¬N requires Skolemization when a clausal theory N contains vari-
ables. For detailed technique, see [13].



consistent answer set satisfying O is also ΣP
2 -complete [6]. On the other hand,

in cautious induction, the decision problem for the existence of solutions has the
same complexity in both CT and ASP. The decision problem for the identifica-
tion of solutions is coNP-complete in CT, and ΠP

2 -complete in ASP. Comparing
those results, brave induction appears more expensive than cautious induction
for identifying solutions in CT.
Brave and cautious inferences are widely used for commonsense reasoning

from incomplete knowledge. In hypothetical reasoning, two different types of
abduction under brave and cautious inferences are introduced by [7, 11] under
the stable model semantics of logic programs. To the best of our knowledge,
however, no studies introduce brave induction as a form of learning or learning
from incomplete information. Since abduction and induction are both hypothet-
ical reasoning which extend the background knowledge to explain observations,
brave induction proposed in this paper has a right place and serves as a natural
extension of brave abduction.

5 Conclusion

This paper introduced the framework of brave induction which is weaker than
explanatory induction usually used in ILP. We developed an algorithm for com-
puting brave induction in full clausal theories, and also extended the framework
to induction in answer set programming. As argued in the paper, explanatory
induction is often too strong for learning indefinite or incomplete theories. Learn-
ing from satisfiability, on the other hand, appears too weak as presented in Sec-
tion 4. Brave induction has a position between learning from satisfiability and
explanatory induction, and provides a moderate solution in the middle.
We are now seeking practical applications of brave induction. One of the

candidates is systems biology which would have indefinite or incomplete infor-
mation in the background knowledge and observations. A recent study [5] shows
that an ILP approach is useful for finding causal relations between concentration
changes of metabolities and enzyme activities. In [5] CF-induction [13] is used for
learning hypotheses. Since CF-induction is cautious induction, there would be a
room for brave induction to find new hidden hypotheses. A theoretical extension
to circumscriptive induction [14] is also a topic for future research.
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